
  

6.004 Worksheet - 1 of 6 - Procedures and Stacks 

 
 
  PUSH(X): Push Reg[x] onto stack 

  ADDC(SP,4,SP) 
  ST(Rx,-4,SP) 
 
POP(X): Pop value at top of stack into Reg[x] 
  LD(SP,-4,RX) 
  SUBC(SP,4,SP) 
 
ALLOCATE(k): Reserve k words of stack 
  ADDC(SP,4*k,SP) 
 
DEALLOCATE(k): Release k words of stack 
  SUBC(SP,4*k,SP) 
 
Stack discipline: leave stack the way you found 
it => for every PUSH(), there’s a corresponding 
POP() or DEALLOCATE() 
 
  

CALLING SEQUENCE 
 
   PUSH(argn)    // push args, last arg first 
   … 
   PUSH(arg1) 
   BR(f, LP)     // call f, return addr in LP 
   DEALLOCATE(n) // remove args from stack 
 
ENTRY SEQUENCE 
 
f: PUSH(LP)      // save return addr 
   PUSH(BP)      // save old frame pointer 
   MOVE(SP,BP)   // initialize new frame pointer 
   ALLOCATE(nlocals)  // make room for locals 
   (push other regs)  // preserve old reg vals 
 
EXIT SEQUENCE 
 
   // return value in R0 
   MOVE(BP,SP)   // remove locals 
   POP(BP)       // restore old frame pointer 
   POP(LP)       // recover return address 
   JMP(LP)       // resume execution in caller 
 

Activation record layout on the 
stack (aka stack frame): 

 
Procedures & Stacks Worksheet 

 



  

6.004 Worksheet - 2 of 6 - Procedures and Stacks 

fn: PUSH(LP) 
    PUSH(BP) 
    MOVE(SP,BP) 
    ALLOCATE(2) 
    PUSH(R1) 
    LD(BP,-12,R0) 
    ANDC(R0,1,R1) 
xx: ST(R1,0,BP) 
    SHRC(R0,1,R1) 
    ST(R1,4,BP) 
yy: BEQ(R0,rtn) 
    LD(BP,4,R1) 
    PUSH(R1) 
    BR(fn,LP) 
    DEALLOCATE(1) 
    LD(BP,0,R1) 
    ADD(R1,R0,R0) 
rtn:POP(R1) 
zz: MOVE(BP,SP) 
    POP(BP) 
    POP(LP) 
    JMP(LP) 

Problem 1. 
 
You are given an incomplete listing of a C program (shown 
below) and its translation to Beta assembly code (shown on the 
right): 
 

int fn(int x) { 
  int lowbit = x & 1; 
  int rest = x >> 1; 
  if (x == 0) return 0; 
  else return ???; 
} 

 
(A) What is the missing C source corresponding to ??? in the 

above program? 
 
 
 C source code: _________________________________ 
 
 

(B) Suppose the instruction bearing the tag ‘zz:’ were 
eliminated from the assembly language program.  Would 
the modified procedure work the same as the original 
procedure (circle one)? 
 
 Work the same?      YES   …   NO 

 
 
(C) In the space below, fill in the binary representation for the instruction stored at the location 

tagged ‘xx:’ in the above program. 
 
 
 

 
 

 (fill in missing 1s and 0s for instruction at xx:) 
 
  

 



  

6.004 Worksheet - 3 of 6 - Procedures and Stacks 

184:   4 

188:   7 

18C:  47 

190:  C4 

194: 170 

198:   1 

19C:  23 

1A0:  22 

1A4:  23 

1A8:  4C 

1AC: 198 

1B0:   1 

1B4:  11 

1B8:  23 

1BC:  11 

1C0:  4C 

1C4: 1B0 

1C8:   1  ←BP 

1CC:   8 

1D0: ??? 

1D4:   0  ←SP 

The procedure fn is called from an external procedure and its execution is interrupted just prior 
to the execution of the instruction tagged ‘yy:’.  The contents of a region of memory are shown 
on the left below. 
 
NB: All addresses and data values are shown in hex.  The contents of BP are 0x1C8 and SP 
contains 0x1D4. 
 

(D) What was the argument to the most recent call to fn? 
 

Most recent argument (HEX):  x=_______ 
 

 
(E) What is the missing value marked ??? for the contents of location 1D0? 

