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There are a large number of implementations of the same 
functionality -- each represents a different point in the area-
time-power space 

 
Optimization metrics: 
 

area 

time 

power 

1.  Area of the design 
2.  Throughput 
3.  Latency 
4.  Power consumption 
5.  Energy of executing a task 
6.  … 

Optimizing Your Design 

Justin14 (CC BY-SA 4.0) ©Advanced Micro Devices (with permission) 

vs. 
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CMOS Static Power Dissipation 

MOSFET 

1 

2 

1 Tunneling current 
through gate oxide: SiO2 
is a very good insulator, 
but when very thin (< 20Å) 
electrons can tunnel 
across. 

2 Current leakage from drain to source even 
though MOSFET is “off” (aka sub-
threshold conduction) 

•  Leakage gets larger as difference 
between VTH and “off” gate voltage (eg, 
VOL in an nfet) gets smaller.  
Significant as VTH has become smaller. 

•  Fix: 3D FINFET wraps gate around 
inversion region 

FINFET 

Irene Ringworm (CC BY-SA 3.0) 
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CMOS Dynamic Power Dissipation 

VIN 

C 

VOUT 

VIN moves from  
L to H to L 

tCLK=1/fCLK 

VOUT moves from  
H to L to H 

C discharges and 
then recharges: 

I =C dVOUT
dt

⇒ P =C dVOUT
dt

VOUT

PNFET = fCLK iNFETVOUT dt0

tCLK /2∫

= fCLKC −C dVOUT
dt

VOUT dt0

tCLK /2∫

= fCLKC −VOUT dVOUTVDD

0
∫

= fCLKC
VDD
2

2

Power dissipated 
to discharge C: 

PPFET = fCLK iPFETVOUT dttCLK /2

tCLK∫

= fCLK C dVOUT
dt

VOUT dttCLK /2

tCLK∫

= fCLKC VOUT dVOUT0

VDD∫

= fCLKC
VDD
2

2

Power dissipated to recharge C: 

E = P(t)dt
t∫
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CMOS Dynamic Power Dissipation 

Power dissipated 

 = f C VDD
2  per node 

 = f N C VDD
2 per chip 

where 
   f = frequency of charge/discharge 
   N = number of changing nodes/chip 

“Back of the envelope”: 
f ~ 1GHz = 1e9 cycles/sec 
N ~ 1e8 changing nodes/cycle 
C ~ 1fF = 1e-15 farads/node 
V ~ 1V 

⇒ 100 Watts 

trends 

VIN 

C 

VOUT 

VIN moves from  
L to H to L 

VOUT moves from  
H to L to H 

C discharges and 
then recharges: 

tCLK=1/fCLK 
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A[31:0] 
B[31:0] 

ALUFN[0] 

Z 
V 
N 

ALUFN[3:0] 

add 

boole 

ALUFN[1:0] 
shift 

Z 
V 
N cmp 

ALUFN[2:1] 

ALU[31:0] 

ALUFN[5:4] 

How Can We Reduce Power? 

What if we could 
eliminate unnecessary 
transitions?  When the 
output of a CMOS gate 
doesn’t change, the gate 
doesn’t dissipate much 
power! 
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A[31:0] 
B[31:0] 

ALUFN[0] 

Z 
V 
N 

ALUFN[3:0] 

add 

boole 

ALUFN[1:0] 
shift 

Z 
V 
N cmp 

ALUFN[2:1] 

ALU[31:0] 

ALUFN[5:4] 

D Q 
 
G 

D Q 
 
G 

D Q 
 
G 

ALUFN[5] == 0 

ALUFN[5:4] == 10 

ALUFN[5:4] == 11 

Signals in this 
region make 
transitions only 
when ALU is doing 
a shift operation 

Variations: Dynamically 
adjust tCLK or VDD (either 
overall or in specific 
regions) to accommodate 
workload. 

Fewer Transitions → Lower Power 

Must computation 
consume energy?  
See §6.5 of Notes 
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Worse-case path: carry propagation from LSB to MSB, e.g., 
when adding 11…111 to 00…001. 

