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Example: Factorial 

int	a	=	1;	
int	b	=	N;	
do	{	
		a	=	a	*	b;	
		b	=	b	–	1;	
}	while	(b	!=	0)		

C: 

factorial(N)	=	N!	=	N*(N-1)*…*1	

initially:				a	=			1,	b	=	5	
after	iter	1:	a	=			5,	b	=	4	
after	iter	2:	a	=		20,	b	=	3	
after	iter	3:	a	=		60,	b	=	2	
after	iter	4:	a	=	120,	b	=	1	
after	iter	5:	a	=	120,	b	=	0	
Done!	
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Example: Factorial 

int	a	=	1;	
int	b	=	N;	
do	{	
		a	=	a	*	b;	
		b	=	b	–	1;	
}	while	(b	!=	0)		

C: 

factorial(N)	=	N!	=	N*(N-1)*…*1	

–  Helpful to translate into hardware 
–  D-registers (a, b) 
–  2-bits of state (start, loop, done) 
–  Boolean transitions (b’==0, b’!=0) 
–  Register assignments in states 

(e.g., a ß a * b) 
 

 

High-level FSM: 

start loop done 

a	ß	1	
b	ß	N	

a	ß	a	*	b	
b	ß	b	-	1	

b’!=0	

b’==0	

a	ß	a	
b	ß	b	start:		a	←			1,	b	←	5	

loop:			a	←			5,	b	←	4	
loop:			a	←		20,	b	←	3	
loop:			a	←		60,	b	←	2	
loop:			a	←	120,	b	←	1	
loop:			a	←	120,	b	←	0	
done:	
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Datapath for Factorial 

•  Draw registers 
•  Draw combinational 

circuit for each 
assignment 

•  Connect to input muxes 

start loop done 

a	ß	1	
b	ß	N	

a	ß	a	*	b	
b	ß	b	-	1	

b	!=	0	

b	==	0	

a	ß	a	
b	ß	b	

1 

32 

N 
32 

0      1      2 waSEL 
2 

32 
0      1      2 wbSEL 

2 

32 

* 

32 

a 
32 

b 
32 

+ 

-1 

32 
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Control FSM for Factorial 
•  Draw combinational logic for 

transition conditions 
•  Implement control FSM: 

–  States: High-level FSM states 
–  Inputs: Transition logic outputs 
–  Outputs: Mux select signals 

start 
0 

loop 
1 

done 
2 

a	ß	1	
b	ß	N	

a	ß	a	*	b	
b	ß	b	-	1	

b’!=0	

b’==0	

a	ß	a	
b	ß	b	

1 N 

a b 

0     1     2 0     1     2 waSEL wbSEL 

* 
+ 

-1 
== 

0 

z 

z 

Control 
FSM 

waSEL 

wbSEL 

(2 bits) 
(2 bits) 

S Z  waSEL wbSEL S’ 

00 0 10 00 01 

00 1 10 00 01 

01 0 01 01 01 

01 1 01 01 10 

10 0 00 10 10 

10 1 00 10 10 
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Control FSM Hardware 

A[2:0]  D[5:0] 

000 10 00 01 

001 10 00 01 

010 01 01 01 

011 01 01 10 

100 00 10 10 

101 00 10 10 

waSEL 

Next 
state 

Current 
state 

IN 

2 2 

wbSEL 

ROM 
8 locs x 6 bits 

A[0] 

A[2:1] D[1:0] 

ROM contents 

D[3:2] 

D[5:4] 
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So Far: Single-Purpose Hardware 

•  Problemà Procedure (High-level FSM)à 
Implementation 

•  Systematic way to implement high-level FSM as a 
datapath + control FSM 
–  Is this implementation an FSM itself? 

–  If so, can you draw the truth table? 

 

•  How should we generalize our approach so we can 
solve many problems with one set of hardware? 
–  More storage for operands and results 

–  A larger repertoire of operations 
–  General-purpose datapath 
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A Simple Programmable Datapath 

•  Each cycle, this datapath: 
–  Reads two operands (a, b) 

from 4 registers (R0-R3) 
–  Performs one operation of 

+, -, *, NAND on operands 
–  Optionally writes result to 

a register 
•  Control FSM: 

R0 

R1 

R2 

R3 

+ - * NAND ==? 

z 

aSEL 

bSEL 

wSEL 

opSEL 

Control 
FSM 

aSEL 
bSEL 
opSEL 
wSEL 

z 

wEN 

wEN 

LE 

LE 

LE 

LE 

0                1               2                3 
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•  Assume initial register contents: 

•  Control FSM: 

