10b. Models of Computation

6.004x Computation Structures
Part 2 — Computer Architecture

Copyright © 2015 MIT EECS

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #1

Universality?

* Recall: We say a set of Boolean gates is universal if
we can implement any Boolean function using only
gates from that set.

 What problems can we solve with a von Neumann
computer? (e.g., the Beta)
— Everything that FSMs can solve?

— Every problem?
— Does it depend on the ISA?

 Needed: a mathematical model of computation
— Prove what can be computed, what can’t

Models of Computation

The roots of computer science stem from e switches

the evaluation of many alternative

mathematical “models” of computation to * gates
determine the classes of computations

each could represent. e combinational

An elusive goal was to find a universal logic

model, capable of representing all
practical computations...

We've got FSMs...
what else do we need?

N\

* memories

e FSMs

Are FSMs the ultimate
digital computing
device?

FSM Limitations

Despite their usefulness and flexibility, there are common
problems that cannot be solved by any FSM. For instance:

Well-formed Parentheses Checker:

(OO0

A 4

Paren | 0K

Cheelser Given any string of coded left &
right parens, outputs 1 if it is
balanced, else O.
“ ”” Paren .
(()O) "| Checker| ~ N1X Simple, easy to describe.

Can this problem be solved using an FSM??? NO'

I know how

PROBLEM: Requires arbitrarily many states, to fix that!

depending on input. Must "COUNT"
unmatched left parens. An FSM can only
keep track of a finite number of unmatched
parens: for every FSM, we can find a string it
can’t check.

Alan Turing

Turing Machines

Alan Turing was one of a group
of researchers studying
alternative models of
computation.

He proposed a conceptual model
consisting of an FSM combined
with an infinite digital tape that
could be read and written at
each step.

*encode input as symbols on tape

* FSM reads tape/writes symbols/

changes state until it halts
* Answer encoded on tape

Turing’s model (like others of the
time) solves the "FINITE" problem
of FSMs.

Bounded tape configuration
can be expressed as a

(large!) integer

0,(1,R)

9@

o,(1.L)
; 1,Halt

FSMs can be enumerated and
given a (very large) integer index.

We can talk about TM 347
6 running on input 51, producing

an answer of 42.

TMs as integer functions:

y = TMr[x]

Other Models of Computation...

Turing Machines [Turing] Recursive Functions [Kleene]
F(0,x) = X
ﬂ_O_LO__‘LLD_%%JJJJ_O_LO_Lf F(1+y,x) = 1+F(x,y)
FSM; (define (fact n)
(... (fact (- n 1)) /"H ‘
Stephen
Alan ring Kleene
Lambda calculus [Church, Curry, Rosser...]
3 Production Systems [Post, Markov]
AX.NY.XXY
¥ a—p
(lambda (x) (lambda (y) (x (x y)))) €
= & TF pulse=0 THEN
; //} o patient=dead
'y TVl
Alonzo | 1t

Church Emile Post

Computability

FACT: Each model studied is capable of computing exactly the
same set of integer functions!

Proof Technique:
Constructions that translate between models

BIG IDEA:
Computability, independent of computation scheme chosen

4 N

3 Church's Thesis: unproved, but

. . universally
Every discrete function computable by ANY accepted..

realizable machine is computable by some
Turing machine.

f(x) computable < for some k, all x
f(x) = Ty [x]

/

meanwhile...

Turing machines Galore!

113 . V44
speczal.-purpose. MololilololiT1Tolol f
Turing Machines....

fololilololililolol f
FSM
. . FSM
Tl TololiTiTolol 7 Factorization
Primality Test
FSM
Multiplication Is there an alternative to
infinitely many ad-hoc Turing

Machines?

Jololilolol1l1lolol Sf

FSM

Sorting

The Universal Function

Here’s an interesting function to explore: the Universal

function, U, defined by 4 Id b
// sure wou e

neat to have a

single, general-

Uk,) = Tylj] |

machine...

Could this be computable???
SURPRISE! U is computable by a Turing Machine:

Kl
Ty Tyl

J—)

In fact, there are infinitely many such machines. Each is
capable of performing any computation that can be
performed by any TM!

Universality

What’s going on here?

N k encodes a “program” — a description
TU > ka] of some arbitrary machine.

j—

j encodes the input data to be used.

T interprets the program, emulating
its processing of the data!

/KEY IDEA: Interpretation. A

Manipulate coded representations of

computing machines, rather than the
machines themselves.
_ /

Turing Universality

The Universal Turing Machine is the paradigm for modern
general-purpose computers!

Basic threshold test: Is your computer Turing Universal ?
 If so, it can emulate every other Turing machine!
* Thus, your computer can compute any computable
function

To show your computer is Universal: demonstrate that it can
emulate some known UTM.
e Actually given finite memory, can only emulate UTMs +
inputs up to a certain size
e This is not a high bar: conditional branches (BEQ) and
some simple arithmetic (SUB) are enough.

Coded Algorithms: Key to CS

data vs hardware

T
.
|15

Algorithms as data: enables
COMPILERS: analyze, optimize, transform behavior

TcompiLer-x-t0-vIPx] = Py, such that Ty[P.. zl = Ty[Py, 2]

Pgm
P
— y PJ ade
\A\\A
Pgm Pgm

- Pgm | T—

LANGUAGE DESIGN: Separate
specification from implementation
e C, Java, JSIM, Linux, ... all run on

SOFTWARE ENGINEERING: X86, Sun, ARM, JVM, CLR, ...
Composition, iteration, e Parallel development paths:
abstraction of coded behavior * Language/Software design

F(x) = g(h(x), p((q(x))) Interpreter/Hardware design

Uncomputability (!)

Uncomputable functions: There are well-defined discrete
functions that a Turing machine cannot compute

— No algorithm can compute f(x) for arbitrary x in finite number of
steps

— Not that we don’t know algorithm - can prove no algorithm exists

— Corollary: Finite memory is not the only limiting factor on
whether we can solve a problem

The most famous uncomputable function is the so-called
Halting function, f;(k, j), defined by:

[fH(k, D) = 1 if T[] halts;}

O otherwise.

f(k, j) determines whether the kt* TM halts when given a tape
containing j.

Why f,, is Uncomputable

If f; is computable, it is equivalent to some TM (say, Ty):

k—>

1 iff T, [j] halts
T, ——— k ’
j— = else O

Then Ty (N for “Nasty”), which must be computable if Ty is:

T
N 1

T — LOOP| 1 [x]: LOOPS if T [x] halts;
X J CH [HALTS if T [x] loops
0]

HALT

Finally, consider giving N as an argument to Ty:

: v 0 | Ty can’t be
Tx[N]: LOOPS }f Ty[N] halts; ﬁadjcﬁOﬂ! cgmputable, hence
HALTS if Ty[N] loops n Ty can’t either!

