
6.004 Computation Structures L08: Design Tradeoffs, Slide #1

8. Design Tradeoffs

6.004x Computation Structures
Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L08: Design Tradeoffs, Slide #2

There are a large number of implementations of the same
functionality -- each represents a different point in the area-
time-power space

Optimization metrics:

area

time

power

1.  Area of the design
2.  Throughput
3.  Latency
4.  Power consumption
5.  Energy of executing a task
6.  …

Optimizing Your Design

Justin14 (CC BY-SA 4.0) ©Advanced Micro Devices (with permission)

vs.

6.004 Computation Structures L08: Design Tradeoffs, Slide #3

CMOS Static Power Dissipation

MOSFET

1

2

1 Tunneling current
through gate oxide: SiO2
is a very good insulator,
but when very thin (< 20Å)
electrons can tunnel
across.

2 Current leakage from drain to source even
though MOSFET is “off” (aka sub-
threshold conduction)

•  Leakage gets larger as difference
between VTH and “off” gate voltage (eg,
VOL in an nfet) gets smaller.
Significant as VTH has become smaller.

•  Fix: 3D FINFET wraps gate around
inversion region

FINFET

Irene Ringworm (CC BY-SA 3.0)

6.004 Computation Structures L08: Design Tradeoffs, Slide #4

CMOS Dynamic Power Dissipation

VIN

C

VOUT

VIN moves from
L to H to L

tCLK=1/fCLK

VOUT moves from
H to L to H

C discharges and
then recharges:

I =C dVOUT
dt

⇒ P =C dVOUT
dt

VOUT

PNFET = fCLK iNFETVOUT dt0

tCLK /2∫

= fCLKC −C dVOUT
dt

VOUT dt0

tCLK /2∫

= fCLKC −VOUT dVOUTVDD

0
∫

= fCLKC
VDD
2

2

Power dissipated
to discharge C:

PPFET = fCLK iPFETVOUT dttCLK /2

tCLK∫

= fCLK C dVOUT
dt

VOUT dttCLK /2

tCLK∫

= fCLKC VOUT dVOUT0

VDD∫

= fCLKC
VDD
2

2

Power dissipated to recharge C:

E = P(t)dt
t∫

6.004 Computation Structures L08: Design Tradeoffs, Slide #5

CMOS Dynamic Power Dissipation

Power dissipated

 = f C VDD
2 per node

 = f N C VDD
2 per chip

where
 f = frequency of charge/discharge
 N = number of changing nodes/chip

“Back of the envelope”:
f ~ 1GHz = 1e9 cycles/sec
N ~ 1e8 changing nodes/cycle
C ~ 1fF = 1e-15 farads/node
V ~ 1V

⇒ 100 Watts

trends

VIN

C

VOUT

VIN moves from
L to H to L

VOUT moves from
H to L to H

C discharges and
then recharges:

tCLK=1/fCLK

6.004 Computation Structures L08: Design Tradeoffs, Slide #6

A[31:0]
B[31:0]

ALUFN[0]

Z
V
N

ALUFN[3:0]

add

boole

ALUFN[1:0]
shift

Z
V
N cmp

ALUFN[2:1]

ALU[31:0]

ALUFN[5:4]

How Can We Reduce Power?

What if we could
eliminate unnecessary
transitions? When the
output of a CMOS gate
doesn’t change, the gate
doesn’t dissipate much
power!

6.004 Computation Structures L08: Design Tradeoffs, Slide #7

A[31:0]
B[31:0]

ALUFN[0]

Z
V
N

ALUFN[3:0]

add

boole

ALUFN[1:0]
shift

Z
V
N cmp

ALUFN[2:1]

ALU[31:0]

ALUFN[5:4]

D Q

G

D Q

G

D Q

G

ALUFN[5] == 0

ALUFN[5:4] == 10

ALUFN[5:4] == 11

Signals in this
region make
transitions only
when ALU is doing
a shift operation

Variations: Dynamically
adjust tCLK or VDD (either
overall or in specific
regions) to accommodate
workload.

Fewer Transitions → Lower Power

Must computation
consume energy?
See §6.5 of Notes

6.004 Computation Structures L08: Design Tradeoffs, Slide #9

Worse-case path: carry propagation from LSB to MSB, e.g.,
when adding 11…111 to 00…001.

