
6.004 Computation Structures L4: Logic Synthesis, Slide #1

4. Combinational Logic

6.004x Computation Structures
Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L4: Logic Synthesis, Slide #2

Functional Specifications
There are many ways of specifying the function of a
combinational device, for example:

A
B Y

If C is 1 then
copy B to Y,

otherwise copy
A to Y C

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

Y =C ⋅B ⋅A+CBA+CBA +CBA

Any combinational (Boolean) function can be specified as
a truth table or an equivalent sum-of-products Boolean
expression!

Concise alternatives:
•  truth tables are a concise description of the

combinational system’s function.
•  Boolean expressions form an algebra whose

operations are AND (multiplication), OR
(addition), and inversion (overbar).

Argh… I’m tired of word games

6.004 Computation Structures L4: Logic Synthesis, Slide #3

Here’s a Design Approach

1. Write out our functional spec as a
truth table

2. Write down a Boolean expression with
terms covering each ‘1’ in the output:

3. We’ll show how to build a circuit using
this equation in the next two slides.

C B A Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

Y =CBA+CBA+CBA+CBA

This approach will always give us Boolean expressions in a
particular form: SUM-OF-PRODUCTS

6.004 Computation Structures L4: Logic Synthesis, Slide #4

Sum-of-products Building Blocks

INVERTER:

€

A

€

Z = A
A Z

0 1

1 0

AND:

€

A

€

Z = A ⋅ B

€

B

A B Z

0 0 0

0 1 0

1 0 0

1 1 1

OR:

€

A

€

Z = A + B

€

B

A B Z

0 0 0

0 1 1

1 0 1

1 1 1

6.004 Computation Structures L4: Logic Synthesis, Slide #5

Straightforward Synthesis
We can implement

 SUM-OF-PRODUCTS

with just three levels of
logic:

1. Inverters

2. ANDs
3. OR

 *

*assuming gates with an arbitrary number of inputs,
which, as we’ll see, isn’t a good assumption!

Propagation delay --
 No more than 3 gate delays?

-it’s systematic!
-it works!
-it’s easy!
-are we done yet???

Y =CBA+CBA+CBA +CBA

6.004 Computation Structures L4: Logic Synthesis, Slide #6

ANDs and ORs with > 2 Inputs

€

A

Z = A ⋅B ⋅C = (A ⋅B) ⋅C

€

B

€

C

€

A

Z = ((A ⋅B) ⋅C) ⋅D

€

B

€

C

€

D

€

A

Z = (A ⋅B) ⋅ (C ⋅D)

€

B

€

C

€

D

Chain: Propagation delay
increases linearly with number
of inputs

Tree: Propagation delay increases
logarithmically with number of inputs

Replace 2-input AND gates with 2-
input OR gates to create large fan-in
OR gates.

Which one should I use?

6.004 Computation Structures L4: Logic Synthesis, Slide #7

More Building Blocks

NAND (not AND)

€

A

€

Z = A ⋅ B

€

B

A B Z

0 0 1

0 1 1

1 0 1

1 1 0

NOR (not OR)

€

A

€

Z = A + B

€

B

A B Z

0 0 1

0 1 0

1 0 0

1 1 0

XOR (exclusive OR)

€

A

€

Z = A⊕ B

€

B

A B Z

0 0 0

0 1 1

1 0 1

1 1 0

In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so
CMOS gates are naturally inverting. Want to use NANDs and NORs in
CMOS designs… But NAND and NOR operations are not associative, so
wide NAND and NOR gate can’t use a chain or tree strategy. Stay tuned
for more on this!

XOR is very useful when
implementing parity and arithmetic
logic. Also used as a “programmable
inverter”: if A=0, Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with
chains or trees of 2-input XORs.

6.004 Computation Structures L4: Logic Synthesis, Slide #8

Universal Building Blocks

 NANDs and NORs are universal:

 Any logic function can be implemented using only NANDs
(or, equivalently, NORs). Good news for CMOS
technologies!