A Control FSM for Factorial 

loop
mul 

loop 
sub done 

R0	value	=	1	
R1	value	=	N	
R2	value	=	-1	
R3	value	=	0	

asel = 0 
bsel = 1 
opsel = 2 (*) 
wen = 1 
wsel = 0 

asel = 1 
bsel = 3 
opsel = X 
wen = 0 
wsel = X 

asel = 1 
bsel = 2 
opsel = 0 (+) 
wen = 1 
wsel = 1 

loop
beq 

R0	ß	R0	*	R1	 R1	ß	R1	+	R2	

asel = 1 
bsel = 3 
opsel = X 
wen = 0 
wsel = X 

N!	in	R0	

z == 1 

z == 0 
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New Problem à New Control FSM 

•  You can solve many more problems with this 
datapath! 
–  Exponentiation, division, square root, … 

–  But nothing that requires more than four registers 

•  By designing a control FSM, we are programming 
the datapath 

•  Early digital computers were programmed this way! 
–  ENIAC (1943): 

•  First general-purpose digital computer 

•  Programmed by setting huge array of dials and switches 

•  Reprogramming it took about 3 weeks 
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"Eniac" by Unknown - U.S. Army Photo. 
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U.S. Army Photo. 
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The von Neumann Model 

•  Many approaches to build a general-purpose 
computer.  Almost all modern computers are based 
on the von Neumann model (John von Neumann, 
1945) 

•  Components: 

Input/ 
Output 

• Central processing unit: 
 Performs operations on values in registers 

• Main memory: 
 Array of W words of N bits each 

•  Input/output devices to communicate with the outside world 

Central Processing Unit 

Datapath 
Control 

FSM 

status 

control 

& memory 

Main 
Memory 

address 

data 



6.004 Computation Structures L09: Programmable Machines, Slide #14 

Key Idea: Stored-Program Computer 

•  Express program as a sequence of coded instructions 
•  Memory holds both data and instructions 

•  CPU fetches, interprets, and executes successive 
instructions of the program 
 

 

Central 
Processing 

Unit 

Main 
Memory 

instruction 
instruction 
instruction 

data 
data 
data 

op	 ra	rb	rc	

rc	←	op(ra,rb)	

0xba5eba11	

But, how do we know 
which words hold 
instructions and 
which words hold 
data? 
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registers 

operations 

Anatomy of a von Neumann Computer 

Datapath 

In
te

rn
al

 s
to

ra
ge

 

Control 
Unit 

control 

status 

… 
dest 

asel 

fn 

bsel 

status ALU 

PC 1101000111011 

• Instructions coded as binary data 
 

• Program Counter or PC: Address 
of the instruction to be executed 

 
• Logic to translate instructions into 

control signals for datapath 

R1 ←R2+R3 

instructions address 

Main Memory 

data address 
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Instructions 
•  Instructions are the fundamental unit of work 
•  Each instruction specifies: 

–  An operation or opcode to be performed 

–  Source operands and destination for the result 

•  In a von Neumann machine, instructions 
are executed sequentially 
–  CPU logically implements this loop: 

–  By default, the next PC is current 
PC + size of current instruction 
unless the instruction says otherwise 

Fetch instruction 

Decode instruction 

Read src operands 

Execute 

Write dst operand 

Compute next PC 
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Instruction Set Architecture (ISA) 
•  ISA: The contract between software and hardware 

–  Functional definition of operations and storage locations 
–  Precise description of how software can invoke and access 

them 

• The ISA is a new layer of abstraction: 

–  ISA specifies what the hardware provides, not how it’s 
implemented 

–  Hides the complexity of CPU implementation 

–  Enables fast innovation in hardware (no need to change 
software!) 
•  8086 (1978): 29 thousand transistors, 5 MHz, 0.33 MIPS 

•  Pentium 4 (2003): 44 million transistors, 4 GHz, ~5000 MIPS 

•  Both implement x86 ISA 

–  Dark side: Commercially successful ISAs last for decades 
•  Today’s x86 CPUs carry baggage of design decisions from the 70’s 
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Instruction Set Architecture Design 

•  Designing an ISA is hard: 
–  How many operations? 

–  What types of storage, how much? 

–  How to encode instructions? 

–  How to future-proof? 

•  How to decide? Take a quantitative approach 
–  Take a set of representative benchmark programs 

–  Evaluate versions of your ISA and implementation with 
and without feature 

–  Pick what works best overall (performance, energy, area…) 
 

•  Corollary: Optimize the common case 

Let’s design our own instruction set: the Beta! 
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Beta ISA: Storage 

PC 

CPU State 

r0 
r1 
r2 

... 

r31 000000....0	

32-bit “words” 

General Registers 

Main Memory 

0 1 2 3 

(4 bytes) 
32-bit “words” 

0 31 

Up to 232 bytes (4GB of 
memory) organized as 
230 4-byte words  

Why separate registers and main memory? 
Tradeoff: Size vs speed and energy r31 hardwired to 0 

Each memory word is 32-
bits wide, but for historical 
reasons the β uses byte 
memory addresses.  Since 
each word contains four 8-
bit bytes, addresses of 
consecutive words differ by 
4. 

