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What if you were given the following design specification: 

When the button is pushed: 
1) Turn the light on if it is off 
2) Turn the light off if it is on 

The light should change 
state within a second 
of the button press 

button light 

What makes this device different 
from those we’ve discussed before? 

1. “State” – i.e., the device has memory 
2. The output was changed by a input 

“event” (pushing a button) rather 
than an input “level” 

Something We Can’t Build (Yet) 

#1 

#2 
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Plan: Build a Sequential Circuit with stored digital STATE – 

•  Memory stores CURRENT state, produced at output 

•  Combinational Logic computes 

•  NEXT state (from input, current state) 

•  OUTPUT bits (from input, current state) 

•  State changes on LOAD control input 

Combinational 
Logic 

Current 
State 

Next 
State 

Input Output 

Memory 
Device 

LOAD 

Digital State: What We’d Like to Build 

Sequence of values 

Trigger 
periodically 

Needed: 
Loadable 
Memory 
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We’ve chosen to encode information using voltages and 
we know from physics that we can “store” a voltage as 
charge on a capacitor: 

Pros: 
•  compact – low cost/bit     

(on BIG memories) 
Cons: 

•   complex interface 
•   stable? (noise, …) 
•   it leaks! ⇒ refresh 

To write: 
   Drive bit line, turn on access fet, 
   force storage cap to new voltage 

NFET serves as 
access switch VREF 

word line 

bit line 

Memory: Using Capacitors 

Suppose we use 
feedback to 
refresh 
continuously? To read: 

   precharge bit line, turn on access fet, 
   detect (small) change in bit line voltage 

C 
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IDEA: use positive feedback to maintain storage indefinitely.  
Our logic gates are built to restore marginal signal levels, so 
noise shouldn’t be a problem! 

VIN VOUT 

Result: a bistable 
storage element 

Feedback constraint: 
VIN = VOUT 

VTC for  
inverter pair 

VIN 

VOUT Three solutions: 
•  two end-points are stable 
•  middle point is metastable 

Not affected 
by noise 

We’ll get back to this! 

Memory: Using Feedback 

0                1                  0 1                0                  1 
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Y 

S 

B 

It’s easy to build a settable storage element (called a 
latch) using a lenient MUX: 

D0 

D1 

G 
 
0 
0 
1 
1 

D 
 
-- 
-- 
0 
1 

Q’ 
 
0 
1 
-- 
-- 

Q 
 
0 
1 
0 
1 

“state” signal 
appears as both 
input and output 

Q stable 

Q follows D 

A 

D 

G 

Q 
Q’ 

Settable Memory Element 

Here’s a feedback path, 
so it’s no longer a 
combinational circuit. 

D: data input 
G: gate input 
Q: state output 

S 
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G 

D Q 

D 

TPD 

V1 V2 

V2 V1 

TPD 

G 

Q 

G=1: 
Q follows D 

G=0: 
Q holds 

G=1: Q Follows D, independently of Q’ 

G=0: Q Holds stable Q’, independently of D 

Q 
0 

1 D 

G 

Q’ 

New Device: D Latch 

Circuit: 

Schematic 
Symbol: 

BUT… A change in D 
or G contaminates 
Q, hence Q’ … how 
can this possibly 
work? 
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3. 

TPD TPD 

2. 

TPD 

1. 

0 

1 D 

G 

Q 

D V1 V2 

V2 V1 

G 

Q 

Assume LENIENT Mux, 
propagation delay of TPD 

Then output valid when 

Q’ 

Does lenience guarantee a 
working latch? 

2.  Q=D stable for TPD , 
independently of G; or 

1.  G=1, D stable for TPD, 
independently of Q’; or 

3.  G=0, Q stable for TPD , 
independently of D 

G D Q’ Q 

1 0 X 0 

1 1 X 1 

X 0 0 0 

X 1 1 1 

0 X 0 0 

0 X 1 1 
 

 

A Plea for Lenience 

What if D and G 
change at about 
the same time… 
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Dynamic Discipline  for our latch: 

D Stable 

0 

1 

A 

D 

G 

Q 

To reliably latch V2: 

Q’ 

•  Apply V2 to D, holding G=1 

•  After another TPD, Q’ & D 
both valid for TPD; will hold 
Q=V2 independently of G 

•  Set G=0, while Q’ & D hold Q=D 

•  After TPD, V2 appears at Q=Q’ 

•  After another TPD, G=0 and 
Q’ are sufficient to hold 
Q=V2 independently of D 

D 

G 

Q 

V2 

V2 

TPD TPD 

TSETUP THOLD 

TPD 

TSETUP = 2TPD: interval prior to G 
transition for which D must 
be stable & valid 

THOLD = TPD: interval following G 
transition for which D must 
be stable & valid 

…With a Little Discipline 
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Combinational 
Logic 

G 

D Q 
Current 
State 

New 
State 

Input Output 

When G=1, latch is Transparent…  

… provides a combinational path from D to Q. 

Can’t work without tricky timing constraints on G=1 
pulse: 

•  Must fit within contamination delay of logic 

•  Must accommodate latch setup, hold times 

Want to signal an INSTANT, not an INTERVAL… 

Let’s Try It Out! 