 
Contents of 1D0 (HEX): _______ 

 
 

(F) What is the hex address of the instruction tagged rtn:? 
 

 
Address of rtn (HEX): _______ 

 
 

(G) What was the argument to the original call to fn? 
 

 
Original argument (HEX):  x=_______ 

 
 

(H) What is the hex address of the BR instruction that called fn originally? 
 

 
Address of original call (HEX): _______ 

 
 

(I) What were the contents of R1 at the time of the original call? 
 

 
Original R1 contents (HEX): _______ 

 
 

(J) What value will be returned to the original caller? 
 

 
Return value for original call (HEX): _______ 

 
 
  



  

6.004 Worksheet - 4 of 6 - Procedures and Stacks 

Problem 2. 
 
 
You are given an incomplete listing of a C program (shown below) and 
its translation to Beta assembly code (shown on the right): 
 

int f(int x, int y) { 
  x = (x >> 1) + y; 
  if (y == 0) return x; 
  else return ???; 
} 

 
(A) What is the missing C source corresponding to ??? in the above program? 

 
 C source code: _________________________________ 

 
(B) Suppose the instruction bearing the tag ‘zz:’ were eliminated from the 

assembly language program.  Would the modified procedure work the 
same as the original procedure? 
 Work the same (circle one)?      YES   …   NO 

 
The procedure f is called from an external procedure and then execution is stopped 
just prior to one of the executions of the instruction labeled ‘rtn:’.  The addresses 
and contents of a region of memory are shown in the table on the right; all 
addresses and data values in the table are in hex.  When execution is stopped BP 
contains the value 0x14C and SP contains the value 0x150. 
 
(C) What are the arguments to the currently active call to f? 

 
 Most recent arguments (in hex):  x = 0x_______, y = 0x_______ 

 
(D) If you can tell from the information provided, specify the arguments to the 

original call to f, otherwise select CAN’T TELL. 
 
Original arguments (in hex) :  x = 0x_____, y  = 0x_____, or CAN’T TELL 

 
(E) What is the missing value in location 0x12C? 

 
 Contents of location 0x12C (in hex): 0x_______ 

 
(F) What is the hex address of the instruction labeled rtn:? 

 
 Address of instruction labeled rtn: (in hex): 0x_______ 

 
(G) What is the hex address of the BR instruction that called f originally? 

 
 Address of original call (in hex): 0x_______, or CAN’T TELL 

 
(H) What value will be returned to the original caller? 

 
 Return value for original call (in hex): 0x_______ 

108 7 

10C 320 

110 104 

114 3 

118 A 

11C 2C4 

120 104 

124 3 

128 2 

12C  

130 348 

134 124 

138 2 

13C 1 

140 6 

144 348 

148 138 

14C 1 

150 0 

154 4 

158 348 

15C 14C 

160 0 

 

f:   PUSH(LP) 
     PUSH(BP) 
     MOVE(SP,BP) 
     PUSH(R1) 
     LD(BP,-12,R0) 
     SHRC(R0,1,R0) 
     LD(BP,-16,R1) 
     ADD(R0,R1,R0) 
     BEQ(R1,rtn) 
     SUBC(R1,1,R1) 
     PUSH(R1) 
     PUSH(R0) 
     BR(f,LP) 
     DEALLOCATE(2) 
rtn: POP(R1) 
zz:  MOVE(BP,SP) 
     POP(BP) 
     POP(LP) 
     JMP(LP) 
 



  

6.004 Worksheet - 5 of 6 - Procedures and Stacks 

Problem 3. 
 
The following C program implements a function H(x,y) of two arguments, 
which returns an integer result.  The assembly code for the procedure is 
shown on the right.  
 
 
 
 
 
 
The execution of the procedure call H(0x68,0x20) has been suspended just as 
the Beta is about to execute the instruction labeled “rtn:” during one of the 
recursive calls to H.  A partial trace of the stack at the time execution was 
suspended is shown to the right below. 
 
(A) Examining the assembly language for H, what is the appropriate C code 

for ??? in the C representation for H? 
 
 C code for ???: _____________________________________ 
 
 

(B) Please fill in the values for the blank locations in the stack dump shown 
on the right.  Express the values in hex or write “---“ if value can’t be 
determined.  Hint: Figure out the layout of H’s activation record and use 
it to identify and label the stack frames in the stack dump. 
 
