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System-level Interfaces
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What is the most important part of this picture?

Computer System Technologies
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Technology comes & goes;
interfaces last forever

• Interfaces typically deserve more engineering attention than 
the technologies they interface…
– Abstraction: should outlast many technology generations
– Often “virtualized” to extend beyond original function (e.g. 

memory, I/O, services, machines)
– Represent more potential value to their proprietors than the 

technologies they connect.
• Interface sob stories:

– Interface “warts”: Big/little Endian wars
– Early IBM PC reliance on the exact signaling of 8086 chips

• ... and many success stories:
– IBM 360 Instruction set architecture; Postscript; Compact Flash; 

...
– TCP/IP-based packet networks
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Wires
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Aren’t communication channels simply logic circuits 
with long wires?

Wires − interconnect engineer’s 
view:

Transmission lines.

Finite signal propagation 
velocity.

Distance matters.

Time matters.

Reality matters.

Wires − circuit theorist’s view:

Equipotential “nodes” of a 
circuit.

Instant propagation of v, i
over entire node.

“distance” abstracted out of 
design model.

Time issues dictated by RLC 
elements; wires are 
timeless.

Buses, Interconnect, So…?
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Electrical Model for Real Wires

http://cva.stanford.edu/books/dig_sys_engr/lectures/

Omegatron (CC BY-SA 3.0)

signal

Reference (e.g., ground)

Description On chip On PCB

R Resistance of conductor 150kΩ/m 5Ω/m

L Self-inductance of conductor
(due to magnetic field induced by current)

600nH/m 300nH/m

C Capacitance between signal and ground 200pF/m 100pF/m

G Conductance between signal and ground 
(through insulator)

small small

≡
𝑍" = 𝐿 𝐶⁄�

(At high frequency)

Transmission Line
( propagation = 1 𝐿𝐶	�⁄ m/s)

Z0
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Real-World Consequences

• transmission line discontinuities
(reflections off of impedance mismatches and terminations)

[Dally]Fig. 6-17

• charge storage in RC circuit
(narrow pulses are lost due to 
incomplete transitions)

[Dally]Fig. 6-19

[Dally]Fig. 6-20

• RLC ringing (triggered by voltage steps)

Fix: slower operation, limiting
voltage swings and slew rates

∆V from energy storage left over from earlier signaling on the wire:

Dally, W.J., Poulton, J. W., Digital Systems Engineering, 1998
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Fundamental Physical Constraints:

• Bounds on propagation 
speeds
§ Signals travel ~18cm/ns

on PCB

• Bounds on device density
§ Must be finite distances 

between components

• Bounds on flow of charge
§ finite currents → finite 

rise/fall times
§ wire delays depend on 

loading

Moving information in space/time

Space & Time Constraints
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Our tpd, tcd timing model
– bundles delays into device specs
– ignores loading, wire lengths

Reality check:
• long / heavily-loaded outputs will be slower
• can bundle internal wire delays into tpd of a 

device; but external load matters!
• partial fixes: buffers, distribution trees
• optimizing performance requires attention to 

loading issues (You’ll see this in the design 
project!).

32

A

B

Particularly problematic:  system-wide interconnect!

Gates, Wires, & Delays



6.004 Computation Structures L20: System-level Communication, Slide #12

Buses
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Interface Standard: Backplane Bus

MODULE 
LOGIC

a

data
operation
start
finish
clock

address
d

BUS 
LINES

Printed Circuit Cards

Modular cards that plug 
into a common backplane:

CPUs
Memories
Bulk storage
I/O devices
S/W?

The backplane provides:
Power
Common system clock
Wires for communication
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A Parallel Bus Transaction

CLK

assertion edgesample edge

start

finish

operation

address

data

WRITE (Master)

(Master)

(Master)

(Master)

(Slave)

MASTER:
1) Chooses bus operation
2) Asserts an address
3) Waits for a slave to

answer.

SLAVE:
1) Monitors start
2) Check address
3) If meant for me

a) look at bus operation
b) do operation
c) signal finish of cycle

BUS:
1) Monitors start
2) Start count down
3) If no one answers before

counter reaches 0 then
“time out”
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????

