9. Programmable Machines

6.004x Computation Structures
Part 2 — Computer Architecture

Copyright © 2015 MIT EECS

6.004 Computation Structures LO9: Programmable Machines, Slide #1

a = a
b =0>

} while

initially:

after
after
after
after
after
Done!

iter
iter
iter
iter
iter

=Z B

*

N

v WN B

factorial(N)

= O
om0 o

(4D I D R «) I « D R D I « D)

Example: Factorial

120,
120,

S O O OC O O

O kR, NWPAWU

N!

N*(N-1)*..%1

factorial(N)

120,
120,

Example: Factorial

O R NWPA_WU

= NI = N*(N-1)*..*1

High-level FSM:
b’ =0

b’==0

a €1 a <€ a*hb a € a
b & N b &b -1 b & b

— Helpful to translate into hardware
— D-registers (a, b)

— 2-bits of state (start, loop, done)

— Boolean transitions (b’==0, b’!=0)

— Register assignments in states
(e.g., a € a*Dhb)

Datapath for Factorial

b I1=0
* Draw registers
b == 0 + Draw combinational
circuit for each
< < a assignment
a 1 a a *b a a .
. mux
b & N b &b - 1 b < b Connect to input muxes
1 N
/i/32 32/i/
WaSEL72“>\‘;) 7 WbSE,nZL»\ 7
1 32 + 32
a b
1 32 1 32
, l_‘ -1
. {
+

Control FSM for Factorial

b’ 1=0 Draw combinational logic for
transition conditions

b” == « Implement control FSM:
— States: High-level FSM states
3 & 1 3 & 3 *b 3 € 3 — Inputs: Transition logic outputs
b & N b&b-1 b < b — Outputs: Mux select signals
N ™
Control [— wagg, (2 bits)
' || FSM — wb,, (2 bits)
Wage—\1o 1 WD se—\Co 27 3 ~
v 7 S Z |wag |wbg | S
> a > b 00 0 10 00 ol
0 00 I 10 00 ol
| -1 | 1 ol 0 0l 0l ol
. y — 0l | ol | oI | 10
+ _ 10 0 00 10 10
‘Z 10 | 00 | 10 | 10

Control FSM Hardware

ROM
8 locs x 6 bits ROM contents

IN ——> A[0] D[5:4] » WagpL A[2:0] | D[5:0]
D30 . wh 000 10 00 O
[5:2] - TSEL 00l | 10000l
> A[2:1] D[1:0] 010 | 01010l
Current Next oIl 010l 10
state state 100 00 10 10
N o 5 101 0010 10

<

JAN

So Far: Single-Purpose Hardware

* Problem—> Procedure (High-level FSM)->
Implementation

« Systematic way to implement high-level FSM as a
datapath + control FSM
— Is this implementation an FSM itself?
— If so, can you draw the truth table?

 How should we generalize our approach so we can
solve many problems with one set of hardware?
— More storage for operands and results
— A larger repertoire of operations
— General-purpose datapath

A Simple Programmable Datapath

s « Each cycle, this datapath:
ALE RO — Reads two operands (a, b)
> ; from 4 registers (RO-R3)
"ILE — Performs one operation of
Wsg, > R +, -, *, NAND on operands
— [. .
R — Optionally writes result to
Wen F R a register
T [1t e Control FSM:
R3
N B A 4 Na,,
SEL — b
> Control | “SE
FSM OPseL
| 1 1 I | — WseL
+ - * NAND ==7 |\ J - en

B
OPse 0 1 2 3/ z

A Control FSM for Factorial

* Assume initial register contents:

e Control FSM:

asel =0
bsel = 1
opsel =2 (%)
wen = 1
wsel =0

RO €& RO * R1

Z —_——
asel =1
bsel = 2
opsel =0 (+)
wen = 1
wsel = 1

Rl € R1 + R2

RO
R1
R2
R3
asel =1
bsel = 3
opsel = X
wen =0
wsel = X

value
value
value

value =

Z ==

=1

= N

= -1

=0

asel = 1
bsel =3
opsel = X
wen =0
wsel = X
N! in RO

New Problem - New Control FSM

You can solve many more problems with this
datapath!