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA
 A B
CO CI
 S

FA

 An-1 Bn-1 An-2 Bn-2 A2 B2 A1 B1 A0 B0

 Sn-1 Sn-2 S2 S1 S0

 A B
CO CI
 S

FA
 A B
CO CI
 S

FA C
…

Improving Speed: Adder Example

0

Θ(N) is read “order N” and tells us that the latency of our adder
grows in proportion to the number of bits in the operands.

≈ Θ(N)

CI to CO CIN-1 to SN-1

tPD = (N-1)*(tPD,NAND3 + tPD,NAND2) + tPD,XOR

6.004 Computation Structures L08: Design Tradeoffs, Slide #10

“Order Of” notation:

"g(n) is of order f(n)" g(n) = Θ(f(n))

Performance/Cost Analysis

g(n)=Θ(f(n)) if there exist C2 ≥ C1 > 0
such that for all but finitely many
integral n ≥ 0

C1 ⋅ f (n) ≤ g(n) ≤C2 ⋅ f (n)

Example:

 n2+2n+3 = Θ(n2)

since

 n2 < n2+2n+3 < 2n2

“almost always”

Θ(...) implies both
inequalities;

O(...) implies only
the second.

g(n) = O(f(n))

6.004 Computation Structures L08: Design Tradeoffs, Slide #11

Carry Select Adders
Hmm. Can we get the high half of the adder working in parallel with the low half?

16-bit Adder

B[15:0] A[15:0]

0

S[15:0]

16-bit Adder

B[31:16] A[31:16]

0

1 16-bit Adder

1 0

S[31:16]

Two copies of the high
half of the adder: one
assumes a carry-in of
“0”, the other carry-in
of “1”.

Once the low half computes the actual value
of the carry-in to the high half, use it select
the correct version of the high-half addition.

Aha! Apply the same strategy to build 16-bit adders from 8-
bit adders. And 8-bit adders from 4-bit adders, and so on.
Resulting tPD for N-bit adder is Θ(log N).

tPD = 16*tPD,CI→CO + tPD,MUX2 ≃ half of 32*tPD,CI→CO

6.004 Computation Structures L08: Design Tradeoffs, Slide #12

32-bit Carry Select Adder

COUT SUM COUT SUM COUT SUM
S[4:0]

S[11:5] S[20:12] COUT,S[31:21]

B[4:0] A[4:0] B[11:5] A[11:5] B[20:12] A[20:12] B[31:21] A[31:21]

Practical Carry-select addition: choose block sizes so that
trial sums and carry-in from previous stage arrive
simultaneously at MUX.

Select input is
heavily loaded,
so buffer for
speed. Design goal: have these

two sets of signals arrive
simultaneously at each
carry-select mux

6.004 Computation Structures L08: Design Tradeoffs, Slide #14

Let’s see if we can improve the speed by rewriting the equations
for COUT:

COUT = AB + ACIN + BCIN

 = AB + (A + B)CIN

 = G + P CIN where G = AB and P = A + B

generate propagate

Wanted: Faster Carry Logic!

Actually, P is usually defined as
P = A⊕B which won’t change
COUT but will allow us to express
S as a simple function of P and
CIN:
 S = P ⊕ CIN

CO logic using only
3 NAND2 gates!
Think I’ll borrow
that for my FA
circuit!

CI

A B

S

CO

G P

6.004 Computation Structures L08: Design Tradeoffs, Slide #15

We can build a hierarchical carry chain by generalizing our
definition of the Carry Generate/Propagate (GP) Logic. We start by
dividing our addend into two parts, a higher part, H, and a lower
part, L. The GP function can be expressed as follows:

GHL = GH + PH GL

PHL = PH PL

Generate a carry out if the high part
generates one, or if the low part generates
one and the high part propagates it.
Propagate a carry if both the high and low
parts propagate theirs.

