
Lecture Notes for

The staff of M.I.T. 6.004

Computation Structures is an introductory course about the design and implementation of
digital systems, emphasizing structural principles common to a wide range of
technologies.

Starting at the device level, the course develops a hierarchical set of building blocks —
logic gates, combinational and sequential circuits, finite-state machines, processors and
finally complete systems. Both hardware and software mechanisms are explored through
a series of design examples. The problem sets and lab exercises are intended to give
students hands-on experience in designing digital systems; students complete the gate-
level design for a RISC processor during the lab exercises.

For additional material (textbook-style notes, lecture videos, worksheets, hands-on labs)
please visit

http://computationstructures.org

Copyright © 2015-2017 M.I.T. Department of Electrical Engineering and Computer Science

Page 1

Table of Contents

Digital Circuits

L01. Basics of Information ... 3
L02. The Digital Abstraction ..31
L03. CMOS Technology ...53
L04. Combinational Logic ..76
L05. Sequential Logic ... 110
L06. Finite State Machines ... 134
L07. Performance Measures .. 167
L08. Design Tradeoffs .. 194

Programmable Architectures

L09. Instruction Set Architectures ... 220
L10a. Assembly Language .. 257
L10b. Models of Computation .. 276
L11. Compilers ... 290
L12. Procedures & Stacks ... 324
L13. Building the Beta .. 349
L14. The Memory Hierarchy .. 381
L15. Pipelining the Beta .. 427

Computer Organization

L16. Virtual Memory .. 479
L17. Virtualizing the Processor ... 512
L18. Devices & Interrupts ... 541
L19. Concurrency & Synchronization 570
L20. System-level Communication 598
L21. Parallel Processing .. 626
L22. Wrap-up ... 657

Page 2

L01: Basics of Information

1. What is Information?
2. Quantifying Information
3. Information Conveyed by Data
4. Example: Information Content
5. Probability and Information Content
6. Entropy
7. Meaning of Entropy
8. Encodings
9. Encodings as Binary Trees

10. Fixed-length Encodings
11. Encoding Postive Integers
12. Hexadecimal Notation
13. Encoding Signed Integers
14. Two’s Complement Encoding
15. More Two’s Complement
16. Variable-length Encodings
17. Example: Variable-length Encoding
18. Huffman’s Algorithm
19. Can We Do Better?
20. Error Detection
21. Hamming Distance
22. Hamming Distance and Bit Errors
23. Single-bit Error Detection
24. Parity Check
25. Detecting Multi-bit Errors
26. Error Correction
27. Summary

In order to build circuits that manipulate, transmit or store information, we are going to need some
engineering tools to help us determine if we’re choosing a good representation for the information —
that’s the subject of this chapter. We’ll study different ways of encoding information as bits and learn
the mathematics that help us determine if our encoding is a good one. We’ll also look into what we can
do if our representation gets corrupted by errors — it would be nice to detect that something bad has
happened and possibly even correct the problem.

Page 3

Let’s start by asking “what is information?” From our engineering perspective, we’ll define
information as data communicated or received that resolves uncertainty about a particular fact or
circumstance. In other words, after receiving the data we’ll know more about that particular fact or
circumstance. The greater the uncertainty resolved by the data, the more information the data has
conveyed.

Let’s look at an example: a card has been chosen at random from a normal deck of 52 playing cards.
Without any data about the chosen card, there are 52 possibilities for the type of the card. Now suppose
you receive one of the following pieces of data about the choice.

You learn the suit of the card is Heart. This narrows the choice to down to one of 13 cards.
You learn instead the card is not the Ace of Spades. This still leaves 51 cards that it might be.
You learn instead that the card is a face card, that is, a Jack, Queen or King. So the choice is one
of 12 cards.
You learn instead that the card is the suicide king. This is actually a particular card: the King of
Hearts where the king is sticking the sword through his head. No uncertainty here! We know
exactly what the choice was.

Which of the possible pieces of data conveys the most information? In other words, which data
resolves the most uncertainty about the chosen card? Similarly, which data conveys the least amount of
information? We’ll answer these questions in the next section.

Page 4

Mathematicians like to model uncertainty about a particular circumstance by introducing the concept of
a random variable. For our application, we’ll always be dealing with circumstances where there are a
finite number N of distinct choices, so we’ll be using a discrete random variable that can take on one
of the N possible values from the set . The probability that will take on the value

 is given by the probability , the value by probability , and so on. The smaller the probability,
the more uncertain it is that will take on that particular value.

Claude Shannon, in his seminal work on the theory of information, defined the information received
when learning that had taken on the value as

Note that the uncertainty of a choice is inversely proportional its probability, so the term inside of the
log is basically the uncertainty of that particular choice. We use the to measure the magnitude of
the uncertainty in bits where a bit is a quantity that can take on the value 0 or 1. Think of the
information content as the number of bits we would require to encode this choice.

X
{x1, x2, . . . , xN } X

x1 p1 x2 p2

X

X xi

I(xi) = log2 bits. (1)
1

pi

log2

Page 5

Suppose the data we receive doesn’t resolve all the uncertainty. For example, when earlier we received
the data that the card was a Heart: some of uncertainty has been resolved since we know more about
the card than we did before the receiving the data, but we don’t yet know the exact card, so some
uncertainty still remains. We can slightly modify Equation (1) as follows

In our example, the probability of learning that a card chosen randomly from a 52-card deck is a Heart
is , the number of Hearts over the total number of choices. So the information content is
computed as

This example is one we encounter often: we receive partial information about equally-probable
choices (each choice has probability) that narrows the number of choices down to . The
probability of receiving such information is , so the information content is

I(data) = log2 bits. (2)
1

pdata

13/52 = 0.25

I(heart) = log2 = log2 = 2 bits.
1

pheart

1

0.25

N
1/N M

M(1/N)

I(N choices → M choices) = log2 = log2 bits. (3)
1

M(1/N)

N

M

Page 6

Let’s look at some examples.

If we learn the result (heads or tails) of a flip of a fair coin, we go from 2 choices to a single
choice. So, using our equation, the information received is bit. This makes
sense: it would take us one bit to encode which of the two possibilities actually happened, say,
“1” for heads and “0” for tails.
Reviewing the example from earlier, learning that a card drawn from a fresh deck is a Heart
gives us bits of information. Again this makes sense: it would take us two
bits to encode which of the four possible card suits had turned up.
Finally consider what information we get from rolling two dice, one red and one green. Each die
has six faces, so there are 36 possible combinations. Once we learn the exact outcome of the
roll, we’ve received bits of information.

Hmm. What do those fractional bits mean? Our digital system only deals in whole bits! So to encode a
single outcome, we’d need to use 6 bits. But suppose we wanted to record the outcome of 10
successive rolls. At 6 bits/roll we would need a total of 60 bits. What this formula is telling us is that
we would need not 60 bits, but only 52 bits to unambiguously encode the results. Whether we can
come up with an encoding that achieves this lower bound is an interesting question that we’ll take up
later in this chapter.

log2(2/1) = 1

log2(52/13) = 2

log2(36/1) = 5.17

Page 7

To wrap up, let’s return to our initial example. Here’s a table showing the different choices for the data
received, along with the probability of that event and the computed information content.

The results line up nicely with our intuition: the more uncertainty is resolved by the data, the more
information we have received. We can use Equation (2) to provide an exact answer to the questions at
the end of the first slide. We get the most information when we learn that the card is the suicide King
and the least information when we learn that the card is not the Ace of Spades.

Page 8

In the next section we’re going to start our discussion on how to actually engineer the bit encodings
we’ll use to encode information, but first we’ll need a way to evaluate the efficacy of an encoding. The
entropy, , of a discrete random variable is average amount of information received when
learning the value of :

Shannon followed Boltzmann’s lead in using , the upper-case variant of the Greek letter (eta), for
“entropy” since was already used for “expected value,” the mathematicians’ name for “average.” We
compute the expected value in the usual way: we take the weighted sum, where the amount of
information received when learning of a particular choice , is weighted by the probability
of that choice actually happening.

Here’s an example. We have a random variable that can take on one of four values . The
probabilities of each choice are shown in the table, along with the associated information content.

Now we’ll compute the entropy using Equation (4):

This is telling us that a clever encoding scheme should, on the average, be able to do better than simply
encoding each symbol using 2 bits to represent which of the four possible values is next. Food for
thought! We’ll discuss this further in our discussion of variable-length encodings.

H(X) X
X

H(X) = E(I(X)) = ∑
i

pi log2 (4)
1

pi

H η
E

i log2(1/pi)

{A, B, C, D}

H(X) = (1/3)(1.58) + (1/2)(1) + (1/12)(3.58) + (1/12)(3.58)

= 1.626 bits.

Page 9

So, what is the entropy telling us? Suppose we have a sequence of data describing a sequence of values
of the random variable .

If, on the average, we use less than bits transmit each piece of data in the sequence, we will not
be sending enough information to resolve the uncertainty about the values. In other words, the entropy
is a lower bound on the number of bits we need to transmit. Getting less than this number of bits
wouldn’t be good if the goal was to unambiguously describe the sequence of values — we’d have
failed at our job!

On the other hand, if we send, on the average, more than bits to describe the sequence of values,
we will not be making the most effective use of our resources, since the same information might have
been able to be represented with fewer bits. This okay, but perhaps with some insights we could do
better.

Finally, if we send on the average exactly bits then we’d have the perfect encoding. Alas,
perfection is, as always, a tough goal, so most of the time we’ll have to settle for getting close.

X

H(X)

H(X)

H(X)

Page 10

Next we turn our attention to encoding data as sequences of 0’s and 1’s, i.e., a string of bits. An
encoding is an unambiguous mapping between bit strings and the members of the set of data to be
encoded.

