

6.004 Worksheet - 1 of 8 - Beta Implementation

PC+4+4*SXT(C)

ASEL 0 1

Data
Memory

RD
WD

Adr
WE

W D S E L 0 1 2

WA Rc: <25:21> 0 1 XP

 PC

JT

+4
Instruction
Memory A

D
Rb: <15:11>Ra: <20:16>

RA2SEL Rc: <25:21>

+
Register

File
RA1 RA2
RD1 RD2

BSEL 0 1
C: SXT(<15:0>)

Z

ALU A B

JT
WA WD

WE

ALUFN

Control Logic
Z

ASEL
BSEL

PCSEL
RA2SEL

WDSEL

ALUFN

PC+4

0 1

MWR

0 1 2 3 4
XAdr ILL

OP

WASEL

WASEL

IRQ

W E R F

WERF

00

PCSEL

Unpipelined Beta

Control logic

ALUFN[5:0] Operation Output value Y[31:0]
000011 CMPEQ Y = (A == B)
000101 CMPLT Y = (A < B)
000111 CMPLE Y = (A ≤ B)
010000 ADD Y = A+B
010001 SUB Y = A−B
101000 AND Y[i] = A[i] · B[i]
101110 OR Y[i] = A[i] + B[i]
100110 XOR Y[i] = A[i] ⊕ B[i]

101001 XNOR Y[i] = ~(A[i] ⊕ B[i])
101010 “A” Y = A
110000 SHL Y = A << B
110001 SHR Y = A >> B
110011 SRA Y = A >> B (sign extended)

Reset: 0x80000000
Illop: 0x80000004
XAdr: 0x80000008

OE MOE
MOE
MWR

R
E
S
E
T

I
R
Q

O
P

O
P
C

L
D

L
D
R

S
T

J
M
P

B
E
Q

B
N
E

I
L
L
O
P

ALUFN[5:0] -- -- F(op) F(op) "+" "A" "+" -- -- -- --

ASEL -- -- 0 0 0 1 0 -- -- -- --

BSEL -- -- 0 1 1 -- 1 -- -- -- --

MOE -- -- -- -- 1 1 0 -- -- -- --

MWR 0 0 0 0 0 0 1 0 0 0 0

PCSEL[2:0] -- 4 0 0 0 0 0 2 Z ? 1 : 0 Z ? 0 : 1 3

RA2SEL -- -- 0 -- -- -- 1 -- -- -- --

WASEL -- 1 0 0 0 0 -- 0 0 0 1

WDSEL[1:0] -- 0 1 1 2 2 -- 0 0 0 0

WERF -- 1 1 1 1 1 0 1 1 1 1

4*SXT(C)

PC+4

RESET 0 1 Reset

RESET

MWD

MRD

MA

IA

ID

Beta Implementation Worksheet

6.004 Worksheet - 2 of 8 - Beta Implementation

Problem 1.

For this problem assume that each register has been initialized to the value 0x0000??00 where
“??” is the register number as a two-digit hex number. So R0 is initialized to 0x00000000, R1 to
0x00000100, …, and R30 to 0x00001E00. R31 of course always reads as 0.

For each instruction below, please indicate the values that will be found in the unpipelined Beta
datapath just before the end of the clock cycle in which the instruction is executed. If the value
doesn’t matter since it’s not used during the execution of the instruction or can’t be determined,
write “−”.

. = 0x100
SHLC(R30,8,R16)

. = 0x100
SUB(R5,R3,R7)

6.004 Worksheet - 3 of 8 - Beta Implementation

. = 0x100
LD(R3,-0x200,R7)

// hex for instruction
0x60E3FE00

. = 0x100
ST(R3,-0x200,R7)

6.004 Worksheet - 4 of 8 - Beta Implementation

. = 0x100
JMP(LP)

. = 0x100
BEQ(R31,.+0x80,LP)

6.004 Worksheet - 5 of 8 - Beta Implementation

Problem 2.

Consider adding the following instructions to the Beta instruction set, for implementation on the
Beta hardware shown in lecture (see diagram included in the reference material at the end of this
quiz). You’re allowed to change how the control signals are generated but no modifications to
the datapath are permitted.

For each instruction either fill in the appropriate values for the control signals in the table below
or put a line through the whole row if the instruction cannot be implemented using the
existing Beta datapath. Use “—“ to indicate a “don’t care” value for a control signal. The values
can be a function of Z (which is 1 when Reg[Ra] is zero).

LDX(Ra, Rb, Rc) // Load indexed
 EA ← Reg[Ra] + Reg[Rb]
 Reg[Rc] ← Mem[EA]
 PC ← PC + 4

STX(Ra, Rb, Rc) // Store indexed
 EA ← Reg[Ra] + Reg[Rb]
 Mem[EA] ← Reg[Rc]
 PC ← PC + 4

MVZC(Ra, literal, Rc) // Move constant if zero

 If Reg[Ra] == 0 then Reg[Rc] ← SXT(literal)
 PC ← PC + 4

SOB(Ra, literal, Rc) // Subtract one and branch
PC ← PC + 4
EA ← PC + 4*SEXT(literal)
tmp ← Reg[Ra]
Reg[Rc] ← Reg[Ra] – 1
if tmp != 0 then PC ← EA

ARA(Ra, literal, Rc) // Add Relative Address
 Reg[Rc] ← Reg[Rc] + PC + 4 + 4*SEXT(literal)
 PC ← PC + 4

(FILL IN TABLE BELOW)

Instr ALUFN WERF BSEL WDSEL MOE MWR RA2SEL PCSEL ASEL WASEL

LDX

STX

MVZC

SOB

ARA

6.004 Worksheet - 6 of 8 - Beta Implementation

Problem 3.