   A       B 
CO        CI 
       S 

FA 
   A       B 
CO        CI 
       S 

FA 
   A       B 
CO        CI 
       S 

FA 

 An-1 Bn-1      An-2 Bn-2            A2   B2        A1   B1        A0   B0 

 Sn-1             Sn-2                   S2               S1              S0 

   A       B 
CO        CI 
       S 

FA 
   A       B 
CO        CI 
       S 

FA C 
… 

Improving Speed: Adder Example 

0 

Θ(N) is read “order N” and tells us that the latency of our adder 
grows in proportion to the number of bits in the operands. 

≈ Θ(N) 

CI to CO CIN-1 to SN-1 

tPD = (N-1)*(tPD,NAND3 + tPD,NAND2) + tPD,XOR 
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“Order Of” notation: 

"g(n) is of order f(n)" g(n) = Θ(f(n)) 

Performance/Cost Analysis 

g(n)=Θ(f(n)) if there exist C2 ≥ C1 > 0 
such that for all but finitely many 
integral n ≥ 0 

C1 ⋅ f (n) ≤ g(n) ≤C2 ⋅ f (n)

Example: 

     n2+2n+3 = Θ(n2) 

since 

     n2 < n2+2n+3 < 2n2 

“almost always” 

Θ(...) implies both 
inequalities; 

O(...) implies only 
the second. 

g(n) = O(f(n)) 
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Carry Select Adders 
Hmm.  Can we get the high half of the adder working in parallel with the low half? 

16-bit Adder 

B[15:0] A[15:0] 

0 

S[15:0] 

16-bit Adder 

B[31:16] A[31:16] 

0 

1 16-bit Adder 

1    0 

S[31:16] 

Two copies of the high 
half of the adder: one 
assumes a carry-in of 
“0”, the other carry-in 
of “1”. 

Once the low half computes the actual value 
of the carry-in to the high half, use it select 
the correct version of the high-half addition. 

Aha! Apply the same strategy to build 16-bit adders from 8-
bit adders.  And 8-bit adders from 4-bit adders, and so on.  
Resulting tPD for N-bit adder is Θ(log N). 

tPD = 16*tPD,CI→CO + tPD,MUX2  ≃ half of 32*tPD,CI→CO 
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32-bit Carry Select Adder 

COUT   SUM COUT   SUM COUT   SUM 
S[4:0] 

S[11:5] S[20:12] COUT,S[31:21] 

B[4:0] A[4:0] B[11:5] A[11:5] B[20:12] A[20:12] B[31:21] A[31:21] 

Practical Carry-select addition: choose block sizes so that 
trial sums and carry-in from previous stage arrive 
simultaneously at MUX. 

Select input is 
heavily loaded, 
so buffer for 
speed. Design goal: have these 

two sets of signals arrive 
simultaneously at each 
carry-select mux 
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Let’s see if we can improve the speed by rewriting the equations 
for COUT: 

COUT = AB + ACIN + BCIN 
 
        = AB + (A + B)CIN 
 
        = G + P CIN where G = AB and P = A + B 

generate propagate 

Wanted: Faster Carry Logic! 

Actually, P is usually defined as 
P = A⊕B which won’t change 
COUT but will allow us to express 
S as a simple function of P and 
CIN: 
               S = P ⊕ CIN 
 

CO logic using only 
3 NAND2 gates!  
Think I’ll  borrow 
that for my FA 
circuit! 

CI 

A B 

S 

CO 

G     P 
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We can build a hierarchical carry chain by generalizing our 
definition of the Carry Generate/Propagate (GP) Logic. We start by 
dividing our addend into two parts, a higher part, H, and a lower 
part, L. The GP function can be expressed as follows: 

GHL = GH + PH GL 
 
PHL = PH PL  

Generate a carry out if the high part 
generates one, or if the low part generates 
one and the high part propagates it. 
Propagate a carry if both the high and low 
parts propagate theirs. 

Carry Look-ahead Adders (CLA) 

Hierarchical building block 

P/G generation 

1st level of 
lookahead 

GH  PH 

GHL   PHL 

GP 
GL 
 

PL 

   A       B 
CO        CI 
 G    P    S 

FA 

GH  PH 

GHL   PHL 

GP 
GL 
 

PL 

   A       B 
CO        CI 
 G    P    S 

FA 

H L 
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Θ(log N) 

GH  PH    GL 

GHL PHL   PL 

GP 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

GH  PH    GL 

GHL PHL   PL 

GP 

GH  PH    GL 

GHL PHL   PL 

GP 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

GH  PH    GL 

GHL PHL   PL 

GP 

GH  PH  GL 

GHL PHL PL 

GP 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

GH  PH    GL 

GHL PHL   PL 

GP 

GH  PH  GL 

GHL PHL PL 

GP 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A7 B7       A6 B6     A5 B5      A4 B4      A3 B3       A2 B2     A1 B1       A0 B0 

We can build a tree of GP units to compute the generate and 
propagate logic for any sized adder. Assuming N is a power of 2, 
we’ll need N-1 GP units. 
 
