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Functional Specifications 
There are many ways of specifying the function of a 
combinational device, for example: 

A 
B Y 

If C is 1 then 
copy B to Y, 

otherwise copy 
A to Y C 

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table 

Y =C ⋅B ⋅A+CBA+CBA +CBA

Any combinational  (Boolean) function can be specified as 
a truth table or an equivalent sum-of-products Boolean 
expression! 
 

Concise alternatives: 
•  truth tables are a concise description of the 

combinational system’s function.  
•  Boolean expressions form an algebra whose 

operations are AND (multiplication), OR 
(addition), and inversion (overbar). 

Argh… I’m tired of word games 
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Here’s a Design Approach 

1. Write out our functional spec as a 
truth table 

2. Write down a Boolean expression with 
terms covering  each ‘1’ in the output: 
 
 
 
 
 
 
 
 
 

3. We’ll show how to build a circuit using 
this equation in the next two slides. 

C B A Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table 

Y =CBA+CBA+CBA+CBA

This approach will always give us Boolean expressions in a 
particular form: SUM-OF-PRODUCTS 
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Sum-of-products Building Blocks 

INVERTER: 

€ 

A

€ 

Z = A 
A Z 

0 1 

1 0 

AND: 

€ 

A

€ 

Z = A ⋅ B

€ 

B

A B Z 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

OR: 

€ 

A

€ 

Z = A + B

€ 

B

A B Z 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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Straightforward Synthesis 
We can implement  

 SUM-OF-PRODUCTS 

with just three levels of 
logic: 

1. Inverters 

2. ANDs 
3. OR 

 

                                                   *  
 
*assuming gates with an arbitrary number of inputs, 
which, as we’ll see, isn’t a good assumption! 

Propagation delay -- 
  No more than 3 gate delays?  

-it’s systematic! 
-it works! 
-it’s easy! 
-are we done yet??? 

Y =CBA+CBA+CBA +CBA
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ANDs and ORs with > 2 Inputs 

€ 

A

Z = A ⋅B ⋅C = (A ⋅B) ⋅C

€ 

B

€ 

C

€ 

A

Z = ((A ⋅B) ⋅C) ⋅D

€ 

B

€ 

C

€ 

D

€ 

A

Z = (A ⋅B) ⋅ (C ⋅D)

€ 

B

€ 

C

€ 

D

Chain: Propagation delay 
increases linearly with number 
of inputs 

Tree: Propagation delay increases 
logarithmically with number of inputs 

Replace 2-input AND gates with 2-
input OR gates to create large fan-in 
OR gates. 

Which one should I use? 
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More Building Blocks 

NAND (not AND) 

€ 

A

€ 

Z = A ⋅ B

€ 

B

A B Z 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

NOR (not OR) 

€ 

A

€ 

Z = A + B

€ 

B

A B Z 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

XOR (exclusive OR) 

€ 

A

€ 

Z = A⊕ B

€ 

B

A B Z 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so 
CMOS gates are naturally inverting.  Want to use NANDs and NORs in 
CMOS designs…  But NAND and NOR operations are not associative, so 
wide NAND and NOR gate can’t use a chain or tree strategy.  Stay tuned 
for more on this! 

XOR is very useful when 
implementing parity and arithmetic 
logic.  Also used as a “programmable 
inverter”: if A=0, Z=B; if A=1, Z=~B 
 
Wide fan-in XORs can be created with 
chains or trees of 2-input XORs. 
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Universal Building Blocks 

 NANDs and NORs are universal: 
 
 
 
 
 
 
 
 
 
 Any logic function can be implemented using only NANDs 
(or, equivalently, NORs).  Good news for CMOS 
technologies! 