ANALOG ISSUES:
• Propagation times

§ Signals travel at ~18 cm/ns on a PCB
• Skew

§ Different points along the bus see the signals at different times
§ Bits of data propagate at slightly different rates along parallel wires

• Reflections & standing waves
§ At each interface (places where the propagation medium changes) the 

signal may reflect if the impedances are not matched.
§ Make a transition on a long line – may have to wait many transition 

times for echoes to subside.

Bus Lines as Transmission Lines

https://en.wikipedia.org/wiki/Reflections_of_signals_on_conducting_lines

Spinningspark (CC BY-SA 3.0)

Transmission: *+,
+-.*+,

Reflection: /+-
+-.*+,
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Point-to-point Communication
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Application

Session

TCP UDP

IP

EthernetPhysical

Network

Transport

Token Ring

IDEA: Protocol “layers” that 
isolate application-level 
interface from low-level 
physical devices:

ETHERNET: In the mid-70’s Bob 
Metcalf (at Xerox PARC, an MIT 
alum) devised a bus for 
networking computers together.

• Inspired by Aloha net (radio)
•COAX replaced “ether”
•Bit-serial (optimized for long wires)
•Variable-length “packets”:

- self-clocked data (no clock, skew!)
- header (dest), data bits, checksum    

• Issues: sharing, contention, arbitration, “backoff”

Meanwhile, Outside the Box…
The network as an interface standard.
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Lessons learned: single driver, point-to-point

Issues:  
• Impedance troubles when driving in middle
• Turn-around time when sharing a wire (wired-or glitch)

SLOW
Z0

Z0

BEST

Differential signaling over controlled impedance trace

Z0

Match impedance of driver to impedance of trace

OKAY

Single-ended signaling over controlled impedance trace

Z0

Match impedance of driver to impedance of trace
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Lessons learned: clock recovery

• Receiver can infer presence of clock edge every time there’s a 
transition in the received samples.

• Using sample period, extrapolate remaining edges
-- Now know first and last sample for each bit
-- Choose “middle” sample to determine message bit

• Can’t go too long without a clock edge → 8b10b encoding

(Sample period)(# samples/bit)

Receive samples

Inferred clock edges

Extrapolated clock edges
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ETHERNET: Broadcast technology
•Sharing (contention) issues
•Multiple-drop-point issues…
•bit-serial (single wire!)
•“Packets” for multi-bit data

Evolution: Point-to-point
•10BaseT, separate R & T wires
•Each link connects only 2 hosts, 
one sends, the other receives
•Network riddled with switches, 
routers

Serial point-to-point bus replacements
•Multi Gbit/sec serial links!
•PCIe, Infiniband, SATA, USB, ...
•Packets, headers
•Switches, routing
•Trend: localized, superfast, serial 
networks!

Serial, Point-to-Point Communications
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System-level Interconnect
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Improving on the bus:
lessons learned from the network world

Bus issues:
• shared medium → arbitrate between requesters
• clock skew → parallel bit lines, variable timings
• multiple masters → turnaround time
• impedance discontinuities, stubs → reflections

M S

REPLACEMENT: fast unidirectional serial point-to-point link
• one transmitter, one receiver  → no arbitration, no 

turnaround
• serial packets replace parallel wire bundles
• clock recovered from data bits → no skew problems
• unidirectional, point-to-point → good signal quality
• need more throughput? → use multiple serial links in 

parallel…
• need many-to-many communication? → switches (like 

Ethernet)
• complex interface → Moore’s law to the rescue!  

M S
1x

M S

4x
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One bus to rule them all,
One bus to join them,
One bus to bring them all
And to the CPU bind them.

Communications in Today’s Computers

QuickPath Interconnect:
→ 20 data + clk
← 20 data + clk

Differential signaling
6.4 GT/s
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Example serial link: PCI Express (PCIe)

I = ±3.5mA

RT = 100Ω
V = ±350mV

LVDS
SIGNALING

Differential
Transmitter

Differential
Receiver

8b/10b
Encoded

Data
@ 5Gb/s

8b/10b
Encoded

Data

• PCIe x1: one differential pair in each direction, also x2, x4, x8, …, x32
• Data is organized into packets:

Physical Layer (v2.0)

“START” DLL payload “END”

Transaction Layer

16- or 20-byte
HEADER 0 to 4096 data bytes

2-byte
SEQNUM TL payload 4-byte

LCRC

Data Link Layer

TR
AI

N
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Communication Topologies
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RING
Each component has link to 
next component on ring