=

=

=

=

=

=

6.004 Computation Structures L4: Logic Synthesis, Slide #9

CMOS ♥︎ Inverting Logic

AND4:
tPD = 160 ps, size = 20μ2

NAND4 + INV:
tPD = 90 ps, size = 27μ2

2*NAND2 + NOR2:
tPD = 80 ps, size = 30μ2

Demorgan’s
Laws:

A ⋅B = A+B
A+B = A ⋅B

See “The Standard Cell Library” handout in Updates & Handouts

6.004 Computation Structures L4: Logic Synthesis, Slide #10

Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

But for a large number of inputs, the series connections
of too many MOSFETs can lead to very large effective R.
Design note: use trees of smaller devices…

8-input
NAND

8-input
NOR

6.004 Computation Structures L4: Logic Synthesis, Slide #11

CMOS Sum-of-products Implementation

AB=A+B

NAND-NAND

NOR-NOR

C

A

B

Y ≡
C

A

B

Y

AC + AB + BC

≡
C

A

B
Y

AC + AB + BC

C

A

B

Y

C

A

B
Y

AB=A+B
“Pushing Bubbles”

C

A

B
Y

You might think all these extra inverters
would make this structure less attractive.
However, quite the opposite is true.

6.004 Computation Structures L4: Logic Synthesis, Slide #12

Can we implement the same function with fewer gates? Before
trying we’ll add a few more tricks in our bag.

BOOLEAN ALGEBRA:

 OR rules: a + 1 = 1, a + 0 = a, a + a = a

AND rules: a1 = a, a0 = 0, aa = a

Commutative: a + b = b + a, ab = ba

Associative: (a + b) + c = a + (b + c), (ab)c = a(bc)

Distributive: a(b+c) = ab + ac, a + bc = (a+b)(a+c)

Complements:

Absorption:

 Reduction:

DeMorgan’s Law:

a+ a =1, aa = 0
a+ ab = a, a+ ab = a+ b a(a+ b) = a, a(a + b) = ab

ab+ ab = b, (a+ b)(a + b) = b
a + b = ab, ab = a+ b

Logic Simplification

6.004 Computation Structures L4: Logic Synthesis, Slide #13

BACCBAACBABCY +++=

Let’s (again!) simplify

Using the identity

αA+αA =α(A+ A) =α ⋅1=α

BACCBAACBABCY +++=

CBACY +=

BACCBABCY ++=

Can’t he come up
with a new example???

For any expression α and variable A:

Boolean Minimization

Hey… I could write
a program to do

that

6.004 Computation Structures L4: Logic Synthesis, Slide #14

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

�

CA

�

CB

�

BA

C B A Y

0 X 0 0

0 X 1 1

1 0 X 0

1 1 X 1

X 0 0 0

X 1 1 1

One way to reveal the opportunities for a more compact
implementation is to rewrite the truth table using “don’t
cares” (-- or X) to indicate when the value of a particular input is
irrelevant in determining the value of the output.

Truth Tables with “Don’t Cares”

Note: Some input
combinations (e.g.,
000) are matched by
more than one row in
the “don’t care” table.
It would be a bug if all
the matching rows
didn’t specify the
same output value!

6.004 Computation Structures L4: Logic Synthesis, Slide #15

Y =CA+CB+ AB

A
C

B

Y

NOTE: The steady state
behavior of these circuits is
identical. They differ in their
transient behavior.

Y(1)
C(1)

�

Y = C A + CB

A(1)

B(1)

0
0

1

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

�

CA

�

CB

�

BA

The Case for a Non-minimal SOP

A
B
C
Y

That’s what
we call a

“glitch” or
“hazard”

A
B
C
Y

Now it’s
LENIENT!

6.004 Computation Structures L4: Logic Synthesis, Slide #16

It’s cyclic. The left edge is adjacent to the right edge.
(It’s really just a flattened out cube).