= 

= 

= 

= 

= 

= 
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CMOS ♥︎ Inverting Logic 

AND4: 
tPD = 160 ps, size = 20μ2 

NAND4 + INV: 
tPD = 90 ps, size = 27μ2 

2*NAND2 + NOR2: 
tPD = 80 ps, size = 30μ2 

Demorgan’s 
Laws: 

A ⋅B = A+B
A+B = A ⋅B

See “The Standard Cell Library” handout in Updates & Handouts 
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Wide NANDs and NORs 

Most logic libraries include 2-, 3- and 4-input devices: 

But for a large number of inputs, the series connections 
of too many MOSFETs can lead to very large effective R.  
Design note: use trees of smaller devices… 

8-input 
NAND 

8-input 
NOR 
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CMOS Sum-of-products Implementation 

AB=A+B 

NAND-NAND 
 

 
 

 

 
NOR-NOR 

 

C

A

B

Y ≡ 
C

A

B

Y

AC + AB + BC

≡ 
C

A

B
Y

AC + AB + BC

C

A

B

Y

C

A

B
Y

AB=A+B 
“Pushing Bubbles” 

C

A

B
Y

You might think all these  extra inverters 
would make this structure less attractive. 
However, quite the opposite is true. 
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Can we implement the same function with fewer gates? Before 
trying we’ll add a few more tricks in our bag. 

BOOLEAN ALGEBRA: 

 OR rules:    a + 1 = 1,  a + 0 = a,  a + a = a 

AND rules:    a1 = a,  a0 = 0,  aa = a 

Commutative:   a + b = b + a,  ab = ba 

Associative:   (a + b) + c = a + (b + c),  (ab)c = a(bc) 

Distributive:   a(b+c) = ab + ac,  a + bc = (a+b)(a+c) 

Complements: 

Absorption: 

    Reduction: 

DeMorgan’s Law: 

a+ a =1, aa = 0
a+ ab = a, a+ ab = a+ b a(a+ b) = a, a(a + b) = ab

ab+ ab = b, (a+ b)(a + b) = b
a + b = ab, ab = a+ b

Logic Simplification 
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BACCBAACBABCY +++=

Let’s (again!) simplify 

Using the identity 

αA+αA =α(A+ A) =α ⋅1=α

BACCBAACBABCY +++=

CBACY +=

BACCBABCY ++=

Can’t he come up 
with a new example??? 

For any expression α and variable A: 

Boolean Minimization 

Hey… I could write 
a program to do 

that 
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C  B A Y 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

� 

CA

� 

CB

� 

BA

C  B A Y 

0 X 0 0 

0 X 1 1 

1 0 X 0 

1 1 X 1 

X 0 0 0 

X 1 1 1 

One way to reveal the opportunities for a more compact 
implementation is to rewrite the truth table using “don’t 
cares” (-- or X) to indicate when the value of a particular input is 
irrelevant in determining the value of the output. 

Truth Tables with “Don’t Cares” 

Note: Some input 
combinations (e.g., 
000) are matched by 
more than one row in 
the “don’t care” table.  
It would be a bug if all 
the matching rows 
didn’t specify the 
same output value! 
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Y =CA+CB+ AB

A 
C 

B 

Y 

NOTE: The steady state 
behavior of these circuits is 
identical. They differ in their 
transient behavior. 

Y(1) 
C(1) 

� 

Y = C A + CB

A(1) 

B(1) 

0 
0 

1 

C  B A Y 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 

� 

CA

� 

CB

� 

BA

The Case for a Non-minimal SOP 

A 
B 
C 
Y 

That’s what 
we call a 

“glitch” or 
“hazard” 

A 
B 
C 
Y 

Now it’s 
LENIENT! 
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It’s cyclic. The left edge is adjacent to the right edge. 
(It’s really just a flattened out cube).  

C\AB 00 01 11 10 

0 0 0 1 1 

1 0 1 1 0 
 

 

000 001 

010 011 

100 101 

110 111 

Here’s the layout of a 3-variable K-map 
filled in with the values from our truth 
table: 

K-Map: a truth table arranged so that terms which differ by 
exactly one variable are adjacent to one another so we can see 
potential  reductions easily. 

C B A Y 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 
 

 

Truth Table 

Why did he 
shade that 
row Gray? 