Looks like a stupid 
approach to me… 
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Flakey Control Systems 

Gate closed Gate open 

Sequence 
of values 

How do we 
ensure 
only one 
car gets 
through? 
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Solution: Escapement Strategy (2 gates) 

Gate 1: open 
Gate 2: closed 

Sequence 
of values 

Gate 1 

Gate 2 

Gate 1: closed 
Gate 2: open 

Gate 1 

Gate 2 

Key: at no 
time is there a 
path through 
both gates 
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G 

D Q 

G 

D Q D 

CLK 

Q 
master slave 

Observations: 
•   only one latch “transparent” at any time: 

•   master closed when slave is open 
•   slave closed when master is open 

     ⇒ no combinational path through register 
 

The gate of this 
latch  is open 
when the clock 
is low 

The gate of this 
latch  is open 
when the clock 
is high 

(the feedback path in one of the master or slave latches is always active) 

(Edge-Triggered) D Register 

What does 
that one do? 

0 
1 
0 
1
S 

D 

G 

Q 
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G 

D Q 

G 

D Q D 

CLK 

D Q D 

CLK 

Q 
master slave 

D 

CLK 

Q 

master closed 

D-Register Waveforms 

slave open 
master open 
slave closed 

Q 
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G 

D Q 

G 

D Q D 

CLK 

Q 
master slave 

D 

CLK 

Slave latch is closing ⇒ ☆ must meet setup/hold times 
but master latch is opening so ☆ may change 

Um, about that hold time… 

The master’s contamination 
delay must meet the hold time 
of the slave: tCD,M ≥ tH,S 
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CLK 

D 

Q 
D Q D 

CLK 

Q 

≤tPD 

tPD: maximum propagation delay, CLK→Q 

≥tCD 

tCD: minimum contamination delay, CLK→Q 
≥tSETUP 

tSETUP: setup time 
guarantee that D has propagated through feedback path before master 
closes 

≥tHOLD 

tHOLD: hold time 
guarantee master is closed and data is stable before allowing D to 
change 

D-Register Timing 1 
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Single-clock Synchronous Discipline 

• No combinational cycles 

• Only care about value of 
register data inputs just before 
rising edge of clock 

• Period greater than every 
   combinational delay + setup time 
• Change saved state after 

noise-inducing logic 
transitions have stopped! 

We’ll use registers in a highly constrained way to build 
digital systems: 

• Single periodic clock signal 
shared among all clocked 
devices 

Does that 
symbol 
register? 

Single-clock Synchronous Circuits 
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œ 

CLK 

t1 

t1 = tCD,reg1 + tCD,L ≥ tHOLD,reg2 

L D Q D Q 

CLK 

reg1 reg2 

Questions for register-based 
designs: 

•  how much time for useful work  
(i.e. for combinational logic 
delay)? 

•  what happens if there’s no 
combinational logic between 
two registers?   

•  what happens if CLK signal 
doesn’t arrive at the two 
registers at exactly the 
same time (a phenomenon 
known as “clock skew”)?   

t2 

t2 = tPD,reg1 + tPD,L + tSETUP,reg2 ≤ tCLK 

QR1 

tCD,reg1 

tCD, L tPD, L 

tPD,reg1 

QR1 

Timing in a Single-clock System 

tSETUP,reg2 
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Active Clock Edges punctuate time --- 

•  Discrete Clock periods 

•  Sequences of states 

•  Simple rules – eg truth tables – relating outputs to 
inputs and the current state) 

•  ABSTRACTION: Finite State Machines (next lecture!) 

Combinational 
Logic 

Current 
State 

Next 
State 

Input Output 

DREG 
Memory 

Clock 

Model: Discrete Time 

State updated every rising clock edge 
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Questions: 

•  Constraints on tCD for the logic? 

•  Minimum clock period? 

•  Setup, Hold times for Inputs? 

Combinational 
Logic 

Current 
State 

Next 
State 

Input Output 

Clock tCD,L = ? 
tPD,L = 5ns 

tCD,R = 1ns 
tPD,R = 3ns 
tS,R = 2ns 
tH,R = 2ns 

tCD,L ≥ 1 ns 

tS,INPUT = tPD,L + tS,R = 7 nS 
tH,INPUT = tH,R - tCD,L= 1 nS 

tCD,R (1 ns) + tCD,L(?) ≥ tH,R(2 ns) 

tCLK ≥ tPD,R+tPD,L+ tS,R = 10nS 

Sequential Circuit Timing 

clk 

Next State  

tS,R 
tH,R 

Input tPD,L 

tCD,L 



6.004 Computation Structures L5: Sequential Logic, Slide #21 

Basic memory elements: 
•  Feedback, detailed analysis 

=> basic level-sensitive 
devices (eg, latch) 

•  2 Latches => Register 
•  Dynamic Discipline: 

constraints on input timing 
Synchronous 1-clock logic: 
•  Simple rules for sequential 

circuits 
•  Yields clocked circuit with TS, 

TH constraints on input timing 

Finite State Machines 
Next Lecture Topic! 

>tS >tH 

Clk 

Q 

D 

>tCD 
<tPD 

D Q 
 

D Q 
 

Out In 

Clk 

Combinational 
logic 

Summary 