— Exponentiation, division, square root, ...

— But nothing that requires more than four registers

By designing a control FSM, we are programming
the datapath

Early digital computers were programmed this way!
— ENIAC (1943):
* First general-purpose digital computer

* Programmed by setting huge array of dials and switches
 Reprogramming it took about 3 weeks

AT T T T
e

PrAmRSNT AN

"Eniac" by Unknown - U.S. Army Photo.

6.004 Computation Structures L09: Programmable Machines, Slide #11

- »
R L B PN
.'.‘“.““
LR T PR,

’

el A 2 LT T
2 e d I T

~
»

U.S. Army Photo.

6.004 Computation Structures L09: Programmable Machines, Slide #12

The von Neumann Model

 Many approaches to build a general-purpose
computer. Almost all modern computers are based
on the von Neumann model (John von Neumann,

1945)
« Components:

Central Processing Unit

address status
Main [> Control € Input/
Memory Datapath FSM Output

data control

* Central processing unit:

Performs operations on values in registers & memory
 Main memory:

Array of W words of N bits each
* Input/output devices to communicate with the outside world

Key ldea: Stored-Program Computer

Express program as a sequence of coded instructions
Memory holds both data and instructions

CPU f{fetches, interprets, and executes successive
instructions of the program

. op |[ra|rb|rc
Main
B rc « op(ra,rb)
instruction
instruction — But, how do we know
Central instruction which words hold
Processing (€= — instructions and
Unit which words hold
data
data B data?
data ?’
Oxba5eball

Anatomy of a von Neumann Computer

o @ e
J(&:() g «_control Control
(72}
(T Datapath | . . R Unit
£
A y
address‘ data address ' instructions

Main Memory

R1 —R2+R3

> PC L 1101000111011
dest"‘

e Instructions coded as binary data

registers
asel bsel * Program Counter or PC: Address
of the instruction to be executed
fn—=_A[U_/*status e Logic to translate instructions into

operations control signals for datapath

Instructions

Instructions are the fundamental unit of work

Each instruction specifies:
— An operation or opcode to be performed
— Source operands and destination for the result

In a von Neumann machine, instructions
are executed sequentially
— CPU logically implements this loop:

— By default, the next PC is current '
PC + size of current instruction
unless the instruction says otherwise

Instruction Set Architecture (ISA)

 [ISA: The contract between software and hardware

— Functional definition of operations and storage locations

— Precise description of how software can invoke and access

them

* The ISA is a new layer of abstraction:

ISA specifies what the hardware provides, not how it’s
implemented

Hides the complexity of CPU implementation

Enables fast innovation in hardware (no need to change
software!)
« 8086 (1978): 29 thousand transistors, 5 MHz, 0.33 MIPS

* Pentium 4 (2003): 44 million transistors, 4 GHz, ~5000 MIPS
 Both implement x86 ISA

Dark side: Commercially successful [SAs last for decades
* Today’s x86 CPUs carry baggage of design decisions from the 70’s

Instruction Set Architecture Design

* Designing an [SA is hard:
— How many operations?
— What types of storage, how much?
— How to encode instructions?
— How to future-proof?

 How to decide? Take a quantitative approach
— Take a set of representative benchmark programs

— Evaluate versions of your ISA and implementation with
and without feature

— Pick what works best overall (performance, energy, area...)

