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Functional Specifications

There are many ways of specifying the function of a
combinational device, for example:

Argh... I'm tired of word games
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Concise alternatives:

¥ truth tables are a concise description of the
combinational systemOs function.

¥ Boolean expressions form an algebra whose
operations are AND (multiplication), OR
(addition), and inversion (  overbar ).
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Y=C!B!A+CBA+CBA+CBA

Any combinational (Boolean) function can be specified as
a truth table or an equivalent sum-of-products ~ Boolean
expression !




Here’s a Design Approach

1. Write out our functional spec as a

2.\Write down a Boolean expression with

CB AJY terms covering each ADAin the output:
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3. \WeOll show how to build a circuit using
this equation in the next two slides.

This approach will always give us Boolean expressions in a
particular form: SUM-OF-PRODUCTS



Sum-of-products Building Blocks
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Straightforward Synthesis

We can implement Y =CBA+CBA+CBA+CBA
SUM-OF-PRODUCTS T )
with just three levels of ce_§
logic: Ao
1.lInverters iz__ }
2.IANDs Hi
:;:f’.;/.zs;?maﬁc/ Bo
3' IOR 6 —/'77:’5 ea/;y:/ Co : }
-are we done yet??? .
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Propagation delay -- Co—

No more than 3 gate delays? *

*assuming gates with an arbitrary number of inputs,
which, as weOll see, isnOt a good assumption!



ANDs and ORs with > 2 Inputs

Replace 2-input AND gates with 2-

input OR gates to create large fan-in
AG_D—L OR gates.

= AIBIC=(A!B)!
Co D—ez AIBIC=(A!B)!C

Chain: Propagation delay

/\/ increases linearly with number
D—LD—L of inputs
D_OZ =((A!'B)!IC)'D / Which one should I use?

%D—e Z =(AIB)!(C!D)

\j\ Tree: Propagation delay increases
logarithmically  with number of inputs
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More Building Blocks

NAND (not AND) A Bl Z NOR (not OR) A Bl Z
0 0|1 0 01

A - A
Do—eZ=A"B 0 111 :Do—eZ=A+B 0 110
B o 1 0] 1 B 1 0|0
1 1|0 1 1|0

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so

CMOQOS gates are naturally inverting. Want to use NANDs and NORs in

CMOS designsE But  NAND and NOR operations are not associative  , so
wide NAND and NOR gate canOt use a chain or tree strategy. Stay tuned

for more on this!

XOR is very useful when

implementing parity and arithmetic
logic. Also used asa Afrogrammable
inverter Ayif A=0, Z=B; if A=1, Z=~B

XOR (exclusive OR)

s

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.
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Universal Building Blocks

NANDs and NORs are universal:
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Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Good news for CMOS

technologies!
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CMOS FlInverting Logic

See OThe Standard Cell LibraryO handoutin  Updates & Handouts
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ANDA4.
Z tpp = 160 ps, size =20 @U
NAND4 + INV:
z tep = 90 ps, size =27 @Y
DemorganOs AIB=A+B
:gj— Laws: % . B_A.B
N/

2*NAND?2 + NOR2:
top = 80 ps, size =30 @Y



Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:
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But for a large number of inputs, the series connections
of too many MOSFETSs can lead to very large effective R.
Design note: use trees of smaller devicesk
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CMOS Sum-of-products Implementation

NAND-NAND AB=A+B Apushing Bubbles Ay
c
Z > 9 - A—l>o—_:>_
] —\ \ Y
B ::>)_::>_Y CL B —3 — /
1 > 1 -
- — AC +AB+BC
NOR-NOR AB=A+B C
— ——
j:>°_' Y 4 Y=
3o Cu |3__[>_—_/ — /
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You might think all these extra inverters / AC+ AB+ BC
would make this structure less attractive.
However, quite the opposite is true.



Logic Simplification

Can we implement the same function with fewer gates? Before
trying weOll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: a+1=1 a+0=a, a+ta=a

AND rules: al=a, a0=0, aa=a

Commutative: a+tb=b+a, ab=ba

Associative: (a@a+b)+c=a+(b+c), ( ab)c=a(bc)
Distributive: a(b+c) =ab +ac, a+ bc =(at+b)(@+c)
Complements: a+ta=1 aa=0

Absorption: a+tab=a a+ab=a+b a(a+b)=a, ala+b)=ab
Reduction: [ab+ ab= b,] (a+b)(@+b)=Db

DeMorgan AdiLaw: a+b=ab, ab=a+b



Boolean Minimization

Can't he come up
with a new example???