Carry Look-ahead Adders (CLA)

Hierarchical building block

P/G generation

1st level of
lookahead

GH PH

GHL PHL

GP
GL

PL

 A B
CO CI
 G P S

FA

GH PH

GHL PHL

GP
GL

PL

 A B
CO CI
 G P S

FA

H L

6.004 Computation Structures L08: Design Tradeoffs, Slide #16

Θ(log N)

GH PH GL

GHL PHL PL

GP

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

GH PH GL

GHL PHL PL

GP

GH PH GL

GHL PHL PL

GP

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

GH PH GL

GHL PHL PL

GP

GH PH GL

GHL PHL PL

GP

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

GH PH GL

GHL PHL PL

GP

GH PH GL

GHL PHL PL

GP

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

We can build a tree of GP units to compute the generate and
propagate logic for any sized adder. Assuming N is a power of 2,
we’ll need N-1 GP units.

This will let us to quickly compute the carry-ins for each FA!

G7-0 P7-0

G3-0 P3-0

G1-0 P1-0 G3-2 P3-2

G7-4 P7-4

G5-4 P5-4 G7-6 P7-6

8-bit CLA (generate G & P)

6.004 Computation Structures L08: Design Tradeoffs, Slide #17

Θ(log N)

Now, given a the value of the carry-in of the least-
significant bit,we can generate the carries for every adder.

cH = GL + PLcin
cL = cin

cH

cin

cL
GL

PL

cH

cin

cL
GL

PL

cH

cin

cL
GL

PL

cH

cin

cL
GL

PL

cH

cin

cL
GL

PL

cH

cin

cL
GL

PL

cH

cin

cL
GL

PL

C7 C6 C5 C4 C3 C2 C1 C0

 C6 C4 C2 C0

 C4 C0

C0

G3-0
P3-0

G1-0
P1-0

G5-4
P5-4

G6
P6

G4
P4

G2
P2

G0
P0

C

C

C C

C

C C

8-bit CLA (carry generation)

C4 = G3-0+P3-0 C0

C6 = G5-4+P5-4 C4
Notice that the
inputs on the
left of each C
blocks are the
same as the
inputs on the
right of each
corresponding
GP block.

6.004 Computation Structures L08: Design Tradeoffs, Slide #18

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A B
CO CI

G P S
FA

A7 B7 A6 B6 A5 B5 A4 B4 A3 B3 A2 B2 A1 B1 A0 B0

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

GH PH Cj GL
PL

Ci

GP/C
GHL PHL Ci

tPD = Θ(log N)

GH PH

GHL PHL

GP
GL

PL

cH

ci

cL
GL

PL
C + =

GH PH CH

GHL PHL Cin

GP/C
GL

PL
CL

8-bit CLA (complete)

CI

A B

S

CO

G P

Notice that we don’t
need the carry-out
output of the adder any
more.

C0

To learn more, look up Kogge-Stone adders on Wikipedia.

6.004 Computation Structures L08: Design Tradeoffs, Slide #20

A0 A1 A2 A3

B0 B1 B2 B3

A0B0 A1B0 A2B0 A3B0

A0B1 A1B1 A2B1 A3B1

A0B2 A1B2 A2B2 A3B2

A0B3 A1B3 A2B3 A3B3

x

+

ABi called a “partial product”

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since BI is either 0 or 1)

Hard part: adding M N-bit partial products

1 0 1

0 0 0

1 0 *

The “Binary”
Multiplication

Table

Binary Multiplication*

* Actually unsigned binary multiplication

Hey, that
looks like
an AND

gate

6.004 Computation Structures L08: Design Tradeoffs, Slide #21

HA

FA

FA

FA

FA

HA

FA

HA

HA

FA

FA FA

a3 a2 a1 a0

z0 z1 z2 z3 z4 z5 z6 z7

b3

b2

b1

b0

CO

A B

S

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

CI

A B

S

CO

FA

HA

Latency = Θ(N)
Throughput = Θ(1/N)
Hardware = Θ(N2)

Combinational Multiplier

6.004 Computation Structures L08: Design Tradeoffs, Slide #22

 X3 X2 X1 X0
 * Y3 Y2 Y1 Y0

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
- X3Y3 X3Y3 X2Y3 X1Y3 X0Y3

 Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1 1

Step 1: two’s complement operands so high
order bit is –2N-1. Must sign extend partial
products and subtract the last one

Step 2: don’t want all those extra additions, so
add a carefully chosen constant, remembering to
subtract it at the end. Convert subtraction into add
of (complement + 1).

