4. Combinational Logic

6.004x Computation Structures
Part 1 — Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L4: Logic Synthesis, Slide #1

Functional Specifications

There are many ways of specifying the function of a
combinational device, for example:

Argh... I'm tired of word games

—‘L If Cis 1 then

copy B to Y, Y

L otherwise copy
C AtoY
Truth Table
C B AJ|Y
, , 0 0 0[O0
Concise alternatives: 0 0 1|1
* truth tables are a concise description of the T I
combinational system’s function. 1 0 00
* Boolean expressions form an algebra whose } (1) (1) (1)
operations are AND (multiplication), OR 1 1 11

(addition), and inversion (overbar). o _ _
Y=C-B-A+CBA+CBA+CBA

Any combinational (Boolean) function can be specified as

a truth table or an equivalent sum-of-products Boolean

expression/

Here’s a Design Approach

1. Write out our functional spec as a

2. Write down a Boolean expression with

C B AJY terms covering each ‘1’ in the output:

O O OO

O 0 11— %

8 }? ? Y=CBA+CBA+CBA+CBA
1 0 O0]O

1 0O 10

1 1 Of1

1 1 111

3. We’ll show how to build a circuit using
this equation in the next two slides.

This approach will always give us Boolean expressions in a
particular form: SUM-OF-PRODUCTS

Sum-of-products Building Blocks

A|lZ

INVERTER:

AND:

OR:

o
1

O =

- -0 O

= O = O|W

= O O O (N

- =0 O

= O = O|W

= = = O N

Straightforward Synthesis

We can implement Y - CBA+CBA+CBA+CBA
SUM-OF-PRODUCTS T)
with just three levels of Ce—§
logic: Ao
1. Inverters i:__ }
2. ANDs Hi
-it's systematic! :
3.OR Q) e - -
-are we aone yet22? ce
3 " D
Propagation delay -- co]

No more than 3 gate delays?*

*assuming gates with an arbitrary number of inputs,
which, as we’ll see, isn’t a good assumption!

ANDs and ORs with > 2 Inputs

Replace 2-input AND gates with 2-

input OR gates to create large fan-in
A G_D—L OR gates.
Co D—€Z=A-B-C=(A-B)°C

Chain: Propagation delay
/\/ increases linearly with number
D—L of inputs

D_GZ =((A-B)-C)-D / Which one should I use?

OO??

OO W >

O A A ¢

}L} Z (A B)-(C-D)
D_r \j\ Tree: Propagation delay increases

logarithmically with number of inputs

O QO % >

More Building Blocks

NAND (not AND)

A
(0]

A G -
Do—eZ=A-B 0
B 6 1
1

B
o
1
o
1

- = N

o

NOR (not OR)

B
o
1
o
1

© O O = (N

A
0

A
ZDO—@Z=A+B 0
B 1
1

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so
CMOS gates are naturally inverting. Want to use NANDs and NORs in
CMOS designs... But NAND and NOR operations are not associative, so
wide NAND and NOR gate can’t use a chain or tree strategy. Stay tuned

for more on this!

XOR (exclusive OR)

B

= - 0 O P

= O = O|W

O B = OfN

XOR is very useful when
implementing parity and arithmetic

logic. Also used as a “programmable
inverter”: if A=0, Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

Universal Building Blocks

NANDs and NORs are universal:

—{

—

1 »C

—{

D
B3

D

b = >

D= =T

- = >

Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Good news for CMOS
technologies!

AC—

BO—

Ceo—

DOo—

AC—

BO—

Co—

DO—

AC—

BO—

CoO—

CMOS ¥ Inverting Logic

See “The Standard Cell Library” handout in Updates & Handouts

DO—

4

AND4:
top = 160 ps, size = 20 u ?

D
NAND4 + INV:
>°_| >°—92 t
Z.
ZSD— Laws: Z+§ _A.

N/
. 2*NAND2 + NOR2:
top = 80 ps, size = 30 u?

op = 90 ps, size = 27 u?

Demorgan’s

Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

(Com

?
it

Da

i

GC—

Da

(C o

(C o

(C o

Da

(C o

But for a large number of inputs, the series connections
of too many MOSFETs can lead to very large effective R.
Design note: use trees of smaller devices...

8-input
NAND

s
e

AR S (R N N A A ¢

b

-

Pt

8-input D_F

NOR

Pt

D

D
Ds

D

N\

3 -

CMOS Sum-of-products Implementation

NAND-NAND AB=A+B “Pushing Bubbles”
T 2= T
A I
B ::)_ZD_Y p—— :D Y\ _Y
1 >)
- = AC + AB+ BC
NOCR—NOR AB=A+ C
3 =
A0 —C:>_ A__[>_'_C:>_
@D_' X : :_\ N\ {>—Y
e — Bl -/
_@ _:>_

You might think all these extra inverters / AE’ + AB + BC
would make this structure less attractive.
However, quite the opposite is true.