LetOs (again!) simplify -
Y =CBA+CBA+CBA+CBA

Using the identity
aA+aA=a(A+A)=all=«a
For any expression (@®hd variable A:

Hey.. I could write

Y =CBA+CBA+CBA+ CBA 7 a pr'og/";zm to do
that

Y =CBA+CB+CBA

Y =CA+CB



Truth Tables with “Don’t Cares”

One way to reveal the opportunities for a more compact
implementation is to rewrite the truth table using OdonOt
caresO (-- or X) to indicate when the value of a particular input is
irrelevant in determining the value of the output.

C B A|Y C B A|Y

O 0 0O 0 X 0 Note: Some input
combinations (e.g.,

00 111 O X 1|1 _>E A 000) are matched by

O 1 0|0 more than one row in

0 1 111 :> 1 0 X0 the OdonOt careO table.

1 1 X1 It would be a bug if all

1 0 0|0 —CB  the matching rows

1 0 110 X 0 010 didnOt specify the
same output value!

1 1 0|1 X 1 1|1 —pBA

1 1 1|1




The Case for a Non-minimal SOP

A(1)
C1 ~_— 0 m AT
C B A|Y LAYV | S/ =\ \ Yy s
‘ c...
0 0 0|0 B :
) Yoo U
0 0 1|1 = e
N Y=CA+CB “glitch” or
O 1 010 C A "hazardO
A
NOTE: The steady state
(O 1 1)1 behavior of these circuits is
identical. They differ in their
10040 transient behavior.
1 0 1]0 A
11 0|1 C A
.CB B
11 1|1 — Y LT
Y o
— Now it’s
BA ° 3=CA+CB+AB ;%ﬁ LENIENT:




Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by

exactly one variable are adjacent to one another so we can see
potential reductions easily.

Truth Table

C

P P P P O O O O

1tOs cyclic. The left edge is adjacent to the right edge.
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HereOs the layout of a 3-variable K-map
filled in with the values from our truth

table:
C\AB| 00|01 |11 |10
0 0 1
1 A 0 1

N—

(1tOs really just a flattened out cube).

Why did he
shade that
/ row Gray?




Extending K-maps to 4-variable Tables

4-variable K-map F(A,B,C,D):

o [00 [o1 11107

0|o[1]1]1

01,1 111 )
\

111 [1]1]1

101 [of0]1

Again itOs cyclic. The left edge is adjacent to the right edge, and
the top is adjacent to the bottom.

For functions of 5 or 6 variables, weOd need to use the 3 rd
dimension to build a 4x4x4 K-map. But then weOre out
of dimensionsE



Finding Implicants

An implicant

¥is a rectangular region of the K-map where the function has
the value 1 (i.e., a region that will need to be described by one
or more product terms in the sum-of-products)

¥has a width and length that must be a powerof 2: 1, 2, 4
¥can overlap other implicants

¥Mis a prime implicant if it is not completely contained in any
other implicant .

C\AB[00 [01 [11 [10 }~ AC C\AB |00 |01 |11 |10
0 oo |1 ] 1 0 71/, 0 | O rl_
1 [|1]Jlo |0 ]oO 1 (14 1) o L1 |

C—— _ Q
ABC AC

oo

¥can be uniquely identified by a single product term. The
larger the implicant , the smaller the product term.



Finding Prime Implicants

We want to find all the prime Implicants . The right strategy is a
greedy one.

¥Find the uncircled prime implicant with the greatest area
PlOrder: 4x4 B02x4 or 4x2 B(04x1 or 1x4 or 2x2 B02x1 or 1x2 B(O1x1
BlOverlap is okay

¥Circle it
¥Repeat until all prime  implicants are circled

o |00 |01 |11 | 10




Write Down Equations

Picking just enough prime  implicants to cover all the 10s in the
KMap , combine equations to form minimal sum-of-products.

C\AB 00 01 11 10 We're done!

0 |o|o|1]T1 Y=AC+BC
1 o [T ]T] o

Minimal SOP is
\ AB
CD\ 00 01 Il 11 10 not necessarily

unigue!
Y =D+BC+AC+BC ﬁ

| 00
00| 0
01 [T

11

1
1

A - B
0
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10 | 1

10
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1
BC

Y=D+BC+AB+



Prime Implicants, Glitches & Leniency

This circuit produces a A ;
glitch on Y when A=1, B=1, c | Y=CA+CB
C: 1B 5

C\AB| 00 | 01 ];1 10 P

O |0]|O 1 B ..

1 | 0 |[[T [>F Grpm—
__J- \__/

To make the circuit lenient, include product terms for ALL prime
Implicants .

