
6.004 Computation Structures L7: Performance Measures, Slide #1

7. Performance Measures

6.004x Computation Structures
Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L7: Performance Measures, Slide #2

INPUT:
dirty laundry

OUTPUT:
6 more weeks

Forget circuits… Let’s Solve a Real Problem

Device: Washer

Function: Fill, Agitate, Spin

WasherPD = 30 mins

Device: Dryer

Function: Heat, Spin

DryerPD = 60 mins

6.004 Computation Structures L7: Performance Measures, Slide #3

Step 1:

Step 2:

TotalPD = WasherPD + DryerPD

= _________ mins 90

Everyone knows that the real
reason that we put off doing
laundry so long is not because
we procrastinate, are lazy, or
even have better things to do.

The fact is, doing one load at a
time is not smart.

One Load At a Time

6.004 Computation Structures L7: Performance Measures, Slide #4

Here’s how they do laundry at
Harvard, the “combinational” way.

Step 1:

Step 2:

Step 3:

Step 4:

TotalPD = N*(WasherPD + DryerPD)

= _________ mins N*90

…

Of course, this is just an urban
legend. No one at Harvard
actually does laundry. The
butlers all arrive on Wednesday
morning, pick up the dirty
laundry and return it all pressed
and starched in time for
afternoon tea.

Doing N Loads of Laundry

6.004 Computation Structures L7: Performance Measures, Slide #5

6.004 students
“pipeline” the laundry
process.

That’s why we wait!

Step 1:

Step 2:

Step 3:

TotalPD = N * Max(WasherPD, DryerPD)

 = ____________ mins N*60

… Actually, it’s more like N*60
+ 30 if we account for the
startup transient correctly.
When doing pipeline
analysis, we’re mostly
interested in the “steady
state” where we assume we
have an infinite supply of
inputs.

Doing N Loads… The 6.004 Way

6.004 Computation Structures L7: Performance Measures, Slide #6

Latency:
The delay from when an input is established until the
output associated with that input becomes valid.

 Harvard Laundry = _________ mins
 6.004 Laundry = _________ mins

90
120

1/90
1/60

Assuming that the
wash is started as
soon as possible and
waits (wet) in the
washer until dryer is
available.

Performance Measures

Throughput:
The rate at which inputs or outputs are processed.

 Harvard Laundry = _________ outputs/min
 6.004 Laundry = _________ outputs/min

6.004 Computation Structures L7: Performance Measures, Slide #7

F

G

H X P(X)

F(X)

G(X)

For combinational logic:
 latency = tPD,
 throughput = 1/tPD.

We can’t get the answer faster,
but are we making effective use
of our hardware at all times?

G(X)

F(X)

P(X)

X

F & G are “idle”, just holding their outputs
stable while H performs its computation

Okay, Back To Circuits…

6.004 Computation Structures L7: Performance Measures, Slide #8

use registers to hold H’s input stable!

F

G

H X P(X)

15

20

25

Now F & G can be working on
input Xi+1 while H is performing
its computation on Xi. We’ve
created a 2-stage pipeline: if we
have a valid input X during clock
cycle j, P(X) is valid during clock
j+2.

Suppose F, G, H have propagation delays of 15, 20,
25 ns and we are using ideal zero-delay registers:

latency

 45

unpipelined

2-stage pipeline 50 1/25

Pipelined Circuits

throughput

 1/45

worse better

6.004 Computation Structures L7: Performance Measures, Slide #9

F & G

H

i i+1 i+2 i+3

F(Xi+1)

G(Xi+1)

H(Xi)

F(Xi+2)

G(Xi+2)

H(Xi+1)

Clock cycle
P
ip

el
in

e
st

a
ge

s

The results associated with a particular set of
input data moves diagonally through the
diagram, progressing through one pipeline
stage each clock cycle.

H(Xi+2)

…

F

G

H X P(X)

15

20

25

Pipeline Diagrams

F(Xi)

G(Xi)

Xi
stable
here

P(Xi)
available
here

6.004 Computation Structures L7: Performance Measures, Slide #10

DEFINITION:
A well-formed K-Stage Pipeline (“K-pipeline”) is an acyclic circuit
having exactly K registers on every path from an input to an output.

a COMBINATIONAL CIRCUIT is thus an 0-stage pipeline.

COMPOSITION CONVENTION:

Every pipeline stage, hence every K-Stage pipeline, has a register on
its OUTPUT (not on its input).

ALWAYS:
The CLOCK common to all registers must have a period sufficient to
cover propagation over combinational paths PLUS (input) register tPD
PLUS (output) register tSETUP.