For example, suppose we have a set of four symbols and we want to use bit strings to
encode messages constructed of these symbols, e.g., “ABBA.” If we choose to encode the message one
character at a time, our encoding would assign a unique bit string to each symbol. The figure above
shows some trial encodings.

Since we have four symbols, we might choose a unique two-bit string for each: “A” could be “00,” B =
“01,” C = “10,” and D = “11,” as shown in the first encoding in the figure above. This is called a fixed-
length encoding since the bit strings used to represent the symbols all have the same length. The
encoding for the message “ABBA” would be “00 01 01 00”. And we can run the process backwards:
given a bit string and the encoding key, we can look up the next bits in the bit string, using the key to
determine the symbol they represent. “00” would be decoded as “A,” “01” as B and so on.

As shown in the second encoding in the table, we can use a variable-length encoding, where the
symbols are encoded using bit strings of different lengths. here “A” is encoded as “01,” “B” as “1”,
“C” as “000” and “D” = “001.”. “ABBA” would be encoded as “01 1 1 01.” We’ll see that carefully
constructed variable-length encodings are useful for the efficient encoding of messages where the
symbols occur with different probabilities.

Finally consider the third encoding in the table. We have to be careful that the encoding is
unambiguous! Using this encoding, “ABBA” would be encoded as “0 1 1 0.” Looking good since that
encoding is shorter than either of the previous two encodings. Now let’s try to decode this bit string —
oops. Using the encoding key, we can unfortunately arrive at several decodings: “ABBA” of course,
but also “ADA” or “ABC” depending on how we group the bits. This attempt at specifying an
encoding has failed since the message cannot be interpreted unambiguously.

{A, B, C, D}

Page 11

Graphically we can represent an unambiguous encoding as a binary tree, labeling the branches from
each tree node with “0” and “1,” placing the symbols to be encoded as the leaves of the tree. If you
build a binary tree for a proposed encoding and find that there are no symbols labeling interior nodes
and exactly one symbol at each leaf, then your encoding is good to go!

For example, consider the encoding shown on the left of the figure. It just takes a second to draw the
corresponding binary tree. The symbol “B” is distance 1 from the root of the tree, along an arc labeled
“0”. “A” is distance two, and “C” and “D” are distance 3.

If we receive an encoded message, e.g., “01111,” we can decode it by using successive bits of the
encoding to identify a path from the root of tree, descending step-by-step until we come to leaf, then
repeating the process starting at the root again, until all the bits in the encoded message have been
consumed. So the message from the sheep is decoded as follows:

“0” takes us from the root to the leaf “B”, which is our first decoded symbol.
Then “1-1” takes us to “Ak” and
the next “1-1” results in a second “A.”

The final decoded message, “BAA,” is not totally unexpected, at least from an American sheep.

Page 12

If the symbols we are trying to encode occur with equal probability (or if we have no a priori reason to
believe otherwise), then we’ll use a fixed-length encoding, where all leaves in the encoding’s binary
tree are the same distance from the root. Fixed-length encodings have the advantage of supporting
random access, where we can figure out the Nth symbol of the message by simply skipping over the
required number of bits. For example, in a message encoded using the fixed-length code shown here, if
we wanted to determine the third symbol in the encoded message, we would skip the 4 bits used to
encode the first two symbols and start decoding with the 5th bit of message.

Mr. Blue is telling us about the entropy for random variables that have N equally-probable outcomes.
In this case, each element of the sum in the entropy formula is simply , and, since
there are N elements in the sequence, the resulting entropy is just .

Let’s look at some simple examples. In binary-coded decimal, each digit of a decimal number is
encoded separately. Since there are 10 different decimal digits, we’ll need to use a 4-bit code to
represent the 10 possible choices. The associated entropy is , which is 3.322 bits. We can see
that our chosen encoding is inefficient in the sense that we’d use more than the minimum number of
bits necessary to encode, say, a number with 1000 decimal digits: our encoding would use 4000 bits,
although the entropy suggests we *might* be able to find a shorter encoding, say, 3400 bits, for
messages of length 1000.

Another common encoding is ASCII, the code used to represent English text in computing and
communication. ASCII has 94 printing characters, so the associated entropy is or 6.555 bits,
so we would use 7 bits in our fixed-length encoding for each character.

(1/N) ∗ log2(N)
log2(N)

log2(10)

log2(94)

Page 13

One of the most important encodings is the one we use to represent numbers. Let’s start by thinking
about a representation for unsigned integers, numbers starting at 0 and counting up from there.
Drawing on our experience with representing decimal numbers, i.e., representing numbers in base 10
using the 10 decimal digits, our binary representation of numbers will use a base 2 representation using
the two binary digits.

The formula for converting an N-bit binary representation of a numeric value into the corresponding
integer is shown below — just multiply each binary digit by its corresponding weight in the base-2
representation. For example, here’s a 12-bit binary number, with the weight of each binary digit shown
above. We can compute its value as plus plus , and so on. Keeping only the non-
zero terms and expanding the powers-of-two gives us the sum

1024 + 512 + 256 + 128 + 64 + 16

which, expressed in base-10, sums to the number 2000.

With this N-bit representation, the smallest number that can be represented is 0 (when all the binary
digits are 0) and the largest number is (when all the binary digits are 1). Many digital systems
are designed to support operations on binary-encoded numbers of some fixed size, e.g., choosing a 32-
bit or a 64-bit representation, which means that they would need multiple operations when dealing with
numbers too large to be represented as a single 32-bit or 64-bit binary string.

0 ∗ 211 1 ∗ 210 1 ∗ 29

2N − 1

Page 14

Long strings of binary digits are tedious and error-prone to transcribe, so let’s find a more convenient
notation, ideally one where it will be easy to recover the original bit string without too many
calculations. A good choice is to use a representation based on a radix that’s some higher power of 2,
so each digit in our representation corresponds to some short contiguous string of binary bits. A
popular choice these days is a radix-16 representation, called hexadecimal or “hex” for short, where
each group of 4 binary digits is represented using a single hex digit.

Since there are 16 possible combinations of 4 binary bits, we’ll need 16 hexadecimal digits: we’ll
borrow the ten digits “0” through “9” from the decimal representation, and then simply use the first six
letters of the alphabet, “A” through “F” for the remaining digits. The translation between 4-bit binary
and hexadecimal is shown in the table to the left below.

To convert a binary number to hex, group the binary digits into sets of 4, starting with the least-
significant bit (that’s the bit with weight). Then use the table to convert each 4-bit pattern into the
corresponding hex digit: “0000” is the hex digit “0”, “1101” is the hex digit “D,” and “0111” is the hex
digit “7”. The resulting hex representation is “7D0.” To prevent any confusion, we’ll use a special
prefix “0x” to indicate when a number is being shown in hex, so we’d write “0x7D0” as the hex
representation for the binary number “0111 1101 0000.” This notation convention is used by many
programming languages for entering binary bit strings.

20

Page 15

Our final challenge is figuring out how to represent signed integers, e.g., what should be our
representation for the number -2000?

In decimal notation, the convention is to precede the number with a “+” or “-” to indicate whether it’s
positive or negative, usually omitting the “+” to simplify the notation for positive numbers. We could
adopt a similar notation — called signed magnitude — in binary, by allocating a separate bit at the
front of the binary string to indicate the sign, say “0” for positive numbers and “1” for negative
numbers. So the signed-magnitude representation for -2000 would be an initial “1” to indicate a
negative number, followed by the representation for 2000 (as described on the previous two slides).

However there are some complications in using a signed-magnitude representation. There are two
possible binary representations for zero: “+0” and “-0”. This makes the encoding slightly inefficient
but, more importantly, the circuitry for doing addition of signed-magnitude numbers is different than
the circuitry for doing subtraction. Of course, we’re used to that — in elementary school we learned
one technique for addition and another for subtraction.

Page 16

To keep the circuitry simple, most modern digital systems use the two’s complement binary
representation for signed integers. In this representation, the high-order bit of an N-bit two’s
complement number has a negative weight, as shown in the figure. Thus all negative numbers have a 1
in the high-order bit and, in that sense, the high-order bit is serving as the sign bit — if it’s 1, the
represented number is negative.

The most negative N-bit number has a 1-bit in the high-order position, representing the value .
The most positive N-bit number has a 0 in the negative-weight high-order bit and 1’s for all the
positive-weight bits, representing the value . This gives us the range of possible values, e.g.,
in an 8-bit two’s complement representation, the most negative number is and the most
positive number is .

If all N bits are 1, think of that as the sum of the most negative number with the most positive number,
i.e., , which equals -1. And, of course, if all N bits are 0, that’s the unique
representation of 0.

−2N−1

2N−1 − 1
−27 = −128

27 − 1 = 127

−2N−1 + 2N−1 − 1

Page 17

Let’s see what happens when we add the N-bit values for -1 and 1, keeping an N-bit answer. In the
rightmost column, 1 plus 1 is 0, carry the 1. In the second column, the carry of 1 plus 1 plus 0 is 0,
carry the 1. And so on — the result is all zero’s, the representation for 0... perfect! Notice that we just
used ordinary binary addition, even when one or both of the operands are negative. Two’s complement
is perfect for N-bit arithmetic!

To compute B - A, we can just use addition and compute B + (-A). So now we just need to figure out
the two’s complement representation for -A, given the two’s complement representation for A. Well,
we know that A + (-A) = 0 and using the example above, we can rewrite 0 as 1 + (-1). Reorganizing
terms, we see that -A equals 1 plus the quantity (-1) - A. As we saw above, the two’s complement
representation for -1 is all 1-bits, so we can write that subtraction as all 1’s minus the individual bits of
A: , , ... up to . If a particular bit is 0, then and if is 1, then
. So in each column, the result is the bitwise complement of , which we’ll write using the C-
language bitwise complement operator tilde. So we see that -A equals the bitwise complement of A
plus 1. Ta-dah!