A
C

[>0—

>_. Y =CA+CB+AB




We’ve Been Desighing a Mux

D, e—}\

D, G—OI
S
2-input Multiplexer

MUXes can be generalized

to 2 X data inputs and k

select inputs E
D30—3\
D26—2

—oY
D1e—1

DOG—0
S[1 :0]c-)—/r

Truth Table
D, D

)]

0O O

P RPPRPPOOOO
PP OORRFRO
POROROLR
PP OOROR O

E and implemented as a
tree of smaller MUXes:

D3 o—1

D2G——0

D1G 1

DOG 0

S[0]

S[1]e

1
Y
0

1




Systematic Implementation Strategies

Consider implementing some arbitrary Boolean function,
F(A,B,C) ... using a MULTIPLEXER as the only circuit element:

Full-Adder
Carr '

y Out Logic 0—0\
A B Cin Coui/O—l
0 0 O 0/0_2
0 0 1 o/ .
01 1 1/’1 4
1 00 o/’1 5
1 0 1 1/ —16
1 1 0 1/’1—7/‘/
1 1 1| 1 A,B,.C




Synthesis By Table Lookup

AB | Fn(A,B)

00 0

01 1 My
10 1__ >
11 o__—""

Generalizing:

In theory, we can build any 1-output

!

MUX
Logic

—>Fn(A,B)

combinational logic block with multiplexers.

For an N-input function we need a

Mmux.

Is this practical for BIG truth tables?

2N

input

How about 10-input function? 20-input?

Muxes are universal!

- e

In future
technologies muxes
might be the
Onatural gateO.

— What
? Y does that
B one do?
A



A New Combinational Device

—] ., D, DECODER:

— D1 wksELECTinputs, v I

1 — nk mentioned
. ¥N=2% DATA OUTPUTs. that HIGH
e D Select inputs choose one of the Is a synonym
j\ - “N-1 D, to assert HIGH, all others L’cg’;v‘:ne‘;':g
will be LOW. the same

k as/‘O’

NOW, we are well on our way to building a
general purpose table-lookup device.

We can build a 2-dimensional ARRAY of
decoders and selectors as follows ...



Read-only Memory (ROM)

___ Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

For K inputs,
decoder produces 2 ¥
signals, only 1 of
> which is asserted at
a time -- think of it
as one signal for
each possible
product term.

Full Adder
Ll
CO<_ FA D Ci
S
Shared
A B GCls G decoder
0O 0 0 |0 O i‘
0 0 1 |1 O
0 1 0 |1 O
0 1 1 |0 1
1 0 0 |1 O
1 0 1 |0 1 A
1 1 0 |0 1 B
CIN
1 1 1 |1 1




Read-only Memory (ROM)

___ Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

For K inputs,
decoder produces 2 ¥
signals, only 1 of
> which is asserted at
a time -- think of it
as one signal for
each possible
product term.

Full Adder
Ll
C0<_ FA<_ Ci
S
Shared
A B GCls G decoder
0O 0 0 |0 O i‘
0 0 1 |1 O
0 1 0 |1 O
0 1 1 |0 1
1 0 0 |1 O
0
1 0 1 |0 1 A 5
1 1 0 |0 1 B
c 1
1 1 1 |1 1 IN




Read-only Memory (ROM)

Full Adder —— LONG LINES slow down propagation
A B times...
l l The best way to improve this is to build
C<+«—— FAl— C. square arrays , using some inputs to
0 l ! drive output selectors ( MUXes):
S oL
A B C|S C, s 7 00
O 0 0 (0 O 01
- -
O 0 1 (1 O
B B 10
01 01 o0 ) y "
0 1 1|0 1 A W oMY
1 0 0 |1 O B
Cin ? ?
1 0 1 |0 1
1 1 0 |0 1
1 1 1 |1 1 Cout

2D Addressing: Standard for ROMs, RAMSs, logic arrayskE




Logic According to ROMs

ROMs ignore the structure of combinational functions ...
¥ Size, layout, and design are independent of function
¥ Any Truth table can be OprogrammedO by

minor reconfiguration:

- Metal layer (masked ROMS) ROMs tend to
- Fuses (Field-programmable PROMS) generate Oglitchy O
- Charge on floating gates (EPROMS) outputs. WHY?

... etc.

Model: LOOK UP value of function in truth table...
Inputs: OADDRESSO of a T.T. entry
ROM SIZE = # TT entries...
... foran N-input  boolean function, size CY" x#outputs




Summary

¥ Sum of products

¥ Any function that can be specified by a truth table or,
equivalently, in terms of AND/OR/NOT (Boolean expression)

¥ O3-levelO implementation of any logic function
¥ Limitations on number of inputs (fan-in) increases depth
¥ SOP implementation methods
¥ NAND-NAND, NOR-NOR

¥l Muxes used to build table-lookup
Implementations

¥ Easy to change implemented function -- just change
constants

¥ ROMs

¥l Decoder logic generates all possible product terms
¥ Selector logic determines which terms are ORed together