This will let us to quickly compute the carry-ins for each FA! 

G7-0  P7-0 

G3-0     P3-0 

G1-0     P1-0 G3-2     P3-2 

G7-4     P7-4 

G5-4     P5-4 G7-6     P7-6 

8-bit CLA (generate G & P) 
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Θ(log N) 

Now, given a the value of the carry-in of the least-
significant bit,we can generate the carries for every adder. 

cH = GL + PLcin 
cL = cin 

cH 

cin 

cL 
GL 

PL 

cH 

cin 

cL 
GL 

PL 

cH 

cin 

cL 
GL 

PL 

cH 

cin 

cL 
GL 

PL 

cH 

cin 

cL 
GL 

PL 

cH 

cin 

cL 
GL 

PL 

cH 

cin 

cL 
GL 

PL 

C7   C6          C5    C4         C3   C2           C1    C0 

    C6                  C4                C2                  C0 

    C4                                      C0 

C0 

G3-0 
P3-0 

G1-0 
P1-0 

G5-4 
P5-4 

G6 
P6 

G4 
P4 

G2 
P2 

G0 
P0 

C 

C 

C C 

C 

C C 

8-bit CLA (carry generation) 

C4 = G3-0+P3-0 C0 

C6 = G5-4+P5-4 C4 
Notice that the 
inputs on the 
left of each C 
blocks are the 
same as the 
inputs on the 
right of each 
corresponding 
GP block. 
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A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A         B 
CO           CI 

G    P   S 
FA 

A7  B7         A6  B6      A5  B5        A4   B4       A3  B3        A2  B2       A1  B1        A0  B0 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

GH  PH Cj GL 
PL 

Ci 

GP/C 
GHL PHL Ci 

tPD = Θ(log N) 

GH  PH 

GHL   PHL 

GP 
GL 
 

PL 

cH 

ci 

cL 
GL 

PL 
C + = 

GH   PH CH 

GHL  PHL Cin 

GP/C 
GL 

PL 
CL 

8-bit CLA (complete) 

CI 

A B 

S 

CO 

G     P 

Notice that we don’t 
need the carry-out 
output of the adder any 
more. 

C0 

To learn more, look up Kogge-Stone adders on Wikipedia. 
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A0 A1 A2 A3 

B0 B1 B2 B3 

A0B0 A1B0 A2B0 A3B0 

A0B1 A1B1 A2B1 A3B1 

A0B2 A1B2 A2B2 A3B2 

A0B3 A1B3 A2B3 A3B3 

x 

+ 

ABi called a “partial product” 

Multiplying N-digit number by M-digit number gives (N+M)-digit result 

Easy part: forming partial products (just an AND gate since BI is either 0 or 1) 

Hard part: adding M N-bit partial products 

1 0 1 

0 0 0 

1 0 * 

The “Binary” 
Multiplication 

Table 

Binary Multiplication* 

* Actually unsigned binary multiplication 

Hey, that 
looks like 
an AND 

gate 
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HA 

FA 

FA 

FA 

FA 

HA 

FA 

HA 

HA 

FA 

FA FA 

a3 a2 a1 a0 

z0 z1 z2 z3 z4 z5 z6 z7 

b3 

b2 

b1 

b0 

CO 

A B 

S 

a3 a2 a1 a0 

a3 a2 a1 a0 

a3 a2 a1 a0 

CI 

A B 

S 

CO 

FA 

HA 

Latency = Θ(N) 
Throughput = Θ(1/N) 
Hardware = Θ(N2) 

Combinational Multiplier 
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                        X3   X2   X1   X0 
                     *  Y3   Y2   Y1   Y0 
                     -------------------- 
  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
----------------------------------------- 
    Z7   Z6   Z5   Z4   Z3   Z2   Z1   Z0 

                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X3Y2 X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
+    1              1 

Step 1: two’s complement operands so high 
order bit is –2N-1.  Must sign extend partial 
products and subtract the last one 

Step 2: don’t want all those extra additions, so 
add a carefully chosen constant, remembering to 
subtract it at the end. Convert subtraction into add 
of (complement + 1). 