The LATENCY of a K-pipeline is K times the
period of the system’s clock.

The THROUGHPUT of a K-pipeline is the
frequency of the clock.

Pipeline Conventions

6.004 Computation Structures L7: Performance Measures, Slide #11

B

C X

Y

A

Problem:

Successive inputs get mixed: e.g., B(A(Xi+1), Yi). This
happened because some paths from inputs to
outputs have 2 registers, and some have only 1!

This CAN’T HAPPEN on a well-formed K pipeline!

none
For what value of K is the following circuit a K-Pipeline?
 ANS: ____________

Consider a BAD job of pipelining:

2 1

Ill-formed Pipelines

6.004 Computation Structures L7: Performance Measures, Slide #12

Step 1:
 Draw a line that crosses every
output in the circuit, and mark
the endpoints as terminal
points.

Step 2:

 Continue to draw new lines
between the terminal points
across various circuit
connections, ensuring that every
connection crosses each line in
the same direction. These lines
demarcate pipeline stages.

Adding a pipeline register at
every point where a separating
line crosses a connection will
always generate a valid pipeline.

STRATEGY:

 Focus your attention on
placing pipelining registers
around the slowest circuit
elements (BOTTLENECKS).

A
4nS

B
3nS

C
8nS

D
4nS

E
2nS

F
5nS

T = 1/8ns
L = 24ns

INPUTS OUTPUTS

A Pipelining Methodology

6.004 Computation Structures L7: Performance Measures, Slide #13

A

B

C X

Y

2

1

1

0-pipe:

 1-pipe:

 2-pipe:

 3-pipe:

LATENCY THROUGHPUT

4

1/4

OBSERVATIONS:

• 1-pipeline improves
neither L or T.

• T improved by breaking
long combinational
paths, allowing faster
clock.

• Too many stages cost L,
don’t improve T.

• Back-to-back registers
are often required to
keep pipeline well-
formed.

4

1/4

1

4 1/2

2

1/2 6

3

Pipeline Example

+ increase throughput
− increase latency
− “bottleneck” problem

6.004 Computation Structures L7: Performance Measures, Slide #14

A’ (2x1ns)

C
X

Y

1

Pipelined systems
can be hierarchical:
• Replacing a slow

combinational component
with a k-pipe version may
let us decrease the clock
period

B
1

3 1 2
4

4-stage pipeline, throughput=1
• Must account for new

pipeline stages in our plan

Pipelined Components

but... but...
How can I pipeline
a clothes dryer???

6.004 Computation Structures L7: Performance Measures, Slide #15

They work around the bottleneck. First, they find a
laundromat with two dryers for every washer. Then they use
dryer #1 for odd-numbered wash loads and dryer #2 for
even-numbered wash loads.

1/30 90

How Do 6.004 Students Do Laundry?

Throughput = ________ loads/min, Latency = ________ mins/load

minutes
0 30 60 90 120

Step 1 Step 2 Step 3 Step 4

Washer Load #1

Load #1

Load #2 Load #3

Load #2

Load #3

Load #4

Load #4

Load #5 Load #6

Load #5

150 180

…

…

Step 5 Step 6

Dryer #1

Dryer #2

#1 #2 #3 #4

6.004 Computation Structures L7: Performance Measures, Slide #16

A
4nS

B
3nS

C
8nS

D
4nS

E
2nS

F
5nS

T = 1/8ns
L = 24ns

Recall our earlier example...

• C – the slowest
component – limits
clock period to 8 ns.

• HENCE throughput
limited to 1/8ns.

We could improve throughput
by

• Finding a pipelined
version of C;

OR ...

• interleaving multiple
copies of C!

Back To Our Bottleneck…

6.004 Computation Structures L7: Performance Measures, Slide #17

We can simulate a
pipelined version of a
slow component by
replicating the critical
element and alternate
inputs between the
various copies.

C0
G

D Q

D Q

1

0

C’

G

D Q
C1

Xi

C(Xi-2)

clk

Q

Circuit Interleaving

This is a simple
2-state FSM
that alternates
between 0 and
1 on each clock

6.004 Computation Structures L7: Performance Measures, Slide #18

C0

G

D Q

D Q

1

0

C’

G

D Q
C1

Xi

C(Xi-2)

clk

FSM Q

X1 X input X2 X3 X4

C0 input

C0 output

X1

 X3

C(X1) C(X3)

reg output C(X1) C(X2) C(X3)

reg input C(X1) C(X2) C(X3)

C1 input

C1 output

X2 X4

C(X2)

