4. Combinational Logic

6.004x Computation Structures
Part 1 B Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L4: Logic Synthesis, Slide #1

Functional Specifications

There are many ways of specifying the function of a
combinational device, for example:

Argh... I'm tired of word games

—A— If Cis 1 then

copyBto, Y
otherwise copy

B
C AtoY

=2

—
—
c
PP OOROROI<D

Concise alternatives:

¥ truth tables are a concise description of the
combinational systemOs function.

¥ Boolean expressions form an algebra whose
operations are AND (multiplication), OR
(addition), and inversion (overbar).

P RPRRPRRFRPROOOO|IND
—+

FRrOoOORROO|m=D

RPOPFrPOPFrRORLO|I>»Q

Y=C!B!A+CBA+CBA+CBA

Any combinational (Boolean) function can be specified as
a truth table or an equivalent sum-of-products ~ Boolean
expression !

Here’s a Design Approach

1. Write out our functional spec as a

2.\Write down a Boolean expression with

CB AJY terms covering each ADAin the output:

O 0 0O

0 0 11— % _ _

8 i g (1) Y=CBA+CBA+CBA+CBA
\—//

1 0 010

1 0 170

1 1 0|1

1 1 1|1

3. \WeOll show how to build a circuit using
this equation in the next two slides.

This approach will always give us Boolean expressions in a
particular form: SUM-OF-PRODUCTS

Sum-of-products Building Blocks

AlZ

INVERTER:

AND:

OR:

0
1

o BB

R P O O|X>

O » O |

R O O O|N

R P O O|X

O +» O |

P B P O|N

Straightforward Synthesis

We can implement Y =CBA+CBA+CBA+CBA
SUM-OF-PRODUCTS T)
with just three levels of ce_§
logic: Ao
1.lInverters iz__ }
2.IANDs Hi
:;:f’.;/.zs;?maﬁc/ Bo
3' IOR 6 —/'77:’5 ea/;y:/ Co : }
-are we done yet??? .
4 "
Bo—. >7
Propagation delay -- Co—

No more than 3 gate delays? *

*assuming gates with an arbitrary number of inputs,
which, as weOll see, isnOt a good assumption!

ANDs and ORs with > 2 Inputs

Replace 2-input AND gates with 2-

input OR gates to create large fan-in
AG_D—L OR gates.

= AIBIC=(A!B)!
Co D—ez AIBIC=(A!B)!C

Chain: Propagation delay

/\/ increases linearly with number
D—LD—L of inputs
D_OZ =((A!'B)!IC)'D / Which one should I use?

%D—e Z =(AIB)!(C!D)

\j\ Tree: Propagation delay increases
logarithmically with number of inputs

S QW >

OO??

O A A ¢

OO wm >

More Building Blocks

NAND (not AND) A Bl Z NOR (not OR) A Bl Z
0 0|1 0 01

A - A
Do—eZ=A"B 0 111 :Do—eZ=A+B 0 110
B o 1 0] 1 B 1 0|0
1 1|0 1 1|0

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so

CMOQOS gates are naturally inverting. Want to use NANDs and NORs in

CMOS designsE But NAND and NOR operations are not associative , so
wide NAND and NOR gate canOt use a chain or tree strategy. Stay tuned

for more on this!

XOR is very useful when

implementing parity and arithmetic
logic. Also used asa Afrogrammable
inverter Ayif A=0, Z=B; if A=1, Z=~B

XOR (exclusive OR)

s

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

R P O O|X>
P O P O
O + + O(N

Universal Building Blocks

NANDs and NORs are universal:

—{

D
1 >

P
- ¥

D

Do 0

O = =T

2 o-= 3 r0 >

Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Good news for CMOS

technologies!