Step 3: add the ones to the partial products 
and propagate the carries.  All the sign 
extension bits go away! 

Step 4: finish computing the constants… 

Result: multiplying 2’s complement operands 
takes just about same amount of hardware as 
multiplying unsigned operands! 

                      X3Y0 X2Y0 X1Y0 X0Y0 
+                X3Y1 X2Y1 X1Y1 X0Y1 
+           X3Y2 X2Y2 X1Y2 X0Y2 
+      X3Y3 X2Y3 X1Y3 X0Y3 
+                        1 
-         1    1    1    1 

  X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0 
+                        1 
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1 
+                   1 
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2 
+              1 
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3 
+                        1 
+         1 
-         1    1    1    1 

–B = ~B + 1 

2’s Complement Multiplication 
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FA 

FA 

FA 

FA 

FA 

HA 

FA 

HA 

HA 

FA 

FA FA 

a3 a2 a1 a0 

z0 z1 z2 z3 z4 z5 z6 z7 

b3 

b2 

b1 

b0 

a3 a2 a1 a0 

a3 a2 a1 a0 

a3 a2 a1 a0 

HA 

1 

1 

2’s Complement Multiplier 
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HA 

FA 

FA 

FA 

FA 

HA 

FA 

HA 

HA 

FA 

FA FA 

a3 a2 a1 a0 

z0 z1 z2 z3 z4 z5 z6 z7 

b3 

b2 

b1 

b0 

a3 a2 a1 a0 

a3 a2 a1 a0 

a3 a2 a1 a0 

Before pipelining: Throughput = ~1/(2N) = Θ(1/N) 
After pipelining: Throughput = ~1/N = Θ(1/N) 

Increase Throughput With Pipelining 
gotta break 

that long 
carry chain! 
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Observation: Rather 
than propagating the 
carries to the next 
column, they can 
instead be forwarded 
onto the next column 
of the following row 

FA 

FA 

HA 

FA 

FA 

HA 

FA 

HA 

FA 

a3 a2 a1 a0 

z0 z1 z2 z3 z4 z5 z6 z7 

b3 

b2 

b1 

b0 

a3 a2 a1 a0 

a3 a2 a1 a0 

a3 a2 a1 a0 

HA HA HA 

HA 

HA 

FA 

Latency = Θ(N) 
Throughput = Θ(1) 
Hardware = Θ(N2) 

“Carry-save” Pipelined Multiplier 
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Assume the multiplicand (A) has N bits and the multiplier 
(B) has M bits.  If we only want to invest in a single N-bit 
adder, we can build a sequential circuit that processes a 
single partial product at a time and then cycle the circuit M 
times: 

A P B 

+ 

SN 

NC 

N 
xN 

N 

N+1 

SN-1…S0 
Init: P←0, load A&B 
 
Repeat M times { 
   P ← P + (BLSB==1 ? A : 0) 
   shift SN,P,B right one bit 
} 
 
Done: (N+M)-bit result in P,B 

M bits 

LSB 

1 

TPD = Θ(1) for carry-save (see previous slide), 
         but adds Θ(N) cycles & Θ(N) hardware 

Latency = Θ(N) 
Throughput = Θ(1/N) 
Hardware = Θ(N) 

Reduce Area With Sequential Logic 

N+1 Sum bits and 
N saved carries 

Carry-save 
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•  Power dissipation can be controlled by dynamically 
varying TCLK, VDD or by selectively eliminating 
unnecessary transitions. 

•  Functions with N inputs have minimum latency of  
O(log N) if output depends on all the inputs.  But it 
can take some doing to find an implementation 
that achieves this bound. 

•  Performing operations in “slices” is a good way to 
reduce hardware costs (but latency increases) 

•  Pipelining can increase throughput (but latency 
increases) 

•  Asymptotic analysis only gets you so far – factors of 
10 matter in real life and typically N isn’t a 
parameter that’s changing within a given design. 

Summary 