Logic Simplification

Can we implement the same function with fewer gates? Before
trying we’ll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

OR rules: a+1l1=1, a+0=a, ata=a

AND rules: al =a, a0=0, aa=a

Commutative: atb=b+a, ab=ba

Associative: (@+b)+c=a+(b+c), (ab)c = a(bc)
Distributive: a(b+c) = ab + ac, a + bc = (a+b)(a+c)
Complements: a+a=1, aa=0

Absorption: a+ab=a, a+ab=a+b ala+b)=a, ala+b)=ab
Reduction: (ab+ab=b,| (a+b)@+b)=b

DeMorgan's Law: g+b=ab, ab=a+b

Boolean Minimization

Can't he come up
with a new example???

Let’s (again!) simplify P
Y=CBA+CBA+CBA+CBA

Using the identity
aA+aZ=a(A+A_)=a-1=a
For any expression (X and variable A:

Hey.. I could write

Y =CBA+CBA+CBA+ CBA " aprogram to do
that

Y =CBA+CB+CBA

Y=CA+CB

Truth Tables with “Don’t Cares”

One way to reveal the opportunities for a more compact
implementation is to rewrite the truth table using “don’t

cares” (-- or X) to indicate when the value of a particular input is
irrelevant in determining the value of the output.

C B A|Y
O 0 0|0
0 0 1|1
O10|0
01 1|1
1 0 0|0
1 010
1 1 0|1
1 1 1|1

=

CBA|Y
0 X 0|0
0 X1|1 —CA
1 0 X|0
1 1 X1 _,cp
X 0 0|0
X1 1|1 —pgg

Note: Some input
combinations (e.g.,
000) are matched by
more than one row in
the “don’t care” table.
It would be a bug if all
the matching rows
didn’t specify the
same output value!

The Case for a Non-minimal SOP

CBA|Y
000|0
00 1|1
N
010/0 CA
_
01 1|1
(1000
1010
1101
.CB
111}.

S
>

A(l)

B

Y=CA+CB

NOTE: The steady state
behavior of these circuits is
identical. They differ in their
transient behavior.

Q P>

Yoo U
That's what
— wecall a
“glitch” or

*hazard”
A
B
Y Booooccoooooioooioooioooio

C.____. [

Y o

B > — Now it's
Y=CA+CB+AB LENIENT!

Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by
exactly one variable are adjacent to one another so we can see

potential reductions easily.

Truth Table Here’s the layout of a 3-variable K-map
c B Aly filled in with the values from our truth
1 .
o o olo table:
0O 0 1|1
0 1 ofo C\AB| 00|01 |11 |10
0O 1 1|1 o) 0 1
1 0 ofo
1 0 10 1 A 0 1 1)
1 1 of1
1 1 11 \

It’s cyclic. The left edge is adjacent to the right edge.

(It’s really just a flattened out cube).

Why did he
shade that
/ row Gray?

Extending K-maps to 4-variable Tables

4-variable K-map F(A,B,C,D):

o [00[01]11]107
oolo| 1|11
o1, 1 |1]| 1] 1)
1181 | 1| 1] 1
~1 e
10| 1 o[O 1

Again it’s cyclic. The left edge is adjacent to the right edge, and
the top is adjacent to the bottom.

For functions of 5 or 6 variables, we’d need to use the 3™
dimension to build a 4x4x4 K-map. But then we’re out
of dimensions...

Finding Implicants

An implicant

* is a rectangular region of the K-map where the function has
the value 1 (i.e., a region that will need to be described by one
or more product terms in the sum-of-products)

* has a width and length that must be a power of 2: 1, 2, 4
* can overlap other implicants

* is a prime implicant if it is not completely contained in any
other implicant.

C\AB|[00 [01]11] 10 |~ AC C\AB|(oo |01 | 11] 10

(0] o|lOoO{(1]1 (0] o|oO ri_

1 [|1jlo]| oo 1 J[1][1) o[1]
— = C —
ABC AC B

« can be uniquely identified by a single product term. The
larger the implicant, the smaller the product term.

Finding Prime Implicants

We want to find all the prime implicants. The right strategy is a
greedy one.

* Find the uncircled prime implicant with the greatest area
— Order: 4x4 = 2x4 or 4x2 = 4x1 or 1x4 or 2x2 = 2x1 or 1x2 = 1x1
— Overlap is okay

* Circle it
* Repeat until all prime implicants are circled

2= Too|01]11[10

Write Down Equations

Picking just enough prime implicants to cover all the 1’s in the
KMap, combine equations to form minimal sum-of-products.

C\AB 00 01 11 10 We're done!