Ben Bitdiddle is proposing the short assembly language program shown to
the right as a manufacturing test to ensure the correct operation of the
Control ROM. He is assuming – and you may too – that the Beta datapath
components (e.g., Memories, ALU, muxes, register file, adders) are working
correctly and that any errors in execution are due to faulty signals from the
Control ROM. Ben’s plan is to run the program then look at the value in the
memory location labeled ANS. If the value is 0x6004, the test passes,
otherwise the Beta being tested is declared faulty and discarded.

For each of the following faults, indicate the value that the faulty Beta will
store into ANS.

(A) RA2SEL is stuck at the value 0.

 Value stored in ANS by faulty Beta: _______________

(B) WDSEL[1:0] is stuck at the binary value 00.

 Value stored in ANS by faulty Beta: _______________

(C) PCSEL[2:0] is stuck at the binary value 000.

 Value stored in ANS by faulty Beta: _______________

Problem 4. Beta Implementation

Consider the assembly language program shown to the right.
Assume that all register values are initialized to 0, execution starts
at PC=0 and halts when HALT() is executed.

This program is run on 4 different broken Betas, where each Beta
has a specified control signal stuck at the specified value, i.e., the
control signal value is fixed and is not affected by the value
produced by the Beta’s CTL module. For each broken Beta,
please give the value in registers R1, R2, R3, and the location X:
after the programs halts. Assume that any don’t care control
signal values are 0.

Broken control signal
Final value in

R1 R2 R3 Location X:

RA2SEL stuck at 0

WDSEL stuck at 0b00

WASEL stuck at 1

WERF stuck at 1

.=0
Test: LD(R31,X,R0)
 ADDC(R0,1,R1)
 BNE(R1,L1,R31)
 ADDC(R1,1,R1)
L1: ST(R1,ANS,R31)
 HALT()
X: .LONG(0x6003)
ANS: .LONG(0)

 . = 0
 LD(R31,X,R1)
 CMPLTC(R1,0,R2)
 BF(R2,end,R3)
 SUB(R31,R1,R1)
 ST(R1,X,R31)
END: HALT()
X: LONG(-42)

6.004 Worksheet - 7 of 8 - Beta Implementation

Problem 5.

In this problem, you will consider a number of plausible hardware faults in an otherwise working
Beta processor; you may want to consult the diagram and documentation on the backs of pages of
this quiz. Each of the faults involves changing a particular output of the control logic to some
new (incorrect) constant value. In each case, you are to evaluate the impact of the fault on each
of the following Beta instructions:

I1: ST(R0, 0x100, R1)
I2: JMP(LP, R31)
I3: BEQ(R31, .+4, R0)
I4: SUB(R1, R0, R0)

For each of the following faults, identify which (if any) of the above instructions will fail to work
properly – that is, if the fault might effect the processor state (register and PC values) after the
execution of the instruction. Be careful: some of these are tricky!

(A) ALUFN stuck at code for “-” (32-bit SUBTRACT)

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(B) RA2SEL stuck at 1

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(C) WERF stuck at 0

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(D) BSEL stuck at 0

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

Problem 6.

(A) The Beta executes the assembly program below starting at location 0 and stopping when it

reaches the HALT() instruction. Please give the values in the indicated registers after the
Beta stops. Write the values in hex or write “CAN’T TELL” if the values cannot be
determined.

 . = 0
 LD(r31, X, r0)
 CMPLE(r0, r31, r1)
 BNE(r1, L1, r2)
 ADDC(r31, 1, r0)
 L1: HALT()

 X: LONG(0x87654321)

Value left in R0 or “CAN’T TELL”: 0x_______________

Value left in R1 or “CAN’T TELL”: 0x_______________

Value left in R2 or “CAN’T TELL”: 0x_______________

6.004 Worksheet - 8 of 8 - Beta Implementation

(B) Redo part (A) but this time assume that all the control signals going to the datapath from the
control logic are stuck at logic 0, except for WERF which operates as expected. Note that
when ALUFN[4:0] = 0b00000, the ALU computes A+B.

 . = 0
 LD(r31, X, r0)
 CMPLE(r0, r31, r1)
 BNE(r1, L1, r2)
 ADDC(r31, 1, r0)
 L1: HALT()

 X: LONG(0x87654321)

Value left in R0 or “CAN’T TELL”: 0x_______________

Value left in R1 or “CAN’T TELL”: 0x_______________

Value left in R2 or “CAN’T TELL”: 0x_______________

(C) Bettah Beta Inc. (you can tell they’re based in Boston!) is proposing a new Beta instruction

TCLR that sets Rc to the current value of a memory location whose address is in Ra and
writes a zero to that location, all in a single cycle. They are assuming that main memory
works as it does in JSim: its read ports are combinational and the write port takes a CLK
signal and performs the write at the end of the current cycle – so the same memory location
can be read and written in the same clock cycle.

 Here’s their draft entry for the Beta reference manual:

Usage: TCLR(Ra,Rc)
Opcode: 011010 Rc Ra 11111 unused
Operation: PC ¬ PC + 4

EA ¬ Reg[Ra]
Reg[Rc] ¬ Mem[EA]
Mem[EA] ¬ 0

 The contents of register Rc are set to the contents of the memory location whose address is

in Ra. Then, at the end of the cycle, that memory location is set to 0.

Please fill in the appropriate values for the control signals that will cause the datapath to
implement the correct operations OR briefly explain why TCLR cannot be implemented
with the existing Beta datapath in a single cycle.

 Fill in table:

Instr ALUFN WERF BSEL WDSEL MOE MWR RA2SEL PCSEL ASEL WASEL

TCLR