0x00	
0x04	
0x08	
0x0C	

0x10	
0x12	

Address 
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Storage Conventions 

•  Variables live in memory 
•  Registers hold temporary values 

•  To operate with memory variables 
–  Load them 

–  Compute on them 

–  Store the results 

0x1000:	
0x1004:	
0x1008:	

0x1010:	
0x100C:	

n 
r 
x 
y 

int	x,	y;	
y	=	x	*	37;	

R0	←	Mem[0x1008]	
R0	←	R0	*	37	
Mem[0x100C]	←	R0		
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Beta ISA: Instructions 

•  Three types of instructions: 
–  Arithmetic and logical: Perform operations on general 

registers 

–  Loads and stores: Move data between general registers and 
main memory 

–  Branches: Conditionally change the program counter 

•  All instructions have a fixed length: 32 bits (4 bytes) 
–  Tradeoff (vs variable-length instructions): 

•  Simpler decoding logic, next PC is easy to compute 

•  Larger code size 
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Beta ALU Instructions 

Example coded instruction: ADD 

32-bit hex: 0x80611000 
We prefer to write a symbolic representation:  ADD(r1,r2,r3)	

ADD(ra,rb,rc):	

“Add the contents of ra 
to the contents of rb; 
store the result in rc” 

OPCODE = 
100000, encodes 

ADD 

rc=3,  
encodes R3 as 

destination  

ra=1, rb=2 
encodes R1 and R2 as 

 source locations 

Reg[rc]	ß	Reg[ra]	+	Reg[rb]	

1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 unused 

OPCODE rc ra rb unused Format: 

Similar instructions for 
other ALU operations: 

arithmetic: ADD, SUB, MUL, DIV 
compare: CMPEQ, CMPLT, CMPLE 
boolean: AND, OR, XOR, XNOR 
shift: SHL, SHR, SAR 



6.004 Computation Structures L09: Programmable Machines, Slide #23 

32 registers 

operations 

Implementation Sketch #1 

… 

rc 

ra 

fn ALU 

0 

rb 

PC 

Now that we have our first set of instructions, we can create a 
more concrete implementation sketch: 

OPCODE rc ra rb unused 

4 + 
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Should We Support Constant Operands? 

Many programs use small constants frequently 
e.g., our factorial example: 0, 1, -1 

Tradeoff: 
When used, they save registers and instructions 

More opcodes à more complex control logic and datapath 

Analyzing operands when running SPEC CPU 
benchmarks, we find that constant operands appear 
in 

•  >50% of executed arithmetic instructions 
o  Loop increments, scaling indicies 

•  >80% of executed compare instructions 
o  Loop termination condition 

•  >25% of executed load instructions 
o  Offsets into data structures 
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Beta ALU Instructions with Constant 

arithmetic: ADDC, SUBC, MULC, DIVC 
compare: CMPEQC, CMPLTC, CMPLEC 
boolean: ANDC, ORC, XORC, XNORC 
shift: SHLC, SHRC, SARC 

Similar instructions for other 
ALU operations: 

Example instruction: ADDC adds register contents and constant: 

Symbolic version:  ADDC(r1,-3,r3)	

“Add the contents of ra to 
const; store the result in rc” 

OPCODE = 
110000, encoding 

ADDC 
rc=3, 

encoding R3 
as destination  

ra=1, 
encoding R1 

as first 
operand 

Reg[rc]	ß	Reg[ra]	+	sext(const)	

16-bit two’s 
complement constant, 
encoding -3 as second 
operand (will be sign-

extended to become 32-bit 
two’s complement operand) 

ADDC(ra,const,rc):	

1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

Format: OPCODE rc ra 16-bit signed constant  
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32 registers 

operations 

Implementation Sketch #2 

… 

rc 

ra 

fn ALU 

0 

rb 

PC 

Next we add the datapath hardware to support small constants 
as the second ALU operand: 

4 + 

OPCODE rc ra 16-bit signed constant  

bsel 

sxt(const) 
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Beta Load and Store Instructions 

LD(ra,const,rc)			Reg[rc]	ß	Mem[Reg[ra]	+	sext(const)]	

Load rc with the contents of the memory location 

ST(rc,const,ra)			Mem[Reg[ra]	+	sext(const)]	ß	Reg[rc]	

Store the contents of rc into the memory location 

OPCODE rc ra 16-bit signed constant  
address 

Loads and stores move data between the internal registers and 
main memory 

Address calculation 
is just like ADDC 
instruction! 