Karnaugh Maps: A Geometric Approach 
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4-variable K-map F(A,B,C,D): 
 

 
 
 
Again it’s cyclic. The left edge is adjacent to the right edge, and 
the top is adjacent to the bottom. 

   \AB 
 CD\ 00 01 11 10 
00 0 1 1 1 
01 1 1 1 1 
11 1 1 1 1 
10 1 0 0 1 

 

 

Extending K-maps to 4-variable Tables 

For functions of 5 or 6 variables, we’d need to use the 3rd 
dimension to build a 4x4x4 K-map.  But then we’re out 
of dimensions… 
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An implicant 
•  is a rectangular region of the K-map where the function has 

the value 1 (i.e., a region that will need to be described by one 
or more product terms in the sum-of-products) 

• has a width and length that must be a power of 2: 1, 2, 4 
•  can overlap other implicants 
•  is a prime implicant if it is not completely contained in any 

other implicant. 
 
 
 
 
 
 
 

•  can be uniquely identified by a single product term.  The 
larger the implicant, the smaller the product term. 

Finding Implicants 

C\AB 00 01 11 10 

0 1 0 0 1 

1 1 1 0 1 
 

 

ACC\AB 00 01 11 10 

0 0 0 1 1 

1 1 0 0 0 
 

 

ABC AC B
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We want to find all the prime implicants.  The right strategy is a 
greedy one. 

• Find the uncircled prime implicant with the greatest area 
– Order: 4x4 ⇒ 2x4 or 4x2 ⇒ 4x1 or 1x4 or 2x2 ⇒ 2x1 or 1x2 ⇒ 1x1 
– Overlap is okay 

• Circle it 
• Repeat until all prime implicants are circled 

   \AB 
 CD\ 00 01 11 10 
00 0 1 1 1 
01 1 1 1 1 
11 1 1 1 1 
10 1 0 0 1 

 

 

Finding Prime Implicants 
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Picking just enough prime implicants to cover all the 1’s in the 
KMap, combine equations to form minimal sum-of-products. 

C\AB 00 01 11 10 

0 0 0 1 1 

1 0 1 1 0 
 

 

Write Down Equations 

We’re done! 

   \AB 
 CD\ 00 01 11 10 
00 0 1 1 1 
01 1 1 1 1 
11 1 1 1 1 
10 1 0 0 1 

 

 

Y = AC +BC

Y = D+BC + AC +BC
   \AB 
 CD\ 00 01 11 10 
00 0 1 1 1 
01 1 1 1 1 
11 1 1 1 1 
10 1 0 0 1 

 

 

Y = D+BC + AB+BC

Minimal SOP is 
not necessarily 
unique! 
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C\AB 00 01 11 10 

0 0 0 1 1 

1 0 1 1 0 
 

 

Prime Implicants, Glitches & Leniency 

� 

Y = C A + CBC 
A 

B 

A 
B 
C 
Y

This circuit produces a 
glitch on Y when A=1, B=1, 
C: 1→0 

To make the circuit lenient, include product terms for ALL prime 
implicants. 

Y =CA+CB+ AB

A 
C 

B 
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D0 

D1 

S 

… and implemented as a 
tree of smaller MUXes: 

MUXes can be generalized 
to 2k data inputs and k 
select inputs … 

2-input Multiplexer 

Y 
S D1 D0 Y 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Truth Table 

We’ve Been Designing a Mux 
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Consider implementing some arbitrary Boolean function, 
F(A,B,C) ... using a MULTIPLEXER as the only circuit element: 

A B Cin Cout 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

 

 

Full-Adder 
Carry Out Logic 

0 
1 
2 
3 
4 
5 
6 
7 

A,B,Cin 

Cout 

0 
0 
0 
1 
0 
1 
1 
1 

Systematic Implementation Strategies 
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MUX 
Logic 

A B 

Fn(A,B) 

Generalizing: 
In theory, we can build any 1-output 
combinational logic block with multiplexers. 
 
For an N-input function we need a _____ input  
mux. 