To practice your skill with two’s complement, try your hand at the following exercises. All you need to
remember is how to do binary addition and two’s complement negation (which is bitwise complement
and add 1).

A0 A1 AN−1 Ai 1 − Ai = 1 Ai 1 − Ai = 0
Ai

Page 18

Fixed-length encodings work well when all the possible choices have the same information content,
i.e., all the choices have an equal probability of occurring. If those choices don’t have the same
information content, we can do better. To see how, consider the expected length of an encoding,
computed by considering each to be encoded, and weighting the length of its encoding by , the
probability of its occurrence. By “doing better” we mean that we can find encodings that have a shorter
expected length than a fixed-length encoding. Ideally we’d like the expected length of the encoding for
the to match the entropy H(X), which is the expected information content.

We know that if has a higher probability (i.e., a larger), that is has a smaller information content,
so we’d like to use shorter encodings. If has a lower probability, then we’d use a longer encoding.

So we’ll be constructing encodings where the may have different length codes — we call these
variable-length encodings.

xi pi

xi

xi pi

xi

xi

Page 19

Here’s an example we’ve seen before. There are four possible choices to encode (A, B, C, and D), each
with the specified probability. The table shows a suggested encoding where we’ve followed the advice
from the previous slide: high-probability choices that convey little information (e.g., B) are given
shorter encodings, while low-probability choices that convey more information (e.g., C or D) are given
longer encodings.

Let’s diagram this encoding as a binary tree. Since the symbols all appear as the leaves of the tree, we
can see that the encoding is unambiguous. Let’s try decoding the following encoded data. We’ll use the
tree as follows: start at the root of the tree and use bits from the encoded data to traverse the tree as
directed, stopping when we reach a leaf.

Starting at the root, the first encoded bit is 0, which takes us down the left branch to the leaf B. So B is
the first symbol of the decoded data. Starting at the root again, 1 takes us down the right branch, 0 the
left branch from there, and 0 the left branch below that, arriving at the leaf C, the second symbol of the
decoded data. Continuing on: 11 gives us A, 0 decodes as B, 11 gives us A again, and, finally, 101
gives us D. The entire decoded message is “BCABAD.”

The expected length of this encoding is easy to compute: the length of A’s encoding (2 bits) times its
probability (1/3), plus the length of B’s encoding (1 bit) times 1/2, plus the contributions for C and D,
each 3 times 1/12. This adds up to 1 and 2/3 bits.

How did we do? If we had used a fixed-length encoding for our four possible symbols, we’d have
needed 2 bits each, so we’d need 2000 bits to encode 1000 symbols. Using our variable-length
encoding, the expected length for 1000 symbols would be 1667. The lower bound on the number of
bits needed to encode 1000 symbols is 1000 times the entropy H(X), which is 1626 bits, so the
variable-length code got us closer to our goal, but not quite all the way there.

Could another variable-length encoding have done better? In general, it would be nice to have a
systematic way to generate the best-possible variable-length code, and that’s the subject of the next
video.

Page 20

Given a set of symbols and their probabilities, Huffman’s Algorithm tells us how to construct an
optimal variable-length encoding. By “optimal” we mean that, assuming we’re encoding each symbol
one-at-a-time, no other variable-length code will have a shorter expected length.

The algorithm builds the binary tree for the encoding from the bottom up. Start by choosing the two
symbols with the smallest probability (which means they have highest information content and should
have the longest encoding). If anywhere along the way, two symbols have the same probability, simply
choose one arbitrarily. In our running example, the two symbols with the lowest probability are C and
D.

Combine the symbols as a binary subtree, with one branch labeled “0” and the other “1.” It doesn’t
matter which labels go with which branch. Remove C and D from our list of symbols, and replace them
with the newly constructed subtree, whose root has the associated probability of 1/6, the sum of the
probabilities of its two branches.

Now continue, at each step choosing the two symbols and/or subtrees with the lowest probabilities,
combining the choices into a new subtree. At this point in our example, the symbol A has the
probability 1/3, the symbol B the probability 1/2 and the C/D subtree probability 1/6. So we’ll combine
A with the C/D subtree.

On the final step we only have two choices left: B and the A/C/D subtree, which we combine in a new
subtree, whose root then becomes the root of the tree representing the optimal variable-length code.
Happily, this is the code we’ve been using all along!

As mentioned above, we can produce a number of different variable-length codes by swapping the “0”
and “1” labels on any of the subtree branches. But all those encodings would have the same expected
length, which is determined by the distance of each symbol from the root of the tree, not the labels
along the path from root to leaf. So all these different encodings are equivalent in terms of their
efficiency.

Page 21

“Optimal” sounds pretty good! Does that mean we can’t do any better? Well, not by encoding symbols
one-at-a-time. But if we want to encode long sequences of symbols, we can reduce the expected length
of the encoding by working with, say, pairs of symbols instead of only single symbols. The table below
shows the probability of pairs of symbols from our example. If we use Huffman’s Algorithm to build
the optimal variable-length code using these probabilities, it turns out the expected length when
encoding pairs is 1.646 bits/symbol. This is a small improvement on the 1.667 bits/symbols when
encoding each symbol individually. And we’d do even better if we encoded sequences of length 3, and
so on.

Modern file compression algorithms use an adaptive algorithm to determine on-the-fly which
sequences occur frequently and hence should have short encodings. They work quite well when the
data has many repeating sequences, e.g., natural language data where some letter combinations or even
whole words occur again and again. Compression can achieve dramatic reductions from the original
file size. If you’d like to learn more, look up “LZW” on Wikipedia to read the Lempel-Ziv-Welch data
compression algorithm.

Page 22

Now let’s think a bit about what happens if there’s an error and one or more of the bits in our encoded
data gets corrupted. We’ll focus on single-bit errors, but much of what we discuss can be generalized to
multi-bit errors.

For example, consider encoding the results from some unpredictable event, e.g., flipping a fair coin.
There are two outcomes: heads, encoded as, say, 0, and tails encoded as 1. Now suppose some error
occurs during processing, e.g., the data is corrupted while being transmitted from Bob to Alice: Bob
intended to send the message heads, but the 0 was corrupted and become a 1 during transmission, so
Alice receives 1, which she interprets as tails. Note that Alice can’t distinguish between receiving a
message of heads that has an error and an uncorrupted message of tails — she cannot detect that an
error has occurred. So this simple encoding doesn’t work very well if there’s the possibility of single-
bit errors.

Page 23

To help with our discussion, we’ll introduce the notion of Hamming distance, defined as the number of
positions in which the corresponding digits differ in two encodings of the same length. For example,
here are two 7-bit encodings, which differ in their third and fifth positions, so the Hamming distance
between the encodings is 2. If someone tells us the Hamming distance of two encodings is 0, then the
two encodings are identical. Hamming distance is a handy tool for measuring how to encodings differ.

Page 24

How does this help us think about single-bit errors? A single-bit error changes exactly one of the bits
of an encoding, so the Hamming distance between a valid binary code word and the same code word
with a single-bit error is 1.

The difficulty with our simple encoding is that the two valid code words (“0” and “1”) also have a
Hamming distance of 1. So a single-bit error changes one valid code word into another valid code
word. We’ll show this graphically, using an arrow to indicate that two encodings differ by a single bit,
i.e., that the Hamming distance between the encodings is 1.

The real issue here is that when Alice receives a 1, she can’t distinguish between an uncorrupted
encoding of tails and a corrupted encoding of heads — she can’t detect that an error occurred. Let’s
figure how to solve her problem!

Page 25

The insight is to come up with a set of valid code words such that a single-bit error does NOT produce
another valid code word. What we need are code words that differ by at least two bits, i.e., we want the
minimum Hamming distance between any two code words to be at least 2.

If we have a set of code words where the minimum Hamming distance is 1, we can generate the set we
want by adding a parity bit to each of the original code words. There’s even parity and odd parity —
using even parity, the additional parity bit is chosen so that the total number of 1 bits in the new code
word are even.

For example, our original encoding for heads was 0, adding an even parity bit gives us 00. Adding an
even parity bit to our original encoding for tails gives us 11. The minimum Hamming distance between
code words has increased from 1 to 2.

Page 26

How does this help? Consider what happens when there’s a single-bit error: 00 would be corrupted to
01 or 10, neither of which is a valid code word — aha! we can detect that a single-bit error has
occurred. Similarly single-bit errors for 11 would also be detected. Note that the valid code words 00
and 11 both have an even number of 1-bits, but that the corrupted code words 01 or 10 have an odd
number of 1-bits. We say that corrupted code words have a parity error.

It’s easy to perform a parity check: simply count the number of 1s in the code word. If it’s even, a
single-bit error has NOT occurred; if it’s odd, a single-bit error HAS occurred. We’ll see in a couple of
chapters that the Boolean function exclusive-or can be used to perform parity checks.

Note that parity won’t help us if there’s an even number of bit errors, where a corrupted code word
would have an even number of 1-bits and hence appear to be okay. Parity is useful for detecting single-
bit errors; we’ll need a more sophisticated encoding to detect more errors.

Page 27

In general, to detect some number of errors, we need a minimum Hamming distance of
between code words. We can see this graphically below which shows how errors can corrupt the valid
code words 000 and 111, which have a Hamming distance of 3. In theory this means we should be able
to detect up to 2-bit errors.