C\AB 00 01 11 10

0 0 0 1 1

1 0 1 1 0

000 001

010 011

100 101

110 111

Here’s the layout of a 3-variable K-map
filled in with the values from our truth
table:

K-Map: a truth table arranged so that terms which differ by
exactly one variable are adjacent to one another so we can see
potential reductions easily.

C B A Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Truth Table

Why did he
shade that
row Gray?

Karnaugh Maps: A Geometric Approach

6.004 Computation Structures L4: Logic Synthesis, Slide #17

4-variable K-map F(A,B,C,D):

Again it’s cyclic. The left edge is adjacent to the right edge, and
the top is adjacent to the bottom.

 \AB
 CD\ 00 01 11 10
00 0 1 1 1
01 1 1 1 1
11 1 1 1 1
10 1 0 0 1

Extending K-maps to 4-variable Tables

For functions of 5 or 6 variables, we’d need to use the 3rd
dimension to build a 4x4x4 K-map. But then we’re out
of dimensions…

6.004 Computation Structures L4: Logic Synthesis, Slide #18

An implicant
•  is a rectangular region of the K-map where the function has

the value 1 (i.e., a region that will need to be described by one
or more product terms in the sum-of-products)

• has a width and length that must be a power of 2: 1, 2, 4
•  can overlap other implicants
•  is a prime implicant if it is not completely contained in any

other implicant.

•  can be uniquely identified by a single product term. The
larger the implicant, the smaller the product term.

Finding Implicants

C\AB 00 01 11 10

0 1 0 0 1

1 1 1 0 1

ACC\AB 00 01 11 10

0 0 0 1 1

1 1 0 0 0

ABC AC B

6.004 Computation Structures L4: Logic Synthesis, Slide #19

We want to find all the prime implicants. The right strategy is a
greedy one.

• Find the uncircled prime implicant with the greatest area
– Order: 4x4 ⇒ 2x4 or 4x2 ⇒ 4x1 or 1x4 or 2x2 ⇒ 2x1 or 1x2 ⇒ 1x1
– Overlap is okay

• Circle it
• Repeat until all prime implicants are circled

 \AB
 CD\ 00 01 11 10
00 0 1 1 1
01 1 1 1 1
11 1 1 1 1
10 1 0 0 1

Finding Prime Implicants

6.004 Computation Structures L4: Logic Synthesis, Slide #20

Picking just enough prime implicants to cover all the 1’s in the
KMap, combine equations to form minimal sum-of-products.

C\AB 00 01 11 10

0 0 0 1 1

1 0 1 1 0

Write Down Equations

We’re done!

 \AB
 CD\ 00 01 11 10
00 0 1 1 1
01 1 1 1 1
11 1 1 1 1
10 1 0 0 1

Y = AC +BC

Y = D+BC + AC +BC
 \AB
 CD\ 00 01 11 10
00 0 1 1 1
01 1 1 1 1
11 1 1 1 1
10 1 0 0 1

Y = D+BC + AB+BC

Minimal SOP is
not necessarily
unique!

6.004 Computation Structures L4: Logic Synthesis, Slide #21

C\AB 00 01 11 10

0 0 0 1 1

1 0 1 1 0

Prime Implicants, Glitches & Leniency

�

Y = C A + CBC
A

B

A
B
C
Y

This circuit produces a
glitch on Y when A=1, B=1,
C: 1→0

To make the circuit lenient, include product terms for ALL prime
implicants.

Y =CA+CB+ AB

A
C

B

6.004 Computation Structures L4: Logic Synthesis, Slide #22

D0

D1

S

… and implemented as a
tree of smaller MUXes:

MUXes can be generalized
to 2k data inputs and k
select inputs …

2-input Multiplexer

Y
S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

We’ve Been Designing a Mux

6.004 Computation Structures L4: Logic Synthesis, Slide #23

Consider implementing some arbitrary Boolean function,
F(A,B,C) ... using a MULTIPLEXER as the only circuit element:

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

Systematic Implementation Strategies

6.004 Computation Structures L4: Logic Synthesis, Slide #24

MUX
Logic

A B

Fn(A,B)

Generalizing:
In theory, we can build any 1-output
combinational logic block with multiplexers.