* Corollary: Optimize the common case

Let’s design our own instruction set: the Betal

PC

ro
r1
r2

r31

CPU State

&

32-bit “words” |

000000....0

General Register

Beta ISA: Storage

Main Memory

Address

0x00
0x04
0x08
ox0C
0x10
Ox12

r31 hardwired to O

A

31

0

3

2] 110

&

32-bit “words” |

(4 bytes)

Va4

4

Up to 232 bytes (4GB of
memory) organized as
230 4-byte words

Each memory word is 32-
bits wide, but for historical
reasons the 5 uses byte
memory addresses. Since
each word contains four 8-
bit bytes, addresses of
consecutive words differ by
4.

Why separate registers and main memory?
Tradeoff: Size vs speed and energy

Storage Conventions

* Variables live in memory
* Registers hold temporary values

* To operate with memory variables

— Load them
— Compute on them
— Store the results

0x1000:
0x1004 :
0x1008:
©x100C:
0x1010:

X, Ys
y = x * 37;

n

RO « Mem[0x1008]
RO « RO * 37
Mem[©x100C] « RO

Beta ISA: Instructions

» Three types of instructions:

— Arithmetic and logical: Perform operations on general
registers

— Loads and stores: Move data between general registers and
main memory

— Branches: Conditionally change the program counter

» All instructions have a fixed length: 32 bits (4 bytes)

— Tradeoff (vs variable-length instructions):

« Simpler decoding logic, next PC is easy to compute
* Larger code size

Beta ALU Instructions

Format: OPCODE| I, I, 'y unused

Example coded instruction: ADD
100000/000110000100010 unused
OPCODE'= / r=1, r,=2

r =3,
100000, encodes encodces R3 as encodes R1 and R2 as
ADD destination source locations

32-bit hex: 0x80611000
We prefer to write a symbolic representation: ADD(rl,r2,r3)

ADD(ra,rb,rc): Similar instructions for

Reg[rc] € Reg[ra] + Reg[rb] other ALU operations:

arithmetic: ADD, SUB, MUL, DIV

“Add the contents of ra compare: CMPEQ, CMPLT, CMPLE
to the contents of rb; boolean: AND, OR, XOR, XNOR
store the result in rc” shift: SHL, SHR, SAR

Implementation Sketch #1

Now that we have our first set of instructions, we can create a
more concrete implementation sketch:

32 registers

OPCODE re Iy Iy unused

operations

Should We Support Constant Operands?

Many programs use small constants frequently
e.g., our factorial example: O, 1, -1
Tradeoff:

When used, they save registers and instructions
More opcodes = more complex control logic and datapath

Analyzing operands when running SPEC CPU
benchmarks, we find that constant operands appear
in
 >50% of executed arithmetic instructions
o Loop increments, scaling indicies

 >80% of executed compare instructions
o Loop termination condition

e >259% of executed load instructions
o Offsets into data structures

Beta ALU Instructions with Constant

Format: OPCODE| [, Iy 16-bit signed constant

Example instruction: ADDC adds register contents and constant:

11000000011000011111111111111101

- J g

— T —,
OPCODEéM / VAN

110000, encoding =3, l’?;,L o 16-bit two’s
ADDC encoding R3 encoding complement constant,
as destination as first encoding -3 as second
operand operand (will be sign-

extended to become 32-bit

Symbolic version: ADDC(rl,-3,r3)
two’s complement operand)

Similar instructions for other
ALU operations:

Reg[rc] < Reg[ra] + sext(const)
arithmetic: ADDC, SUBC, MULC, DIVC

« compare: CMPEQC, CMPLTC, CMPLEC
Add the contents of ra to boolean: ANDC, ORC, XORC, XNORC

const; store the result in rc shift: SHLC, SHRC, SARC

ADDC(ra,const,rc):

Implementation Sketch #2

Next we add the datapath hardware to support small constants
as the second ALU operand:

32 registers

OPCODE| [I, 16-bit signed constant

sxt(const)

bsel

fn —_ ALU /

operations

Beta Load and Store Instructions

Loads and stores move data between the internal registers and
main memory

Address calculation

— is just like ADDC
OPCODE| r, | r, 16-bit signed constant | A/ (S0 o

address
LD(ra,const,rc) Reg[rc] < Mem[Reg[ra] + sext(const)]

Load rc with the contents of the memory location

ST(rc,const,ra) Mem[Reg[ra] + sext(const)] €& Reg[rc]

Store the contents of rc into the memory location

To access memory the CPU has to generate an address. LD and

ST compute the address by adding the sign-extended constant
to the contents of register ra.