Each arrow represents a single-bit error and we can see from the diagram that following any path of
length 2 from either 000 or 111 doesn’t get us to the other valid code word. In other words, assuming
we start with either 000 or 111, we can detect the occurrence of up to 2 errors.

Basically our error detection scheme relies on choosing code words far enough apart, as measured by
Hamming distance, so that errors can’t corrupt one valid code word so that it looks like another valid
code word.

E E + 1

E

Page 28

Is there any chance we can not only detect a single-bit error but also correct the error to recover the
original data? Sure! Here’s how.

By increasing the Hamming distance between valid code words to 3, we guarantee that the sets of code
words produced by single-bit errors don’t overlap. The set of code words produced by corrupting 000
(100, 010, or 001) has no code words in common with the set of code words produced by corrupting
111 (110, 101, or 011). Assuming that at most one error occurred, we can deduce the original code
word from whatever code word we receive. For example if we receive 001, we deduce that the original
code word was 000 and there has been a single-bit error.

Again we can generalize this insight: if we want to correct up to errors, the minimum Hamming
distance between valid code words must be at least . For example, to correct single-bit errors
we need valid code words with a minimum Hamming distance of 3.

Coding theory is a research area devoted to developing algorithms to generate code words that have the
necessary error detection and correction properties. You can take entire courses on this topic! But we’ll
stop here with our basic insights: by choosing code words far enough apart (as measured by Hamming
distance) we can ensure that we can detect and even correct errors that have corrupted our encoded
data. Pretty neat!

E
2E + 1

Page 29

Page 30

L02: The Digital Abstraction

1. Encoding Information
2. Electricity to the Rescue
3. Representing Information with Voltage
4. Using Voltages to Encode a Picture
5. Information Processing = Computation
6. Let’s Build a System!
7. Why Did Our System Fail?
8. The Digital Abstraction
9. Using Voltages Digitally

10. Combinational Devices
11. A Combinational Digital System
12. Is This a Combination Device?
13. Dealing With Noise
14. Where Does Noise Come From?
15. Noise Margins
16. Voltage Transfer Characteristic
17. VTC Deductions
18. VTC Example
19. Summary

In the previous lecture, we discussed how to encode information as sequences of bits. In this lecture,
we turn our attention to finding a useful physical representation for bits, our first step in building
devices that can process information.

Page 31

So, what makes a good bit, i.e., what properties do we want our physical representation of bits to have?

Well, we’ll want a lot of them. We expect to carry billions of bits around with us, e.g., music files. And
we expect to have access to trillions of additional bits on the web for news, entertainment, social
interactions, commerce — the list goes on and on. So we want bits to be small and inexpensive.

Mother Nature has a suggestion: the chemical encoding embodied in DNA, where sequences of the
nucleotides Adenine, Thymine, Guanine and Cytosine form codons that encode genetic information
that serve as the blueprint for living organisms. The molecular scale meets our size requirements and
there’s active research underway on how to use the chemistry of life to perform interesting
computations on a massive scale.

We’d certainly like our bits to be stable over long periods of time — once a 0, always a 0! The Rosetta
Stone, shown here as part of its original tablet containing a decree from the Egyptian King Ptolemy V,
was created in 196 BC and encoded the information needed for archeologists to start reliably
deciphering Egyptian hieroglyphics almost 2000 years later. But, the very property that makes stone
engravings a stable representation of information makes it difficult to manipulate the information.

Which brings us to the final item on our shopping list: we’d like our representation of bits to make it
easy to quickly access, transform, combine, transmit and store the information they encode.

Page 32

Assuming we don’t want to carry around buckets of gooey DNA or stone chisels, how should we
represent bits?

With some engineering we can represent information using the electrical phenomenon associated with
charged particles. The presence of charged particles creates differences in electrical potential energy we
can measure as voltages, and the flow of charged particles can be measured as currents. We can also
encode information using the phase and frequency of electromagnetic fields associated with charged
particles — these latter two choices form the basis for wireless communication. Which electrical
phenomenon is the best choice depends on the intended application.

In this course, we’ll use voltages to represent bits. For example, we might choose 0V to represent a 0-
bit and 1V to represent a 1-bit. To represent sequences of bits we can use multiple voltage
measurements, either from many different wires, or as a sequence of voltages over time on a single
wire.

A representation using voltages has many advantages: electrical outlets provide an inexpensive and
mostly reliable source of electricity and, for mobile applications, we can use batteries to supply what
we need. For more than a century, we’ve been accumulating considerable engineering knowledge about
voltages and currents. We now know how to build very small circuits to store, detect and manipulate
voltages. And we can make those circuits run on a very small amount of electrical power. In fact, we
can design circuits that require close to zero power dissipation in a steady state if none of the encoded
information is changing.

However, a voltage-based representation does have some challenges: voltages are easily affected by
changing electromagnetic fields in the surrounding environment. If I want to transmit voltage-encoded
information to you, we need to be connected by a wire. And changing the voltage on a wire takes some
time, since the timing of the necessary flow of charged particles is determined by the resistance and
capacitance of the wire. In modern integrated circuits, these RC time constants are small, but sadly not
zero.

We have good engineering solutions for these challenges, so let’s get started!

Page 33

Consider the problem of using voltages to represent the information in a black-and-white image. Each
(x,y) point in the image has an associated intensity: black is the weakest intensity, white the strongest.
An obvious voltage-based representation would be to encode the intensity as a voltage, say 0V for
black, 1V for white, and some intermediate voltage for intensities in-between.

First question: how much information is there at each point in the image? The answer depends on how
well we can distinguish intensities or, in our case, voltages. If we can distinguish arbitrarily small
differences, then there’s potentially an infinite amount of information in each point of the image. But,
as engineers, we suspect there’s a lower-bound on the size of differences we can detect.

To represent the same amount of information that can be represented with N bits, we need to be able to
distinguish a total voltages in the range of 0V to 1V. For example, for N = 2, we’d need to be able
to distinguish between four possible voltages. That doesn’t seem too hard — an inexpensive volt-meter
would let us easily distinguish between 0V, 1/3V, 2/3V and 1V.

In theory, N can be arbitrarily large. In practice, we know it would be quite challenging to make
measurements with, say, a precision of 1-millionth of a volt and probably next to impossible if we
wanted a precision of 1-billionth of a volt. Not only would the equipment start to get very expensive
and the measurements very time consuming, but we’d discover that phenomenon like thermal noise
would confuse what we mean by the instantaneous voltage at a particular time.

So our ability to encode information using voltages will clearly be constrained by our ability to reliably
and quickly distinguish the voltage at particular time.

2
N

Page 34

To complete our project of representing a complete image, we’ll scan the image in some prescribed
raster order — left-to-right, top-to-bottom — converting intensities to voltages as we go. In this way,
we can convert the image into a time-varying sequence of voltages. This is how the original televisions
worked: the picture was encoded as a voltage waveform that varied between the representation for
black and that for white. Actually the range of voltages was expanded to allow the signal to specify the
end of the horizontal scan and the end of an image, the so-called sync signals. We call this a continuous
waveform to indicate that it can take on any value in the specified range at a particular point in time.

Page 35

Now let’s see what happens when we try to build a system to process this signal.

We’ll create a system using two simple processing blocks. The COPY block reproduces on its output
whatever voltage appears on its input. The output of a COPY block looks the same as the original
image. The INVERTING block produces a voltage of 1-V when the input voltage is V, i.e., white is
converted to black and vice-versa. We get the negative of the input image after passing it through an
INVERTING block.

Why have processing blocks? Using pre-packaged blocks is a common way of building large circuits
— we can assemble a system by connecting the blocks one to another and reason about the behavior of
the resulting system without having to understand the internal details of each block. The pre-packaged
functionality offered by the blocks makes them easy to use without having be an expert analog
engineer!

Moreover, we would we expect to be able to wire up the blocks in different configurations when
building different systems and be able to predict the behavior of each system based on the behavior of
each block. This would allow us build systems like tinker toys, simply by hooking one block to
another. Even a programmer who doesn’t understand the electrical details could expect to build
systems that perform some particular processing task.

The whole idea is that there’s a guarantee of predictable behavior: if the components work and we hook
them up obeying whatever the rules are for connecting blocks, we would expect the system to work as
intended.

Page 36

So, let’s build a system with our COPY and INVERTING blocks. Here’s an image processing system
using a few instances each block. What do we expect the output image to look like?

Well, the COPY blocks don’t change the image and there are an even number of INVERTING blocks,
so, in theory, the output image should be identical to the input image.

But in reality, the output image isn’t a perfect copy of the input, it’s slightly fuzzy — the intensities are
slightly off and it looks like sharp changes in intensity have been smoothed out, creating a blurry
reproduction of the original. What went wrong?

Page 37

Why doesn’t theory match reality?

Perhaps the COPY and INVERTING blocks don’t work correctly? That’s almost certainly true, in the
sense that they don’t precisely obey the mathematical description of their behavior. Small
manufacturing variations and differing environmental conditions will cause each instance of the COPY
block to produce not V volts for a V-volt input, but V+epsilon volts, where epsilon represents the
amount of error introduced during processing. Ditto for the INVERTING block.

The difficulty is that in our continuous-value representation of intensity, V+epsilon is a perfectly
correct output value, just not for a V-volt input! In other words, we can’t tell the difference between a
slightly corrupted signal and a perfectly valid signal for a slightly different image.

More importantly — and this is the real killer — the errors accumulate as the encoded image passes
through the system of COPY and INVERTING blocks. The larger the system, the larger the amount of
accumulated processing error. This doesn’t seem so good: it would be awkward, to say the least, if we
had to have rules about how many computations could be performed on encoded information before
the results became too corrupted to be usable.