For an N-input function we need a _____ input
mux.

AB Fn(A,B)

00 0
01 1
10 1
11 0

2N

Muxes are universal!

In future
 technologies muxes

might be the
“natural gate”.

0
1
0
1
S

1
0

A

Y A Y
=

0
1
0
1
S

0
B

A

Y

0
1
0
1
S

B
1

A

Y

=

=

A
B

Y

A
B

Y

Is this practical for BIG truth tables?
 How about 10-input function? 20-input?

Synthesis By Table Lookup

0
1
0
1
S

B
B

A

Y
What
does that
one do?

6.004 Computation Structures L4: Logic Synthesis, Slide #25

k

D0
D1

DN-1

DECODER:

•  k SELECT inputs,

•  N = 2k DATA OUTPUTs.

Select inputs choose one of the
Dj to assert HIGH, all others
will be LOW.

NOW, we are well on our way to building a
general purpose table-lookup device.

We can build a 2-dimensional ARRAY of
decoders and selectors as follows ...

Have I
mentioned
that HIGH

is a synonym
 for ‘1’ and
LOW means

the same
as ‘0’

A New Combinational Device

6.004 Computation Structures L4: Logic Synthesis, Slide #26

COUT S

000

001

010

011

100

101

110

111
A
B
CIN

A B Ci S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

FA

A B

Co Ci

S

Full Adder

For K inputs,
decoder produces 2K
signals, only 1 of
which is asserted at
a time -- think of it
as one signal for
each possible
product term.

Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

Shared
decoder

One column
for each
output

Read-only Memory (ROM)

6.004 Computation Structures L4: Logic Synthesis, Slide #27

COUT S

000

001

010

011

100

101

110

111
A
B
CIN

A B Ci S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

FA

A B

Co Ci

S

Full Adder

For K inputs,
decoder produces 2K
signals, only 1 of
which is asserted at
a time -- think of it
as one signal for
each possible
product term.

Each column is large fan-in “NOR.” Note
location of pulldowns correspond to a
“1” output in the truth table!

Shared
decoder

One column
for each
output

Read-only Memory (ROM)

0
0
1

1

0 1

0 1

6.004 Computation Structures L4: Logic Synthesis, Slide #28

FA

A B

Co Ci

S

Full Adder LONG LINES slow down propagation
times…

The best way to improve this is to build
square arrays, using some inputs to
drive output selectors (MUXes):

00

01

10

11

0 1 0 1
A
B
CIN

COUT S

2D Addressing: Standard for ROMs, RAMs, logic arrays…

Read-only Memory (ROM)

A B Ci S Co

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

6.004 Computation Structures L4: Logic Synthesis, Slide #29

ROMs ignore the structure of combinational functions ...
• Size, layout, and design are independent of function
• Any Truth table can be “programmed” by
 minor reconfiguration:

- Metal layer (masked ROMs)
- Fuses (Field-programmable PROMs)
- Charge on floating gates (EPROMs)
... etc.

Model: LOOK UP value of function in truth table...

Inputs: “ADDRESS” of a T.T. entry
ROM SIZE = # TT entries...
... for an N-input boolean function, size ≅ __________

2N x #outputs

ROMs tend to
generate “glitchy”
outputs. WHY?

Logic According to ROMs

6.004 Computation Structures L4: Logic Synthesis, Slide #30

•  Sum of products
•  Any function that can be specified by a truth table or,

equivalently, in terms of AND/OR/NOT (Boolean expression)

•  “3-level” implementation of any logic function

•  Limitations on number of inputs (fan-in) increases depth

•  SOP implementation methods

•  NAND-NAND, NOR-NOR

•  Muxes used to build table-lookup
implementations
•  Easy to change implemented function -- just change

constants

•  ROMs
•  Decoder logic generates all possible product terms

•  Selector logic determines which terms are ORed together

Summary