Step 3: add the ones to the partial products
and propagate the carries. All the sign
extension bits go away!

Step 4: finish computing the constants…

Result: multiplying 2’s complement operands
takes just about same amount of hardware as
multiplying unsigned operands!

 X3Y0 X2Y0 X1Y0 X0Y0
+ X3Y1 X2Y1 X1Y1 X0Y1
+ X3Y2 X2Y2 X1Y2 X0Y2
+ X3Y3 X2Y3 X1Y3 X0Y3
+ 1
- 1 1 1 1

 X3Y0 X3Y0 X3Y0 X3Y0 X3Y0 X2Y0 X1Y0 X0Y0
+ 1
+ X3Y1 X3Y1 X3Y1 X3Y1 X2Y1 X1Y1 X0Y1
+ 1
+ X3Y2 X3Y2 X3Y2 X2Y2 X1Y2 X0Y2
+ 1
+ X3Y3 X3Y3 X2Y3 X1Y3 X0Y3
+ 1
+ 1
- 1 1 1 1

–B = ~B + 1

2’s Complement Multiplication

6.004 Computation Structures L08: Design Tradeoffs, Slide #23

FA

FA

FA

FA

FA

HA

FA

HA

HA

FA

FA FA

a3 a2 a1 a0

z0 z1 z2 z3 z4 z5 z6 z7

b3

b2

b1

b0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

HA

1

1

2’s Complement Multiplier

6.004 Computation Structures L08: Design Tradeoffs, Slide #25

HA

FA

FA

FA

FA

HA

FA

HA

HA

FA

FA FA

a3 a2 a1 a0

z0 z1 z2 z3 z4 z5 z6 z7

b3

b2

b1

b0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

Before pipelining: Throughput = ~1/(2N) = Θ(1/N)
After pipelining: Throughput = ~1/N = Θ(1/N)

Increase Throughput With Pipelining
gotta break

that long
carry chain!

6.004 Computation Structures L08: Design Tradeoffs, Slide #26

Observation: Rather
than propagating the
carries to the next
column, they can
instead be forwarded
onto the next column
of the following row

FA

FA

HA

FA

FA

HA

FA

HA

FA

a3 a2 a1 a0

z0 z1 z2 z3 z4 z5 z6 z7

b3

b2

b1

b0

a3 a2 a1 a0

a3 a2 a1 a0

a3 a2 a1 a0

HA HA HA

HA

HA

FA

Latency = Θ(N)
Throughput = Θ(1)
Hardware = Θ(N2)

“Carry-save” Pipelined Multiplier

6.004 Computation Structures L08: Design Tradeoffs, Slide #27

Assume the multiplicand (A) has N bits and the multiplier
(B) has M bits. If we only want to invest in a single N-bit
adder, we can build a sequential circuit that processes a
single partial product at a time and then cycle the circuit M
times:

A P B

+

SN

NC

N
xN

N

N+1

SN-1…S0
Init: P←0, load A&B

Repeat M times {
 P ← P + (BLSB==1 ? A : 0)
 shift SN,P,B right one bit
}

Done: (N+M)-bit result in P,B

M bits

LSB

1

TPD = Θ(1) for carry-save (see previous slide),
 but adds Θ(N) cycles & Θ(N) hardware

Latency = Θ(N)
Throughput = Θ(1/N)
Hardware = Θ(N)

Reduce Area With Sequential Logic

N+1 Sum bits and
N saved carries

Carry-save

6.004 Computation Structures L08: Design Tradeoffs, Slide #28

•  Power dissipation can be controlled by dynamically
varying TCLK, VDD or by selectively eliminating
unnecessary transitions.

•  Functions with N inputs have minimum latency of
O(log N) if output depends on all the inputs. But it
can take some doing to find an implementation
that achieves this bound.

•  Performing operations in “slices” is a good way to
reduce hardware costs (but latency increases)

•  Pipelining can increase throughput (but latency
increases)

•  Asymptotic analysis only gets you so far – factors of
10 matter in real life and typically N isn’t a
parameter that’s changing within a given design.

Summary