You would be correct if you thought this meant that the theory we used to describe the operation of our
system was imperfect. We’d need a very complicated theory indeed to capture all the possible ways in
which the output signal could differ from its expected value. Those of us who are mathematically
minded might complain that “reality is imperfect.” That’s going a bit far though. Reality is what it is
and, as engineers, we need to build our systems to operate reliably in the real world. So perhaps the
real problem lies in how we chose to engineer the system.

In fact, all of the above are true! Noise and inaccuracy are inevitable. We can’t reliably reproduce
infinite information. We must design our system to tolerate some amount of error if it is to process
information reliably. Basically, we need to find a way to notice that errors have been introduced by a
processing step and restore the correct values before the errors have a chance to accumulate. How to do
that is our next topic.

Page 38

To solve our engineering problem, we will introduce what we’ll call the digital abstraction. The key
insight is to use the continuous world of voltages to represent some small, finite set of values, in our
case, the two binary values, 0 and 1. Keep in mind that the world is not inherently digital, we would
simply like to engineer it to behave that way, using continuous physical phenomenon to implement
digital designs.

As a quick aside, let me mention that there are physical phenomenon that are naturally digital, i.e., that
are observed to have one of several quantized values, e.g., the spin of an electron. This came as a
surprise to classical physicists who thought measurements of physical values were continuous. The
development of quantum theory to describe the finite number of degrees of freedom experienced by
subatomic particles completely changed the world of classical physics. We’re just now starting to
research how to apply quantum physics to computation and there’s interesting progress to report on
building quantum computers. But for this course, we’ll focus on how to use classical continuous
phenomenon to create digital systems.

Page 39

The key idea in using voltages digitally is to have a signaling convention that encodes only one bit of
information at time, i.e., one of two values, 0 or 1. We’ll use the same uniform representation for every
component and wire in our digital system.

It’ll take us three attempts to arrive at a voltage representation that solves all the problems. Our first cut
is the obvious one: simply divide the range of voltages into two sub-ranges, one range to represent 0,
the other range to represent 1. Pick some threshold voltage, , to divide the range in two. When a
voltage V is less than the threshold voltage, we’ll take it to represent a bit value of 0. When a voltage V
is greater than or equal to the threshold voltage, it will represent a bit value of 1. This representation
assigns a digital value to all possible voltages.

The problematic part of this definition is the difficulty in interpreting voltages near the threshold. Given
the numeric value for a particular voltage, it’s easy to apply the rules and come up with the
corresponding digital value. But determining the correct numeric value accurately gets more time
consuming and expensive as the voltage gets closer and closer to the threshold. The circuits involved
would have to be made of precision components and run in precisely-controlled physical environments
— hard to accomplish when we consider the multitude of environments and the modest cost
expectations for the systems we want to build.

So although this definition has an appealing mathematical simplicity, it’s not workable on practical
grounds. This one gets a big red X.

In our second attempt, we’ll introduce two threshold voltages: and . Voltages less than or equal
to will be interpreted as 0, and voltages greater than or equal to will be interpreted as 1. The
range of voltages between and is called the forbidden zone, where we are forbidden to ask for
any particular behavior of our digital system. A particular system can interpret a voltage in the
forbidden as either a 0 or a 1, and is not even required to be consistent in its interpretation. In fact the
system is not required to produce any interpretation at all for voltages in this range.

How does this help? Now we can build a quick-and-dirty voltage-to-bit converter, say by using a high-
gain op-amp and reference voltage somewhere in the forbidden zone to decide if a given voltage is

Vth

VL VH

VL VH

VL VH

Page 40

above or below the threshold voltage. This reference voltage doesn’t have to be super-accurate, so it
could be generated with, say, a voltage divider built from low-cost 10%-accurate resistors. The
reference could change slightly as the operating temperature varied or the power supply voltage
changed, and so on. We only need to guarantee the correct behavior of our converter for voltages below

 or above .

This representation is pretty promising and we’ll tentatively give it a green checkmark for now. After a
bit more discussion, we’ll need to make one more small tweak before we get to where we want to go.

VL VH

Page 41

We’re now in a position to define our what it means to be a digital processing element. We say a device
is a combinational device if it meets the following four criteria:

First, it should have digital inputs, by which we mean the device uses our signaling convention,
interpreting input voltages below as the digital value 0, and voltages above as the digital value
1.

Second, the device’s outputs should also be digital, producing outputs of 0 by generating voltages less
than or equal to and outputs of 1 by generating voltages greater than or equal to .

With these two criteria, we should be able to hook the output of one combinational device to the input
of another and expect the signals passing between them to be interpreted correctly as 0’s and 1’s.

Next, a combinational device is required to have a functional specification that details the value of each
output for every possible combination of digital values on the inputs.

In the example, the device has three digital inputs, and since each input can take on one of two digital
values, there are 2*2*2 or eight possible input configurations. So the functional specification simply
has to tell us the value of the output Y when the inputs are 000, and the output when the inputs are 001,
and so on, for all 8 input patterns. A simple table with eight rows would do the trick.

Finally, a combinational device has a timing specification that tells us how long it takes for the output
of the dev ice to reflect changes in its input values. At a minimum, there must a specification of the
propagation delay, called , that is an upper bound on the time from when the inputs reach stable and
valid digital values, to when the output is guaranteed to have a stable and valid output value.

Collectively, we call these four criteria the static discipline, which must be satisfied by all
combinational devices.

VL VH

VL VH

tPD

Page 42

In order to build larger combinational systems from combinational components, we’ll follow the
composition rules set forth below.

First, each component of the system must itself be a combinational device.

Second, each input of each component must be connected a system input, or to exactly one output of
another device, or to a constant voltage representing the value 0 or the value 1.

Finally, the interconnected components cannot contain any directed cycles, i.e., paths through the
system from its inputs to its outputs will only visit a particular component at most once.

Our claim is that systems built using these composition rules will themselves be combinational devices.
In other words, we can build big combinational devices out of combinational components. Unlike our
flaky analog system from the start of the chapter, the system can be of any size and still be expected to
obey the static discipline.

Why is this true?

Page 43

To see why the claim is true, consider the following system built from the combinational devices A, B
and C. Let’s see if we can show that the overall system, as indicated by the containing blue box, will
itself be combinational. We’ll do this by showing that the overall system does, in fact, obey the static
discipline.

First, does the overall system have digital inputs? Yes! The system’s inputs are inputs to some of the
component devices. Since the components are combinational, and hence have digital inputs, the overall
system has digital inputs. In this case, the system is inheriting its properties from the properties of its
components.

Second, does the overall system have digital outputs? Yes, by the same reasoning: all the system’s
outputs are connected to one of the components and since the components are combinational, the
outputs are digital.

Third, can we derive a functional specification for the overall system, i.e., can we specify the expected
output values for each combination of digital input values? Yes, we can by incrementally propagating
information about the current input values through the component modules. In the example shown,
since A is combinational, we can determine the value on its output given the value on its inputs by
using A’s functional specification. Now we know the values on all of B’s inputs and can use its
functional specification to determine its output value. Finally, since we’ve now determined the values
on all of C’s inputs, we can compute its output value using C’s functional specification. In general,
since there are no cycles in the circuit, we can determine the value of every internal signal by
evaluating the behavior of the combinational components in an order that’s determined by the circuit
topology.

Finally, can we derive the system’s propagation delay, , using the propagation delays of the
components? Again, since there are no cycles, we can enumerate the finite-length paths from system
inputs to system outputs. Then, we can compute the along a particular path by summing the s
of the components along the path. The of the overall system will be the maximum of the path s
considering all the possible paths from inputs to outputs, i.e, the of the longest such path.

tPD

tPD tPD

tPD tPD

tPD

Page 44

So the overall system does in fact obey the static discipline and so it is indeed a combinational device.
Pretty neat — we can use our composition rules to build combinational devices of arbitrary complexity.

Page 45

There’s one more issue we need to deal with before finalizing our signaling specification. Consider the
following combinational system where the upstream combinational device on the left is trying to send a
digital 0 to the downstream combinational device on right. The upstream device is generating an output
voltage just slightly below , which, according to our proposed signaling specification, qualifies as
the representation for a digital 0.

Now suppose some electrical noise slightly changes the voltage on the wire so that the voltage detected
on the input of the downstream device is slightly above , i.e., the received signal no longer qualifies
as a valid digital input and the combinational behavior of the downstream device is no longer
guaranteed.

Oops, our system is behaving incorrectly because of some small amount of electrical noise. Just the
sort of flaky behavior we are hoping to avoid by adopting a digital systems architecture.

One way to address the problem is to adjust the signaling specification so that outputs have to obey
tighter bounds than the inputs, the idea being to ensure that valid output signals can be affected by
noise without becoming invalid input signals.

VL

VL

Page 46

Can we avoid the problem altogether by somehow avoiding noise? A nice thought, but not a goal that
we can achieve if we’re planning to use electrical components. Voltage noise, which we’ll define as
variations away from nominal voltage values, comes from a variety of sources.

Noise can be caused by electrical effects such as IR drops in conductors due to Ohm’s law,
capacitive coupling between conductors, and L(dI/dt) effects caused by inductance in the
component’s leads and changing currents.
Voltage deviations can be caused manufacturing variations in component parameters from their
nominal values that lead to small differences in electrical behavior device-to-device.
Voltages can be effected by environmental factors such as thermal noise or voltage effects from
external electromagnetic fields.

The list goes on! Note that in many cases, noise is caused by normal operation of the circuit or is an
inherent property of the materials and processes used to make the circuits, and so is unavoidable.
However, we can predict the magnitude of the noise and adjust our signaling specification
appropriately — let’s see how this would work.