BUS
Shared communication 
channel allows only one 
message at a time

1-dimensional approaches:

Communication Topologies
asymptotic cost/performance tradeoffs 

Goal: enable communications between n components
– Each point-to-point link requires one hardware unit.
– Each point-to-point communication requires one time unit.
– Each link operates independently

Throughput 𝑂 1
Latency 𝑂 1
Cost 𝑂 𝑛

Throughput 𝑂 𝑛
Latency 𝑂 𝑛
Cost 𝑂 𝑛
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COMPLETE GRAPH
Dedicated lines connecting each pair 
of communicating nodes. There are 
∑ 𝑁− 𝑖 = 𝑂 𝑛*6
789 links.

B1 B2 B3 B4

A1

A2

A3

A4

CROSSBAR SWITCH
• Switch dedicated between each pair 

of nodes
• Each Ai can be connected to one Bj

at any time
• Special cases:

• A = processors, B = memories
• A, B same type of node
• A, B same nodes (complete graph)

Quadratic-cost Topologies

Throughput 𝑂 𝑛*

Latency 𝑂 1
Cost 𝑂 𝑛*

Throughput 𝑂 𝑛
Latency 𝑂 1
Cost 𝑂 𝑛*
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2-Dimensional Meshes

4-Neighbor
8-Neighbor

3-D, 6-Neighbor Mesh

Nearest-neighbor connectivity:
Point-to-point interconnect

- minimizes delays
- minimizes “analog” effects

Store-and-forward
(some overhead associated with 
communication routing)

Mesh Topologies

Throughput 𝑂 𝑛
Latency 𝑂 𝑛�

Cost 𝑂 𝑛

Throughput 𝑂 𝑛
Latency 𝑂 𝑛:

Cost 𝑂 𝑛
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BINARY TREE

1-cube
2-cube

3-cube

4-cube

HYPERCUBE 
D dimensions → 2D nodes
Each node has D links

Logarithmic-latency Networks

Throughput 𝑂 𝑛 log> 𝑛
Latency 𝑂 log> 𝑛
Cost 𝑂 𝑛 log> 𝑛

Throughput 𝑂 𝑛
Latency 𝑂 log* 𝑛
Cost 𝑂 𝑛
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• Theorist's view:
– Each point-to-point link requires one hardware unit.
– Each point-to-point communication requires one time unit.

Communication Technologies: Latency

Topology $ Theoretical Latency Actual Latency

Complete graph 𝑂 𝑛* 𝑂 1
Crossbar 𝑂 𝑛* 𝑂 1
1D Bus 𝑂 𝑛 𝑂 1

2D Mesh 𝑂 𝑛 𝑂 𝑛�

3D Mesh 𝑂 𝑛 𝑂 𝑛:

Tree 𝑂 𝑛 𝑂 log* 𝑛
N-cube 𝑂 𝑛 log> 𝑛 𝑂 log> 𝑛

Topology $ Theoretical Latency Actual Latency

Complete graph 𝑂 𝑛* 𝑂 1 𝑂 𝑛:

Crossbar 𝑂 𝑛* 𝑂 1 𝑂 𝑛
1D Bus 𝑂 𝑛 𝑂 1 𝑂 𝑛

2D Mesh 𝑂 𝑛 𝑂 𝑛� 𝑂 𝑛�

3D Mesh 𝑂 𝑛 𝑂 𝑛: 𝑂 𝑛:

Tree 𝑂 𝑛 𝑂 log* 𝑛 𝑂 𝑛:

N-cube 𝑂 𝑛 log> 𝑛 𝑂 log> 𝑛 𝑂 𝑛:

• Engineer’s view:
– Loading increases with number of connections (bus, crossbar)
– Nodes have size: limits possible 2D, 3D density (other topologies)
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Communications Futures

Backplane buses have evolved into 
point-to-point links

+ links operate independently
+ links can be managed in groups
+ packetized data deals with errors

Specialized buses for memory

Networked “peripherals” for mobile devices…

New-generation communications...
• how should 100 (1000?) cores
communicate?

SATA

EISA
NuBus PCI

SBUS

FireWire
DDR

SDRAM
USB