Circuit Interleaving

Cycle #1 Cycle #2 Cycle #3 Cycle #4

2 ⋅ tCLK ≥ tPD,upstreamREG + tPD,LATCH + tPC,C + tPD,MUX + tSETUP,REG()

6.004 Computation Structures L7: Performance Measures, Slide #19

C0
G

D Q

D Q

1

0

C’

G

D Q
C1

x

x C(Xi-2)

C0
G

D Q

D Q

1

0

C’

G

D Q
C1

0

1 C(Xi-2)

C0
G

D Q

D Q

1

0

C’

G

D Q
C1

Xi

1

0 C(Xi-2)

C0
G

D Q

D Q

1

0

C’

G

D Q
C1

0

1

C0
G

D Q

D Q

1

0

C’

G

D Q
C1

C(Xi-2)

Throughput = 1/clock
Latency = 2 clocks

N-way
interleave

N registers

…
N-way interleaving
is equivalent to
N pipeline Stages...

2-Clock Martinizing
“In by ti, out by ti+2”

Circuit Interleaving

6.004 Computation Structures L7: Performance Measures, Slide #20

We can combine interleaving
and pipelining. Here, C’
interleaves two C elements
and has an effective tCLK of 4
ns and a latency of 8 ns.

Since C’ behaves as a 2-stage
pipeline, two of our pipelining
contours must pass through
the C’ component.

A
4ns

B
3ns

C’
2x4ns

D
4ns

E
2ns

F
5ns

By combining interleaving
with pipelining we move
the bottleneck from the C
element to the F element.

T = 1/5ns
L = 25ns

Combine Techniques

6.004 Computation Structures L7: Performance Measures, Slide #21

Step 1: We can combine interleaving
and pipelining with parallelism.

Throughput =

 ____________ _____load/min

Latency = _______ min

Step 2:

Step 3:

Step 4:

Step 5:

2/30 = 1/15

90

And Add A Little Parallelism…

1 step = 30 minutes

6.004 Computation Structures L7: Performance Measures, Slide #22

Synchronous, globally-timed:

X

“here’s X”

“got X”

CLK

here’s X

got X

X X2 X1

Synchronous, locally-timed:
Local FSMs control flow of data
using “handshake” signals

X

“here’s X”

“got X”
here’s X

got X

X X2 X1

Asynchronous, locally-timed system using transition signaling:

Control Structure Alternatives

1 2 3 4

6.004 Computation Structures L7: Performance Measures, Slide #23

X

A C

B

A(X)

here’s …

Got it.

I get it! A sees “got it” as 1 when
both B and C have asserted “got it”.
And then “got it” returns to 0 when
both B and C have deasserted “got
it”.

1 0 Heres

Got

Heres2

Got1

Got2

Heres1

Heres

Got

Got1

Got2

Self-timed Example

6.004 Computation Structures L7: Performance Measures, Slide #24

X

A C

B

A(X)

here’s …

Got it.

Elegant, timing-independent design:

• Each component specifies its own time constraints

• Local adaptation to special cases (eg, multiplication by 0)

• Module performance improvements automatically exploited

• Can be made asynchronous (no clock at all!) or synchronous

Self-timed Example

6.004 Computation Structures L7: Performance Measures, Slide #25

Synchronous Asynchronous

Globally
Timed

Locally
Timed

Centralized clocked
FSM generates all
control signals.

Easy to design but fixed-sized
interval can be wasteful (no data-
dependencies in timing)

Central control unit
tailors current time slice
to current tasks.

Large systems lead to very
complicated timing
generators… just say no!

Start and Finish
signals generated by
each major subsystem,
synchronously with
global clock.

The best way to build large
systems that have independently-
timed components.

Each subsystem takes
asynchronous Start,
generates asynchronous
Finish (perhaps using
local clock).

The “next big idea” for the last
several decades: a lot of design
work to do in general, but extra
work is worth it in special cases

Control Structure Taxonomy

6.004 Computation Structures L7: Performance Measures, Slide #26

Latency (L) = time it takes for given input to arrive at output

Throughput (T) = rate at which new outputs appear

For combinational circuits: L = tPD of circuit, T = 1/L

For K-pipelines (K > 0):
•  always have register on output(s)
•  K registers on every path from input to output
•  Inputs available shortly after clock i, outputs available

shortly after clock (i+K)
•  tCLK = tPD,REG + tPD of slowest pipeline stage + tSETUP
•  T = 1/tCLK

–  more throughput ⇒ split slowest pipeline stage(s)
–  use replication/interleaving if no further splits possible

•  L = K*tCLK = K / T
–  pipelined latency ≥ combinational latency

Summary