Page 47

Our proposed fix to the noise problem is to provide separate signaling specifications for digital inputs
and digital outputs. To send a 0, digital outputs must produce a voltage less than or equal to and to
send a 1, produce a voltage greater than or equal to . So far this doesn’t seem very different than
our previous signaling specification...

The difference is that digital inputs must obey a different signaling specification. Input voltages less
than or equal to must be interpreted as a digital 0 and input voltages greater than or equal to
must be interpreted as a digital 1.

The values of these four signaling thresholds are chosen to satisfy the constraints shown here. Note that
 is strictly greater than and is strictly less than . The gaps between the input and

output voltage thresholds are called the noise margins. The noise margins tell us how much noise can
be added to a valid 0 or a valid 1 output signal and still have the result interpreted correctly at the
inputs to which it is connected. The smaller of the two noise margins is called the noise immunity of the
signaling specification. Our goal as digital engineers is to design our signaling specifications to provide
as much noise immunity as possible.

Combinational devices that obey this signaling specification work to remove the noise on their inputs
before it has a chance to accumulate and eventually cause signaling errors. The bottom line: digital
signaling doesn’t suffer from the problems we saw in our earlier analog signaling example!

VOL

VOH

VIL VIH

VIL VOL VIH VOH

Page 48

Let’s make some measurements using one of the simplest combinational devices: a buffer. A buffer has
a single input and single output, where the output will be driven with the same digital value as the input
after some small propagation delay. This buffer obeys the static discipline — that’s what it means to be
combinational — and uses our revised signaling specification that includes both low and high noise
margins.

The measurements will be made by setting the input voltage to a sequence of values ranging from 0V
up to the power supply voltage. After setting the input voltage to a particular value, we’ll wait for the
output voltage to become stable, i.e., we’ll wait for the propagation delay of the buffer. We’ll plot the
result on a graph with the input voltage on the horizontal axis and the measured output voltage on the
vertical axis. The resulting curve is called the voltage transfer characteristic of the buffer. For
convenience, we’ve marked our signal thresholds on the two axes.

Before we start plotting points, note that the static discipline constrains what the voltage transfer
characteristic must look like for any combinational device. If we wait for the propagation delay of the
device, the measured output voltage must be a valid digital value if the input voltage is a valid digital
value — “valid in, valid out.” We can show this graphically as shaded forbidden regions on our graph.
Points in these regions correspond to valid digital input voltages but invalid digital output voltages. So
if we’re measuring a legal combinational device, none of the points in its voltage transfer characteristic
will fall within these regions.

Okay, back to our buffer: setting the input voltage to a value less than the low input threshold ,
produces an output voltage less than , as expected — a digital 0 input yields a digital 0 output.
Trying a slightly higher but still valid 0 input gives a similar result. Note that these measurements don’t
tell us anything about the speed of the buffer, they are just measuring the static behavior of the device,
not its dynamic behavior.

If we proceed to make all the additional measurements, we get the voltage transfer characteristic of the
buffer, shown as the black curve on the graph. Notice that the curve does not pass through the shaded
regions, meeting the expectations we set out above for the behavior of a legal combinational device.

VIL

VOL

Page 49

There are two interesting observations to be made about voltage transfer characteristics.

Let’s look more carefully at the white region in the center of the graph, corresponding to input voltages
in the range to . First note that these input voltages are in the forbidden zone of our signaling
specification and so a combinational device can produce any output voltage it likes and still obey the
static discipline, which only constrains the device’s behavior for *valid* inputs.

Second, note that the center white region bounded by the four voltage thresholds is taller than it is
wide. This is true because our signaling specification has positive noise margins, so -- is
strictly greater than -- . Any curve passing through this region — as the VTC must — has to
have some portion where the magnitude of the slope of the curve is greater than 1. At the point where
the magnitude of the slope of the VTC is greater than one, note that a small change in the input voltage
produces a larger change in the output voltage. That’s what it means when the magnitude of the slope is
greater than 1. In electrical terms, we would say the device as a gain greater than 1 or less than -1,
where we define gain as the change in output voltage for a given change in input voltage.

If we’re considering building larger circuits out of our combinational components, any output can
potentially be wired to some other input. This means the range on the horizontal axis () has to be
the same as the range on the vertical axis (), i.e., the graph of VTC must be square and the VTC
curve fits inside the square. In order to fit within the square bounds, the VTC must change slope at
some point since we know from above there must be regions where the magnitude of the slope is
greater than 1 and it can’t be greater than 1 across the whole input range. Devices that exhibit a change
in gain across their operating range are called nonlinear devices.

Together these observations tell us that we cannot use only linear devices such as resistors, capacitors
and inductors, to build combinational devices. We’ll need nonlinear devices with gain > 1. Finding
such devices is the subject of the next chapter.

VIL VIH

VOH VOL

VIH VIL

VIN

VOUT

Page 50

Let’s look at a concrete example. This graph shows the voltage transfer characteristic for a particular
device and we’re wondering if we can use this device as a combinational inverter. In other words, can
we pick values for the voltage thresholds , , and so that the shown VTC meets the
constraints imposed on a combinational device?

An inverter outputs a digital 1 when its input is a digital 0 and vice versa. In fact this device does
produce a high output voltage when its input voltage is low, so there’s a chance that this will work out.

The lowest output voltage produced by the device is 0.5V, so if the device is to produce a legal digital
output of 0, we have to choose to be at least 0.5V.

We want the inverter to produce a valid digital 0 whenever its input is valid digital 1. Looking at the
VTC, we see that if the input is higher than 3V, the output will be less than or equal to , so let’s set

 to 3V. We could set it to a higher value than 3V, but we’ll make it as low as possible to leave room
for a generous high noise margin.

That takes care of two of the four signal thresholds, and . The other two thresholds are related
to these two by the noise margin N as shown by these two equations. Can we find a value for N such
that when ? If we chose N = 0.5V, then the formulas tell us that = 1V
and = 3.5V. Plotting these thresholds on the graph and adding the forbidden regions, we see that
happily the VTC is, in fact, legal!

So we can use this device as a combinational inverter if we use the signaling specification with =
0.5V, = 1V, = 3V and = 3.5V. We’re good to go!

VOL VIL VIH VOH

VOL

VOL

VIH

VOL VIH

VOUT ≥ VOH VIN ≤ VIL VIL

VOH

VOL

VIL VIH VOH

Page 51

Page 52

L03: CMOS Technology

1. Combinational Device Wish List
2. N-Channel MOSFET: Physical View
3. N-Channel MOSFET: Electrical View
4. N-Channel MOSFET vs.
5. FETs Come in Two Flavors
6. CMOS Recipe
7. CMOS Inverter VTC
8. Beyond Inverters
9. CMOS Comoplements

10. A Pop Quiz!
11. General CMOS Gate Recipe
12. CMOS Gates Are Naturally Inverting
13. CMOS Timing Specifications
14. Propagation Delay
15. Contamination Delay
16. The Combinational Contract
17. Acyclic Combinational Circuits
18. One Last Timing Issue
19. Lenient Gates
20. Summary

IDS VDS

Page 53

Let’s review our wish list for the characteristics of a combinational device. In the previous lecture we
worked hard to develop a voltage-based representation for information that could tolerate some amount
error as the information flowed through a system of processing elements.

We specified four signaling thresholds: and set the upper and lower bounds on voltages used
to represent 0 and 1 respectively at the outputs of a combinational device. and served a similar
role for interpreting the voltages at the inputs of a combinational device. We also specified that be
strictly less than , and termed the difference between these two low thresholds as the low noise
margin, the amount of noise that could be added to an output signal and still have the signal interpreted
correctly at any connected inputs. For the same reasons we specified that be strictly less than .

We saw the implications of including noise margins when we looked at the voltage transfer
characteristic — a plot of vs. — for a combinational device. Since a combinational device
must, in the steady state, produce a valid output voltage given a valid input voltage, we can identify
forbidden regions in the VTC, which for valid input voltages identify regions of invalid output
voltages. The VTC for a legal combinational device could not have any points that fall within these
regions. The center region bounded by the four threshold voltages is narrower than it is high and so any
legal VTC has to a have region where its gain is greater than 1 and the overall VTC has to be non-
linear. The VTC shown here is that for a combinational device that serves as an inverter.

If we’re fortunate to be using a circuit technology that provides high gain and has output voltages close
the ground and the power supply voltage, we can push and outward towards the power
supply rails, and push and inward, with the happy consequence of increasing the noise margins
— always a good thing!

Remembering back to the beginning of Lecture 2, we’ll be wanting billions of devices in our digital
systems, so each device will have to be quite inexpensive and small.

In today’s mobile world, the ability to run our systems on battery power for long periods of time means
that we’ll want to have our systems dissipate as little power as possible. Of course, manipulating
information will necessitate changing voltages within the system and that will cost us some amount of
power. But if our system is idle and no internal voltages are changing, we’d like for our system to have
zero power dissipation.

Finally, we’ll want to be able to implement systems with useful functionality and so need to develop a
catalog of the logic computations we want to perform.

Quite remarkably, there is a circuit technology that will make our wishes come true! That technology is
the subject of this lecture.

VOL VOH

VIL VIH

VOL

VIL

VIH VOH

VOUT VIN

VOL VOH

VIL VIH

Page 54

The star of our show is the metal-oxide-semiconductor field-effect transistor, or MOSFET for short.

Here’s a 3D drawing showing a cross-section of a MOSFET, which is constructed from a complicated
sandwich of electrical materials as part of an integrated circuit, so called because the individual devices
in an integrated circuit are manufactured en-masse during a series of manufacturing steps.