0 |0]|o|[T]1 Y=AC+BC
1 o |(T] 1) o

Minimal SOP is

C}RB 00 | 01 Il 11| 10 not necessarily

unigue!
Y =D+BC+AC+BC ﬁ

> TooJo1]11]10
oo| o |f1] 1)|fT)
o1 [f1 |1 1
Fiiew FEEN

101 o] o (Jl1
Y=D+BC+AB+BC

Prime Implicants, Glitches & Leniency

This circuit produces a A }
glitch on Y when A=1, B=1, ¢ Y=CA+CB
C: 1—0
B
C\AB| 00 |01 (11|10
— A .
0 0 O i 1 B_______:::::::::::::::::::::::
1 [o [T [T . E—
__J- __/

To make the circuit lenient, include product terms for ALL prime
implicants.

oo

)
:>_. Y =CA+CB+AB
-

We’ve Been Desighing a Mux

\\ Truth Table
bre—' S D, D] Y
© Y o 0 oo
D, C—° 0 0 1|1
0o 1 0|0
0 1 1] 1
1 0 ofo
S 1 0 1|0
: : 1 1 01
2-input Multiplexer 101 101
MUXes can be generalized ... and implemented as a
to 2k data inputs and k tree of smaller MUXes:
select inputs ... D3o—1
D36—3\ D2—0
1
D26—2 j—ov
0
o | Dlo1—! d
DOG 0

DOG—0
il S[0]
S[1:0]

S[1]e

Systematic Implementation Strategies

Consider implementing some arbitrary Boolean function,
F(A,B,C) ... using a MULTIPLEXER as the only circuit element:

Full-Adder
Carry Out Logic

Cou

=
=

t

SN T NeNeoNeNelh—
== Q00 =~QOOIW
MO ROMORMO|WL
e - ONO00O0

il

-

0O —

L~ out

qum-hoowHo/

Synthesis By Table Lookup

Muxes are universal!

A B
AB|Fn(A,B) | | 5 B Y- A>oY

00 O A

01 1
10 1> 11\,/{)[;1}2 —>Fn(A,B) g B Y= §:_>X
11 o_——"

. B _A Y
Generalizing: 1 B:_'_>_

In theory, we can build any 1-output

combinational logic block with multiplexers. A
N In future

For an N-input function we need a input technologies muxes

MUx. might be the

“natural gate”.

Is this practical for BIG truth tables? B v g,w’aih ;
How about 10-input function? 20-input? B ozgsdof
A

A New Combinational Device

—] » D, DECODER:

— D, .k SELECT inputs, rove T

' e N = Ok mentioned
. N = 25X DATA OUTPUTs. that HIGH
. D Select inputs choose one of the /s asynonym
- N-1 D; to assert HIGH, all others for 1" and
11 be LOW LOW means

Wi the same

k as 0

/

NOW, we are well on our way to building a
general purpose table-lookup device.

We can build a 2-dimensional ARRAY of
decoders and selectors as follows ...

Read-only Memory (ROM)

___ Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

For K inputs,
decoder produces 2¥
| | signals, only 1 of

> which is asserted at
| | a time -- think of it
as one signal for
each possible
product term.

Full Adder
L
C,— FAF— C,
}
S
Shared
A B G1S S decoder
O 0O O |0 O <
O O 1 1 O
O 1 O |1 O
0O 1 1 |0 1
1 0 O |1 O
1 0 1 (0 1 A
1 1 0 |0 1 B
1 1 1|1 1 Ciy

for each
output

Read-only Memory (ROM)

___ Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

For K inputs,
decoder produces 2¥
| | signals, only 1 of

> which is asserted at
| | a time -- think of it
as one signal for
each possible
product term.

Full Adder
Ll
S
Shared
A B G1S S decoder
O O O |0 O i‘
O O 1 1 0
0O 1 0 1 0
0O 1 1 0 1
1 0 O 1 0
0]
1 0 1 1|0 1 A 5
1 1 0|0 1 B
C 1
1 1 1 |1 1 IN

for each
output

Read-only Memory (ROM)

Full Adder —— LONG LINES slow down propagation
A B times...
l l The best way to improve this is to build
C+— FAl— C, square arrays, using some inputs to
? l drive output selectors (MUXes):
S Foam i
A B C|S c, s 7 00
O 0 O (0 O 01
- o
O 0 1 |1 O 10
01 01 0 - o N
01 1 |0 1 A W oMY
1 0 0|1 O B
1 0 1 |0 1 Cin ? ?
1 1 0 |0 1
1 1 1 |1 1 Cour

2D Addressing: Standard for ROMs, RAMs, logic arrays...

Logic According to ROMs

ROMs ignore the structure of combinational functions ...
e Size, layout, and design are independent of function
e Any Truth table can be “programmed” by
minor reconfiguration:

- Metal layer (masked ROMs) ROMs tend to
- Fuses (Field-programmable PROMS) | generate “glitchy”
- Charge on floating gates (EPROMs) |outputs. WHY?

... etc.

Model: LOOK UP value of function in truth table...
Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...
... for an N-input boolean function, size = 2" x #outputs

Summary

e Sum of products

 Any function that can be specified by a truth table or,
equivalently, in terms of AND/OR/NOT (Boolean expression)

o “3-level” implementation of any logic function
 Limitations on number of inputs (fan-in) increases depth
e SOP implementation methods
e NAND-NAND, NOR-NOR

e Muxes used to build table-lookup
implementations

 Easy to change implemented function -- just change
constants

e ROMs

 Decoder logic generates all possible product terms
e Selector logic determines which terms are ORed together