AB Fn(A,B) 

00 0 
01 1 
10 1 
11 0 

 

2N 

Muxes are universal! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In future 
 technologies muxes 

might be the 
“natural gate”. 

0 
1 
0 
1
S 

1 
0 

A 

Y A         Y 
= 

0 
1 
0 
1
S 

0 
B 

A 

Y 

0 
1 
0 
1
S 

B 
1 

A 

Y 

= 

= 

A 
B 

Y 

A 
B 

Y 

Is this practical for BIG truth tables? 
   How about 10-input function?  20-input? 

Synthesis By Table Lookup 

0 
1 
0 
1
S 

B 
B 

A 

Y 
What 
does that 
one do? 
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k 

D0 
D1 

DN-1 

DECODER: 

•  k SELECT inputs,  

•  N = 2k DATA OUTPUTs. 

Select inputs choose one of the 
Dj to assert HIGH, all others 
will be LOW. 

NOW, we are well on our way to building a 
general purpose table-lookup device.  
 
We can build a 2-dimensional ARRAY of 
decoders and selectors as follows ... 

Have I 
mentioned 
that HIGH 

is a synonym 
 for ‘1’ and 
LOW means 

the same 
as ‘0’ 

A New Combinational Device 
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COUT S 

000 

001 

010 

011 

100 

101 

110 

111 
A 
B 
CIN 

A B Ci S Co 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

FA 

A B 

Co Ci 

S 

Full Adder 

For K inputs, 
decoder produces 2K 
signals, only 1 of 
which is asserted at 
a time -- think of it 
as one signal for 
each possible 
product term. 

Each column is large fan-in “NOR.” Note 
location of pulldowns correspond to a 
“1” output in the truth table! 

Shared 
decoder 

One column 
for each 
output 

Read-only Memory (ROM) 
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COUT S 

000 

001 

010 

011 

100 

101 

110 

111 
A 
B 
CIN 

A B Ci S Co 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

FA 

A B 

Co Ci 

S 

Full Adder 

For K inputs, 
decoder produces 2K 
signals, only 1 of 
which is asserted at 
a time -- think of it 
as one signal for 
each possible 
product term. 

Each column is large fan-in “NOR.” Note 
location of pulldowns correspond to a 
“1” output in the truth table! 

Shared 
decoder 

One column 
for each 
output 

Read-only Memory (ROM) 

0 
0 
1 

1 

0 1 

0 1 
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FA 

A B 

Co Ci 

S 

Full Adder LONG LINES slow down propagation 
times… 

The best way to improve this is to build 
square arrays, using some inputs to 
drive output selectors (MUXes): 

00 

01 

10 

11 

0 1 0 1 
A 
B 
CIN 

COUT S 

2D Addressing: Standard for ROMs, RAMs, logic arrays… 

Read-only Memory (ROM) 

A B Ci S Co 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 
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ROMs ignore the structure of combinational functions ... 
• Size, layout, and design are independent of function 
• Any Truth table can be “programmed” by 
  minor reconfiguration: 
 

- Metal layer (masked ROMs) 
- Fuses (Field-programmable PROMs) 
- Charge on floating gates (EPROMs) 
... etc. 

 
Model: LOOK UP value of function in truth table... 

Inputs: “ADDRESS” of a T.T. entry 
ROM SIZE = # TT entries... 
... for an N-input boolean function, size ≅ __________ 

 
2N x #outputs 

ROMs tend to 
generate “glitchy” 
outputs. WHY? 

Logic According to ROMs 
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•  Sum of products 
•  Any function that can be specified by a truth table or, 

equivalently, in terms of AND/OR/NOT (Boolean expression) 

•  “3-level” implementation of any logic function 

•  Limitations on number of inputs (fan-in) increases depth 

•  SOP implementation methods 

•  NAND-NAND, NOR-NOR 

•  Muxes used to build table-lookup 
implementations 
•  Easy to change implemented function -- just change 

constants 

•  ROMs 
•  Decoder logic generates all possible product terms 

•  Selector logic determines which terms are ORed together 

Summary 