In modern technologies the dimensions of the block shown here are a few 10’s of nanometers on a side
— that’s 1/1000 of the thickness of a thin human hair. This dimension is so small that MOSFETs can’t
be viewed using an ordinary optical microscope, whose resolution is limited by the wavelength of
visible light, which is 400 to 750nm. For many years, engineers have been able to shrink the device
dimensions by a factor of 2 every 24 months or so, an observation known as “Moore’s Law” after
Gordon Moore, one of the founders of Intel, who first remarked on this trend in 1965. Each 50% shrink
in dimensions enables integrated circuit (IC) manufacturers to build four times as many devices in the
same area as before, and, as we’ll see, the devices themselves get faster too! An integrated circuit in
1975 might have had 2500 devices; today we’re able to build ICs with two to three billion devices.

Here’s a quick tour of what we see in the diagram.

The substrate upon which the IC is built is a thin wafer of silicon crystal which has had impurities
added to make it conductive. In this case the impurity was an acceptor atom like Boron, and we
characterize the doped silicon as a p-type semiconductor. The IC will include an electrical contact to
the p-type substrate, called the bulk terminal, so we can control its voltage.

When want to provide electrical insulation between conducting materials, we’ll use a layer of silicon
dioxide (SiO2). Normally the thickness of the insulator isn’t terribly important, except for when it’s
used to isolate the gate of the transistor (shown here in red) from the substrate. The insulating layer in
that region is very thin so that the electrical field from charges on the gate conductor can easily affect
the substrate.

The gate terminal of the transistor is a conductor, in this case, polycrystalline silicon. The gate, the thin
oxide insulating layer, and the p-type substrate form a capacitor, where changing the voltage on the
gate will cause electrical changes in the p-type substrate directly under the gate. In early manufacturing
processes the gate terminal was made of metal, and the term metal-oxide-semiconductor (MOS) is
referring to this particular structure.

After the gate terminal is in place, donor atoms such as Phosphorous are implanted into the p-type
substrate in two rectangular regions on either side of the gate. This changes those regions to an n-type
semiconductor, which become the final two terminals of the MOSFET, called the source and the drain.
Note that source and drain are usually physically identical and are distinguished by the role they play
during the operation of the device, our next topic.

As we’ll see in the next slide, the MOSFET functions as a voltage-controlled switch connecting the
source and drain terminals of the device. When the switch is conducting, current will flow from the

Page 55

drain to the source through the conducting channel formed as the second plate of the gate capacitor.
The MOSFET has two critical dimensions: its length L, which measures the distance the current must
cross as it flows from drain to source, and its width W, which determines how much channel is
available to conduct current. The the current, termed , flowing across the switch is proportional to
the ratio of the channel’s width to its length.

Typically, IC designers make the length as short as possible — when a news article refers to a 14nm
process, the 14nm refers to the smallest allowable value for the channel length. And designers choose
the channel width to set the desired amount of current flow. If is large, voltage transitions on the
source and drain nodes will be quick, at the cost of a physically larger device.

To summarize: the MOSFET has four electrical terminals: bulk, gate, source, and drain. Two of the
device dimensions are under the control of the designer: the channel length, usually chosen to be as
small as possible, and the channel width chosen to set the current flow to the desired value. It’s a solid-
state switch — there are no moving parts and the switch operation is controlled by electrical fields
determined by the relative voltages of the four terminals.

IDS

IDS

Page 56

Now let’s look at the electrical view of the MOSFET. Its operation is determined by the voltages of its
four terminals.

First we’ll label the two diffusion terminals on either side of the gate terminal: our convention is to call
the diffusion terminal with the highest voltage potential the drain and the other lower-potential
terminal the source. With this labeling if any current is flowing through the MOSFET switch, it will
flow from drain to source.

When the MOSFET is manufactured, it’s designed to have a particular threshold voltage, , which
tells us when the switch goes from non-conducting/OFF/OPEN to conducting/ON/CLOSED. For the n-
channel MOSFET shown here, we’d expect to be around 0.5V in a modern process.

The P+ terminal on the left of the diagram is the connection to the p-type substrate. For the MOSFET
to operate correctly, the substrate must always have a voltage less than or equal to the voltage of the
source and drain. We’ll have specific rules about how to connect up this terminal.

The MOSFET is controlled by the difference between the voltage of the gate, , and the voltage of
the source, , which, following the usual terminology for voltages we call , a shortcut for saying

.

The first picture shows the configuration of the MOSFET when is less than the MOSFET’s
threshold voltage. In this configuration, the switch is open or non-conducting, i.e., there is no electrical
connection between the source and drain.

When n-type and p-type materials come in physical contact, a depletion region (shown in dark red in
the diagram) forms at their junction. This is a region of substrate where the current-carrying electrical
particles have migrated away from the junction. The depletion zone serves as an insulating layer
between the substrate and source/drain. The width of this insulating layer grows as the voltage of
source/drain gets larger relative to the voltage of the substrate. And, as you can see in the diagram, that
insulating layer fills the region of the substrate between the source and drain terminals, keeping them
electrically isolated.

Now, as gets larger, positive charges accumulate on the gate conductor and generate an electrical
field which attracts the electrons in the atoms in the substrate. For a while that attractive force gets
larger without much happening, but when it reaches the MOSFET’s threshold voltage, the field is
strong enough to pull the substrate electrons from the valence band into the conduction band, and the
newly mobile electrons will move towards the gate conductor, collecting just under the thin oxide that
serves the gate capacitor’s insulator.

When enough electrons accumulate, the type of the semiconductor changes from p-type to n-type and
there’s now a channel of n-type material forming a conducting path between the source and drain
terminals. This layer of n-type material is called an inversion layer, since its type has been inverted
from the original p-type material. The MOSFET switch is now closed or conducting. Current will flow

VTH

VTH

VG

VS VGS
VG − VS

VGS

VGS

Page 57

from drain to source in proportion to , the difference in voltage between the drain and source
terminals.

At this point the conducting inversion layer is acting like a resistor governed by Ohm’s Law so
 where R is the effective resistance of the channel. This process is reversible: if

falls below the threshold voltage, the substrate electrons drop back into the valence band, the inversion
layer disappears, and the switch no longer conducts.

The story gets a bit more complicated when is larger than , as shown in the bottom figures. A
large changes the geometry of the electrical fields in the channel and the inversion layer pinches
off at the end of the channel near the drain. But with a large , the electrons will tunnel across the
pinch-off point to reach the conducting inversion layer still present next to the source terminal.

How does pinch-off affect , the current flowing from drain to source? To see, let’s look at some
plots of on the next slide.

VDS

IDS = VDS/R VGS

VDS VGS

VDS

VDS

IDS

IDS

Page 58

Okay, this plot has a lot of information, so let’s see what we can learn. Each curve is a plot of as a
function of , for a particular value of . First, notice that is 0 when is less than or equal
to the threshold voltage. The first six curves are all plotted on top of each other along the x-axis.

Once exceeds the threshold voltage becomes non-zero, and increases as increases. This
makes sense: the larger becomes, the more substrate electrons are attracted to the bottom plate of
the gate capacitor and the thicker the inversion layer becomes, allowing it to conduct more current.
When is smaller than , we said the MOSFET behaves like a resistor obeying Ohm’s Law. This
is shown in the linear portions of the curves at the left side of the plots. The slope of the linear part
of the curve is essentially inversely proportional to the resistance of the conducting MOSFET channel.
As the channel gets thicker with increasing , more current flows and the slope of the line gets
steeper, indicating a smaller channel resistance.

But when gets larger than , the channel pinches off at the drain end and, as we see in on the
right side of the plots, the current flow no longer increases with increasing . Instead is
approximately constant and the curve becomes a horizontal line. We say that the MOSFET has reached
saturation where has reached some maximum value.

Notice that the saturated part of the curve isn’t quite flat and continues to increase slightly as
 gets larger. This effect is called channel-length modulation and reflects the fact that the increase in

channel pinch-off isn’t exactly matched by the increase current induced by the larger .

Whew! MOSFET operation is complicated! Fortunately, as designers, we’ll be able to use the much
simpler mental model of a switch if we obey some simple rules when designing our MOSFET circuits.

IDS

VDS VGS IDS VGS

VGS IDS VGS

VGS

VDS VGS

IDS

VGS

VDS VGS

IDS VDS IDS

IDS

IDS IDS

VDS
VDS

Page 59

Up to now, we’ve been talking about MOSFETs built as shown in the diagram on the left: with n-type
source/drain diffusions in a p-type substrate. These are called n-channel MOSFETs since the inversion
layer, when formed, is an n-type semiconductor. The schematic symbol for an n-channel MOSFET is
shown here, with the four terminals arranged as shown. In our MOSFET circuits, we’ll connect the
bulk terminal of the MOSFET to ground, which will ensure that the voltage of the p-type substrate is
always less than or equal to the voltage of the source and drain diffusions.

We can also build a MOSFET by flipping all the material types, creating p-type source/drain diffusions
in a n-type substrate. This is called a p-channel MOSFET, which also behaves as voltage-controlled
switch, except that all the voltage potentials are reversed! As we’ll see, control voltages that cause an
n-channel switch to be ON will cause a p-channel switch to be OFF and vice-versa.

Using both types of MOSFETs will give us switches that behave in a complementary fashion. Hence
the name complementary MOS, CMOS for short, for circuits that use both types of MOSFETs. Now
that we have our two types of voltage-controlled switches, our next task is to figure out how to use
them to build circuits useful for manipulating information encoded as voltages.

Page 60

Now that we have some sense about how MOSFETs function, let’s use them to build circuits to process
our digitally encoded information. We have two simple rules we’ll use when building the circuits,
which, if they’re followed, will allow us to abstract the behavior of the MOSFET as a simple voltage-
controlled switch.