To access memory the CPU has to generate an address.  LD and 
ST compute the address by adding the sign-extended constant 
to the contents of register ra. 
•  To access a constant address, specify R31 as ra. 
•  To use only a register value as the address, specify a constant 

of 0. 
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Using LD and ST 

•  Variables live in memory 
•  Registers hold temporary values 

•  To operate with memory variables 
–  Load them 

–  Compute on them 

–  Store the results 

0x1000:	
0x1004:	
0x1008:	

0x1010:	
0x100C:	

n 
r 
x 
y 

int	x,	y;	
y	=	x	*	37;	

R0	←	Mem[0x1008]	
R0	←	R0	*	37	
Mem[0x100C]	←	R0		

LD(R31,0x1008,R0)	
MULC(R0,37,R0)	
ST(R0,0x100C,R31)		
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Can We Solve Factorial With ALU Instructions? 

•  No! Recall high-level FSM: 
 

•  Factorial needs to loop 

•  So far we can only encode sequences of operations 
on registers 

•  Need a way to change the PC based on data values! 
–  Called “branching”.  If the branch is taken, the PC is 

changed.  If the branch is not taken, keep executing 
sequentially. 

a	ß	a	*	b	 b	ß	b	-	1	 Conditional	
branch	

mul sub done loop 
b == 0 

b != 0 
Branch taken 

Branch not 
taken 

Branch target 
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Beta Branch Instructions 

NPC	ß	PC	+	4	
Reg[rc]	ß	NPC	
if	(Reg[ra]	!=	0)	
						PC	ß	NPC	+	4*offset	
else	
						PC	ß	NPC	

BNE(ra,offset,rc):	Branch if not equal 

NPC	ß	PC	+	4	
Reg[rc]	ß	NPC	
if	(Reg[ra]	==	0)	
						PC	ß	NPC	+	4*offset	
else	
						PC	ß	NPC	

BEQ(ra,offset,rc):	Branch if equal 

“offset” is a SIGNED 
CONSTANT encoded as 
part of the instruction! BEQ or BNE rc ra 16-bit signed constant  

The Beta’s branch instructions provide a way to conditionally 
change the PC to point to a nearby location... 

... and, optionally, remembering (in Rc) where we came from 
(useful for procedure calls). 

offset	=	distance	in	words	to	branch	target,	counting	from	the	
instruction	following	the	BEQ/BNE.		Range:	-32768	to	+32767.	
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Can We Solve Factorial Now? 

•  Remember control FSM for our simple programmable datapath? 

•  Control FSM states à instructions! 
–  Not the case in general 
–  Happens here because datapath is similar to basic von Neumann datapath 

			 		 	 					//	Assume	r1	=	N	
		ADDC(r31,	1,	r0) 	//	r0	=	1	
L:MUL(r0,	r1,	r0) 	//	r0	=	r0	*	r1	
		SUBC(r1,	1,	r1) 	//	r1	=	r1	–	1	
		BNE(r1,	L,	r31) 	//	if	r1	!=	0,	run	MUL	next	

		 	 					//	at	this	point,	r0	=	N!	

int	a	=	1;	
int	b	=	N;	
do	{	
		a	=	a	*	b;	
		b	=	b	–	1;	
}	while	(b	!=	0)		

loop
mul 

loop 
sub done loop

bne 

z == 1 

z == 0 
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Beta JMP Instruction 

Branches transfer control to some predetermined destination 
specified by a constant in the instruction.  It will be useful to be 
able to transfer control to a computed address. 

011011	 rc ra unused 

JMP(Ra,Rc):  Reg[Rc] ← PC + 4 
                          PC ← Reg[Ra]  

Useful for procedure call return… 

								…	
[0x100]	BEQ(R31,sqrt,R28)	
								…	
[0x678]	BEQ(R31,sqrt,R28)	
								…	

sqrt:	
						…	
						JMP(R28,R31)	

R28 = 0x104 

2nd time: PC←0x67C 

1st time: PC←0x104 
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Beta ISA Summary 

•  Storage: 
–  Processor: 32 registers (r31 hardwired to 0) and PC 

–  Main memory: 32-bit byte addresses; each memory access 
involves a 32-bit word.  Since there are 4 bytes/word, all 
addresses will be a multiple of 4. 

•  Instruction formats: 

•  Instruction types: 
–  ALU: Two input registers, or register and constant 

–  Loads and stores 

–  Branches, Jumps 

OPCODE rc ra rb unused 

OPCODE rc ra 16-bit signed constant  

32 bits 