 Fill in the blank locations with values (in hex!) or “---“  

 
 
(C) Determine the specified values at the time execution was suspended.  

Please express each value in hex or write “CAN’T TELL” if the value 
cannot be determined. 
 
 Value in R0 or “CANT TELL”: 0x_______________ 
 
 Value in R1 or “CANT TELL”: 0x_______________ 
 
 Value in BP or “CANT TELL”: 0x_______________ 
 
 Value in LP or “CANT TELL”: 0x_______________ 
 
 Value in SP or “CANT TELL”: 0x_______________ 

 
  

 
 0x0024 

 0x0070 

 0x0048 

 0x0068 

  

  

  

  

  

 0x0020 

 0x0020 

 0x0028 

 0x007C 

 0x00C8 

BP→ 0x0008 

 0x0020 

 0x0020 

 

int H(int x, int y) { 
    int a = x - y; 
    if (a < 0) return x; 
    else return ???; 
} 

H:    PUSH(LP) 
      PUSH(BP) 
      MOVE(SP, BP) 
      ALLOCATE(1) 
      PUSH(R1) 
 
      LD(BP,-12,R0) 
      LD(BP,-16,R1) 
      SUB(R0,R1,R1) 
      ST(R1,0,BP) 
 
      CMPLTC(R1,0,R1) 
      BT(R1,rtn) 
 
      LD(BP,-16,R1) 
      PUSH(R1) 
      LD(BP,0,R0) 
      PUSH(R0) 
      BR(H,LP) 
      DEALLOCATE(2) 
 
rtn:  POP(R1) 
      MOVE(BP,SP) 
      POP(BP) 
      POP(LP) 
      JMP(LP) 
 



  

6.004 Worksheet - 6 of 6 - Procedures and Stacks 

Problem 4. 
 
 
The following C program computes the log base 2 of its argument.  The 
assembly code for the procedure is shown on the right, along with a stack 
trace showing the execution of ilog2(10).  The execution has been halted just 
as it’s about to execute the instruction labeled “rtn:” 
 

 /* compute log base 2 of arg */ 
int ilog2(unsigned x) { 
    unsigned y; 
    if (x == 0) return 0; 
    else { 
        /* shift x right by 1 bit */ 
        y = x >> 1; 
        return ilog2(y) + 1; 
   } 
} 

 
 
(A) What are the values in R0, SP, BP and LP at the time execution was 

halted?  Please express the values in hex or write “CAN’T TELL”. 
 
 Value in R0: 0x_______________  in SP: 0x_______________  
 
 Value in BP: 0x_______________  in LP: 0x_______________ 

 
 
(B) Please fill in the values for the five blank locations in the stack trace 

shown on the right.  Please express the values in hex. 
 
 Fill in values (in hex!) for 5 blank locations 

 
 
(C) In the assembly language code for ilog2 there is the instruction “LD(BP,-

12,R0)”.   If this instruction were rewritten as “LD(SP,NNN,R0)” what is 
correct value to use for NNN? 
 
 Correct value for NNN: _______________ 
 

 
(D) In the assembly language code for ilog2, what is the address of the 

memory location labeled “xxx:”?  Please express the value in hex. 
 
 Address of location labeled “xxx:”: 0x_______________ 

 
 

Va
lu

es
 a

re
 in

 h
ex

! 

5 

1A8 

208 

2 

5 

 

 

 

 

 

1 

1A8 

230 

BP→ 0 

 1 
 0 
 

ilog2: PUSH(LP) 
       PUSH(BP) 
       MOVE(SP,BP) 
       ALLOCATE(1) 
       PUSH(R1) 
         
       LD(BP,-12,R0) 
       BEQ(R0,rtn,R31) 
  
       LD(BP,-12,R1) 
       SHRC(R1,1,R1) 
       ST(R1,0,BP) 
 
       LD(BP,0,R1) 
       PUSH(R1) 
       BR(ilog2,LP) 
       DEALLOCATE(1) 
       ADDC(R0,1,R0) 
 
rtn:   POP(R1) 
xxx:   DEALLOCATE(1) 
       MOVE(BP,SP) 
       POP(BP) 
       POP(LP) 
       JMP(LP) 
 