 To access a constant address, specify R31 as ra.

To use only a register value as the address, specify a constant
of O.

Using LD and ST

* Variables live in memory
* Registers hold temporary values

* To operate with memory variables

— Load them
— Compute on them
— Store the results

0x1000:
0x1004 :
0x1008:
©x100C:
0x1010:

X5 Y
y = X * 37;

g

RO « Mem[0x1008]
RO « RO * 37
Mem[©x100C] « RO

4

LD(R31,0x1008,R0)
MULC(R®,37,R0)
ST(R®,0x100C,R31)

Can We Solve Factorial With ALU Instructions?

* No! Recall high-level FSM:
Branch taken
Branch target b!=0 VA%

Ny p ==

a € a*hb b &b -1 Conditional \/\ h
branch Branch not

taken

* Factorial needs to loop

* So far we can only encode sequences of operations
on registers

 Need a way to change the PC based on data values!

— Called “branching”. If the branch is taken, the PC is
changed. If the branch is not taken, keep executing
sequentially.

Beta Branch Instructions

The Beta’s branch instructions provide a way to conditionally
change the PC to point to a nearby location...

... and, optionally, remembering (in Rc) where we came from
(useful for procedure calls).

“offset” is a SIGNED
CONSTANT encoded as
BEQorBNE | I, I 16-bit signed constant part of the instruction!

BEQ(ra,offset,rc): Branch if equal BNE(ra,offset,rc): Branch if not equal

NPC < PC + 4 NPC €« PC + 4
Reg[rc] < NPC Reg[rc] < NPC
if (Reg[ra] == 0) if (Reg[ra] !'= 0)
PC €& NPC + 4*offset PC €& NPC + 4*offset
else else
PC < NPC PC < NPC

offset = distance in words to branch target, counting from the
instruction following the BEQ/BNE. Range: -32768 to +32767.

Can We Solve Factorial Now?

a = 1; // Assume rl = N
b = N; ADDC(r31, 1, r@) // ro =1
do { L:MUL(re, ri, ro) // rée = roe * rl
a =a * b; SUBC(r1, 1, ril) // rl =r1 -1
b=>b-1; BNE(rl1, L, r31) // if r1l != 0, run MUL next
} while (b != 9) // at this point, r@ = N!

 Remember control FSM for our simple programmable datapath?

Z —=

Z ==

 Control FSM states = instructions!
— Not the case in general
— Happens here because datapath is similar to basic von Neumann datapath

Beta JMP Instruction

Branches transfer control to some predetermined destination
specified by a constant in the instruction. It will be useful to be
able to transfer control to a computed address.

011011 r r

C

JMP(Ra,Rc): Reg[Rc] < PC +4
PC < Reg[Ra]

a

Useful for procedure call return...

RS = 0x104 :
[0x100] BEQ(R31,sqrt,R28) — —> sqrt

.ee 610 oo
~OF
[0x678] BEQ(R31,sqrt,R28) —o0®”~ IJMP(RZS,RH)
‘ 1st time: PC<—0x104

2nd time: PC—0x67C

Beta ISA Summary

¢ Storage:
— Processor: 32 registers (r31 hardwired to 0) and PC

— Main memory: 32-bit byte addresses; each memory access
involves a 32-bit word. Since there are 4 bytes/word, all
addresses will be a multiple of 4.

OPCODE| I, ry 'y unused
e Instruction formats:
OPCODE| [, I, 16-bit signed constant
32 bits

* Instruction types:
— ALU: Two input registers, or register and constant

— Loads and stores
— Branches, Jumps