AC—

BO—

Ceo—

DOo—

AC—

BO—

Co—

DO—

AC—

BO—

CoO—

CMOS FlInverting Logic

See OThe Standard Cell LibraryO handoutin Updates & Handouts

) —
D>

DO—

4

Lo

ANDA4.
Z tpp = 160 ps, size =20 @U
NAND4 + INV:
z tep = 90 ps, size =27 @Y
DemorganOs AIB=A+B
:gj— Laws: % . B_A.B
N/

2*NAND?2 + NOR2:
top = 80 ps, size =30 @Y

Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

G_
G_

o o
o o
G_

G_

But for a large number of inputs, the series connections
of too many MOSFETSs can lead to very large effective R.
Design note: use trees of smaller devicesk

T

S B,

-

8-input
NAND

AR S (R N N A A ¢

b

CMOS Sum-of-products Implementation

NAND-NAND AB=A+B Apushing Bubbles Ay
c
Z > 9 - A—l>o—_:>_
] —\ \ Y
B ::>)_::>_Y CL B —3 — /
1 > 1 -
- — AC +AB+BC
NOR-NOR AB=A+B C
— ——
j:>°_' Y 4 Y=
3o Cu |3__[>_—_/ — /
o > -

You might think all these extra inverters / AC+ AB+ BC
would make this structure less attractive.
However, quite the opposite is true.

Logic Simplification

Can we implement the same function with fewer gates? Before
trying weOll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: a+1=1 a+0=a, a+ta=a

AND rules: al=a, a0=0, aa=a

Commutative: a+tb=b+a, ab=ba

Associative: (a@a+b)+c=a+(b+c), (ab)c=a(bc)
Distributive: a(b+c) =ab +ac, a+ bc =(at+b)(@+c)
Complements: a+ta=1 aa=0

Absorption: a+tab=a a+ab=a+b a(a+b)=a, ala+b)=ab
Reduction: [ab+ ab= b,] (a+b)(@+b)=Db

DeMorgan AdiLaw: a+b=ab, ab=a+b

Boolean Minimization

Can't he come up
with a new example???

LetOs (again!) simplify -
Y =CBA+CBA+CBA+CBA

Using the identity
aA+aA=a(A+A)=all=«a
For any expression (@®hd variable A:

Hey.. I could write

Y =CBA+CBA+CBA+ CBA 7 a pr'og/";zm to do
that

Y =CBA+CB+CBA

Y =CA+CB

Truth Tables with “Don’t Cares”

One way to reveal the opportunities for a more compact
implementation is to rewrite the truth table using OdonOt
caresO (-- or X) to indicate when the value of a particular input is
irrelevant in determining the value of the output.

C B A|Y C B A|Y

O 0 0O 0 X 0 Note: Some input
combinations (e.g.,

00 111 O X 1|1 _>E A 000) are matched by

O 1 0|0 more than one row in

0 1 111 :> 1 0 X0 the OdonOt careO table.

1 1 X1 It would be a bug if all

1 0 0|0 —CB the matching rows

1 0 110 X 0 010 didnOt specify the
same output value!

1 1 0|1 X 1 1|1 —pBA

1 1 1|1

The Case for a Non-minimal SOP

A(1)
C1 ~_— 0 m AT
C B A|Y LAYV | S/ =\ \ Yy s
‘ c...
0 0 0|0 B :
) Yoo U
0 0 1|1 = e
N Y=CA+CB “glitch” or
O 1 010 C A "hazardO
A
NOTE: The steady state
(O 1 1)1 behavior of these circuits is
identical. They differ in their
10040 transient behavior.
1 0 1]0 A
11 0|1 C A
.CB B
11 1|1 — Y LT
Y o
— Now it’s
BA ° 3=CA+CB+AB ;%ﬁ LENIENT:

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by

exactly one variable are adjacent to one another so we can see
potential reductions easily.

Truth Table

C

P P P P O O O O

1tOs cyclic. The left edge is adjacent to the right edge.

P B O O L » O O|

R, O, O Fr O F Of >

P P O O Fr O Fk ol <<

HereOs the layout of a 3-variable K-map
filled in with the values from our truth

table:
C\AB| 00|01 |11 |10
0 0 1
1 A 0 1

N—

(1tOs really just a flattened out cube).

Why did he
shade that
/ row Gray?

Extending K-maps to 4-variable Tables

4-variable K-map F(A,B,C,D):

o [00 [o1 11107

0|o[1]1]1

01,1 111)
\

111 [1]1]1

101 [of0]1

Again itOs cyclic. The left edge is adjacent to the right edge, and
the top is adjacent to the bottom.

For functions of 5 or 6 variables, weOd need to use the 3 rd
dimension to build a 4x4x4 K-map. But then weOre out
of dimensionsE

Finding Implicants

An implicant

¥is a rectangular region of the K-map where the function has
the value 1 (i.e., a region that will need to be described by one
or more product terms in the sum-of-products)

¥has a width and length that must be a powerof 2: 1, 2, 4
¥can overlap other implicants

¥Mis a prime implicant if it is not completely contained in any
other implicant .

C\AB[00 [01 [11 [10 }~ AC C\AB |00 |01 |11 |10
0 oo |1] 1 0 71/, 0 | O rl_
1 [|1]Jlo |0]oO 1 (14 1) o L1 |

C—— _ Q
ABC AC

oo

¥can be uniquely identified by a single product term. The
larger the implicant , the smaller the product term.

Finding Prime Implicants

We want to find all the prime Implicants . The right strategy is a
greedy one.

¥Find the uncircled prime implicant with the greatest area
PlOrder: 4x4 B02x4 or 4x2 B(04x1 or 1x4 or 2x2 B02x1 or 1x2 B(O1x1
BlOverlap is okay

¥Circle it
¥Repeat until all prime implicants are circled

o |00 |01 |11 | 10

Write Down Equations

Picking just enough prime implicants to cover all the 10s in the
KMap , combine equations to form minimal sum-of-products.

C\AB 00 01 11 10 We're done!

0 |o|o|1]T1 Y=AC+BC
1 o [T]T] o

Minimal SOP is
\ AB
CD\ 00 01 Il 11 10 not necessarily

unigue!
Y =D+BC+AC+BC ﬁ

| 00
00| 0
01 [T

11

1
1

A - B
0

o
OIHHHH

11 T
10 | 1

10
T
T
1
BC

Y=D+BC+AB+

Prime Implicants, Glitches & Leniency

This circuit produces a A ;
glitch on Y when A=1, B=1, c | Y=CA+CB
C: 1B 5

C\AB| 00 | 01];1 10 P

O |0]|O 1 B ..

1 | 0 |[[T [>F Grpm—
__J- __/

To make the circuit lenient, include product terms for ALL prime
Implicants .

A
C

[>0—

>_. Y =CA+CB+AB

We’ve Been Desighing a Mux

D, e—}\

D, G—OI
S
2-input Multiplexer

MUXes can be generalized

to 2 X data inputs and k

select inputs E
D30—3\
D26—2

—oY
D1e—1

DOG—0
S[1 :0]c-)—/r

Truth Table
D, D

)]

0O O

P RPPRPPOOOO
PP OORRFRO
POROROLR
PP OOROR O

E and implemented as a
tree of smaller MUXes:

D3 o—1

D2G——0

D1G 1

DOG 0

S[0]

S[1]e

1
Y
0

1

Systematic Implementation Strategies

Consider implementing some arbitrary Boolean function,
F(A,B,C) ... using a MULTIPLEXER as the only circuit element:

Full-Adder
Carr '

y Out Logic 0—0\
A B Cin Coui/O—l
0 0 O 0/0_2
0 0 1 o/ .
01 1 1/’1 4
1 00 o/’1 5
1 0 1 1/ —16
1 1 0 1/’1—7/‘/
1 1 1| 1 A,B,.C

Synthesis By Table Lookup

AB | Fn(A,B)

00 0

01 1 My
10 1__ >
11 o__—""

Generalizing:

In theory, we can build any 1-output

!

MUX
Logic

—>Fn(A,B)

combinational logic block with multiplexers.

For an N-input function we need a

Mmux.

Is this practical for BIG truth tables?

2N

input

How about 10-input function? 20-input?

Muxes are universal!

- e

In future
technologies muxes
might be the
Onatural gateO.

— What
? Y does that
B one do?
A

A New Combinational Device

—] ., D, DECODER:

— D1 wksELECTinputs, v I

1 — nk mentioned
. ¥N=2% DATA OUTPUTs. that HIGH
e D Select inputs choose one of the Is a synonym
j\ - “N-1 D, to assert HIGH, all others L’cg’;v‘:ne‘;':g
will be LOW. the same

k as/‘O’

NOW, we are well on our way to building a
general purpose table-lookup device.

We can build a 2-dimensional ARRAY of
decoders and selectors as follows ...

Read-only Memory (ROM)

___ Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

For K inputs,
decoder produces 2 ¥
signals, only 1 of
> which is asserted at
a time -- think of it
as one signal for
each possible
product term.

Full Adder
Ll
CO<_ FA D Ci
S
Shared
A B GCls G decoder
0O 0 0 |0 O i‘
0 0 1 |1 O
0 1 0 |1 O
0 1 1 |0 1
1 0 0 |1 O
1 0 1 |0 1 A
1 1 0 |0 1 B
CIN
1 1 1 |1 1

Read-only Memory (ROM)

___ Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

For K inputs,
decoder produces 2 ¥
signals, only 1 of
> which is asserted at
a time -- think of it
as one signal for
each possible
product term.

Full Adder
Ll
C0<_ FA<_ Ci
S
Shared
A B GCls G decoder
0O 0 0 |0 O i‘
0 0 1 |1 O
0 1 0 |1 O
0 1 1 |0 1
1 0 0 |1 O
0
1 0 1 |0 1 A 5
1 1 0 |0 1 B
c 1
1 1 1 |1 1 IN

Read-only Memory (ROM)

Full Adder —— LONG LINES slow down propagation
A B times...
l l The best way to improve this is to build
C<+«—— FAl— C. square arrays , using some inputs to
0 l ! drive output selectors (MUXes):
S oL
A B C|S C, s 7 00
O 0 0 (0 O 01
- -
O 0 1 (1 O
B B 10
01 01 o0) y "
0 1 1|0 1 A W oMY
1 0 0 |1 O B
Cin ? ?
1 0 1 |0 1
1 1 0 |0 1
1 1 1 |1 1 Cout

2D Addressing: Standard for ROMs, RAMSs, logic arrayskE

Logic According to ROMs

ROMs ignore the structure of combinational functions ...
¥ Size, layout, and design are independent of function
¥ Any Truth table can be OprogrammedO by

minor reconfiguration:

- Metal layer (masked ROMS) ROMs tend to
- Fuses (Field-programmable PROMS) generate Oglitchy O
- Charge on floating gates (EPROMS) outputs. WHY?

... etc.

Model: LOOK UP value of function in truth table...
Inputs: OADDRESSO of a T.T. entry
ROM SIZE = # TT entries...
... foran N-input boolean function, size CY" x#outputs

Summary

¥ Sum of products

¥ Any function that can be specified by a truth table or,
equivalently, in terms of AND/OR/NOT (Boolean expression)

¥ O3-levelO implementation of any logic function
¥ Limitations on number of inputs (fan-in) increases depth
¥ SOP implementation methods
¥ NAND-NAND, NOR-NOR

¥l Muxes used to build table-lookup
Implementations

¥ Easy to change implemented function -- just change
constants

¥ ROMs

¥l Decoder logic generates all possible product terms
¥ Selector logic determines which terms are ORed together