The first rule is that we’ll only use n-channel MOSFETs, which we’ll call NFETs for short, when
building pulldown circuits that connect a signaling node to the GND rail of the power supply. When
the pulldown circuit is conducting, the signaling node will be at 0V and qualify as a digital 0.

If we obey this rule, NFETs will act switches controlled by , the difference between the voltage of
the gate terminal and the voltage of the source terminal. When is lower than the MOSFET’s
threshold voltage, the switch is OPEN or not conducting and there is no connection between the
MOSFET’s source and drain terminals. If is greater than the threshold voltage, the switch is ON or
conducting and there is a connection between the source and drain terminals. That path has a resistance
determined by the magnitude of . The larger , the lower the effective resistance of the switch
and the more current that will flow from drain to source. When designing pulldown circuits of NFET
switches, we can use the following simple mental model for each NFET switch: if the gate voltage is a
digital 0, the switch will be off; if the gate voltage is a digital 1, the switch will be on.

The situation with PFET switches is analogous, except that the potentials are reversed. Our rule is that
PFETs can only be used in pullup circuits, used to connect a signaling node to the power supply
voltage, which we’ll call . When the pullup circuit is conducting, the signaling node will be at
volts and qualify as a digital 1. PFETs have a negative threshold voltage and has to be less than
the threshold voltage in order for the PFET switch to be conducting. All these negatives can be a bit
confusing, but, happily there’s a simple mental model we can use for each PFET switch in the pullup
circuit: if the gate voltage is a digital 0, the switch will be on; if the gate voltage is a digital 1, the
switch will be off — basically the opposite behavior of the NFET switch.

You may be wondering why we can’t use NFETs in pullup circuits or PFETs in pulldown circuits.
You’ll get to explore the answer to this question in one of the lab assignments. Meanwhile, the short
answer is that the signaling node will experience degraded signaling levels and we’ll loose the noise
margins we’ve worked so hard to create!

VGS

VGS

VGS

VGS VGS

VDD VDD

VGS

Page 61

Now consider the CMOS implementation of a combinational inverter. If the inverter’s input is a digital
0, its output is a digital 1, and vice versa. The inverter circuit consists of a single NFET switch for the
pulldown circuit, connecting the output node to GND and a single PFET switch for the pullup circuit,
connecting the output to . The gate terminals of both switches are connected to the inverter’s input
node. The inverter’s voltage transfer characteristic is shown in the figure.

When is a digital 0 input, we see that is greater than or equal to , representing a digital 1
output. Let’s look at the state of the pullup and pulldown switches when the input is a digital 0.
Recalling the simple mental model for the NFET and PFET switches, a 0-input means the NFET
switch is off, so there’s no connection between the output node and ground, and the PFET switch is on,
making a connection between the output node and . Current will flow through the pullup switch,
charging the output node until its voltage reaches . Once both the source and drain terminals are at

, there’s no voltage difference across the switch and hence no more current will flow through the
switch.

Similarly, when is a digital 1, the NFET switch is on and PFET switch is off, so the output is
connected to ground and eventually reaches a voltage of 0V. Again, current flow through pulldown
switch will cease once the output node reaches 0V.

When the input voltage is in the middle of its range, it’s possible, depending on the particular power
supply voltage used and the threshold voltage of the MOSFETs, that both the pullup and pulldown
circuits will be conducting for a short period of time. That’s okay. In fact, with both MOSFET switches
on, small changes in the input voltage will produce large changes in the output voltage, leading to the
very high gain exhibited by CMOS devices. This in turn will mean we can pick signaling thresholds
that incorporate generous noise margins, allowing CMOS devices to work reliably in many different
operating environments.

This is our first CMOS combinational logic gate. In the next slide, we’ll explore how to build other,
more interesting logic functions.

VDD

VIN VOUT VOH

VDD

VDD

VDD

VIN

Page 62

Now we get to the fun part! To build other logic gates, we’ll design complementary pullup and
pulldown circuits, hooked up as shown in the diagram on the right, to control the voltage of the output
node. Complementary refers to property that when one of the circuits is conducting, the other is not.
When the pullup circuit is conducting and the pulldown circuit is not, the output node has a connection
to and its output voltage will quickly rise to become a valid digital 1 output. Similarly, when the
pulldown circuit is conducting and the pullup is not, the output node has a connection to GND and its
output voltage will quickly fall to become a valid digital 0 output.

If the circuits are incorrectly designed so that they are not complementary and could both be
conducting for an extended period of time, there’s a path between and GND and large amounts of
short circuit current will flow, a very bad idea. Since our simple switch model won’t let us determine
the output voltage in this case, we’ll call this output value X or unknown.

Another possibility with a non-complementary pullup and pulldown is that neither is conducting and
the output node has no connection to either power supply voltage. At this point, the output node is
electrically floating and whatever charge is stored by the nodal capacitance will stay there, at least for a
while. This is a form of memory and we’ll come back to this in a couple of lectures.

For now, we’ll concentrate on the behavior of devices with complementary pullups and pulldowns.

VDD

VDD

Page 63

Since the pullup and pulldown circuits are complementary, we’ll see there’s a nice symmetry in their
design. We’ve already seen the simplest complementary circuit: a single NFET pulldown and a single
PFET pullup. If the same signal controls both switches, it’s easy to see that when one switch is on, the
other switch is off.

Now consider a pulldown circuit consisting of two NFET switches in series. There’s a connection
through both switches when A is 1 and B is 1. For any other combination of A and B values, one or the
other of the switches (or both!) will be off. The complementary circuit to NFET switches in series is
PFET switches in parallel. There’s a connection between the top and bottom circuit nodes when either
of the PFET switches is on, i.e., when A is 0 or B is 0. As a thought experiment consider all possible
pairs of values for A and B: 00, 01, 10, and 11. When one or both of the inputs is 0, the series NFET
circuit is not conducting and parallel PFET circuit is. And when both inputs are 1, the series NFET
circuit is conducting but the parallel PFET circuit is not.

Finally consider the case where we have parallel NFETs and series PFETs. Conduct the same thought
experiment as above to convince yourself that when one of the circuits is conducting the other isn’t.

Let’s put these observations to work when building our next CMOS combinational device.

Page 64

In this device, we’re using series NFETs in the pulldown and parallel PFETs in the pullup, circuits that
we convinced ourselves were complementary in the previous slide. We can build a tabular
representation, called a truth table, that describes the value of Z for all possible combinations of the
input values for A and B.

When A and B are 0, the PFETs are on and the NFETs are off, so Z is connected to and the output
of the device is a digital 1. In fact, if either A or B is 0 that continues to be the case, and the value of Z
is still 1. Only when both A and B are 1 will both NFETs be on and the value of Z become 0. This
particular device is called a NAND gate, short for NOT-AND, a function that is the inverse of the AND
function.

Returning to a physical view for a moment, the figure on the left is a bird’s eye view, looking down on
the surface of the integrated circuit, showing how the MOSFETs are laid out in two dimensions. The
blue material represents metal wires with large top and bottom metal runs connecting to and
GND. The red material forms the polysilicon gate nodes, the green material the n-type source/drain
diffusions for the NFETs and the tan material the p-type source/drain diffusions for the PFETs.

Can you see that the NFETs are connected in series and the PFETs in parallel?

Just to give you a sense of the costs of making a single NAND gate, the yellow box is a back-of-the-
envelope calculation showing that we can manufacture approximately 26 billion NAND gates on a
single 300mm (that’s 12 inches for us non-metric folks) silicon wafer. For the older IC manufacturing
process shown here, it costs about 3500 to buy the materials and perform the manufacturing steps
needed to form the circuitry for all those NAND gates. So the final cost is a bit more than 100 nano-
dollars per NAND gate. I think this qualifies as both cheap and small!

VDD

VDD

$

Page 65

Using more complicated series/parallel networks of switches, we can build devices that implement
more complex logic functions.

To design a more complex logic gate, first figure the series and parallel connections of PFET switches
that will connect the gate’s output to for the right combination of inputs. In this example, the
output F will be 1 when A is 0 OR when both B is 0 AND C is 0. The OR translates into a parallel
connection, and the AND translates into a series connection, giving the pullup circuit you see to the
right.

To build the complementary pulldown circuit, systematically walk the hierarchy of pullup connections,
replacing PFETs with NFETs, series subcircuits with parallel subcircuits, and parallel subcircuits with
series subcircuits. In the example shown, the pullup circuit had a switch controlled by A in parallel
with a series subcircuit consisting of switches controlled by B and C. The complementary pulldown
circuit uses NFETs, with the switch controlled by A in series with a parallel subcircuit consisting of
switches controlled by B and C.

Finally combine the pullup and pulldown circuits to form a fully-complementary CMOS
implementation. This probably went by a bit quickly, but with practice you’ll get comfortable with the
CMOS design process.

Mr. Blue is asking a good question: will this recipe work for any and all logic functions? The answer is
“no,” let’s see why.

VDD

Page 66

Using CMOS, a single gate (a circuit with one pullup network and one pulldown network) can only
implement the so-called inverting functions where rising inputs lead to falling outputs and vice versa.
To see why, consider what happens with one of the gate’s inputs goes from 0 to 1.

Any NFET switches controlled by the rising input will go from OFF to ON. This may enable one or
more paths between the gate’s output and GND. And PFET switches controlled by the rising input will
go from ON to OFF. This may disable one or more paths between the gate’s output and . So if the
gate’s output changes as the result of the rising input, it must be because some pulldown path was
enabled and some pullup path was disabled. In other words, any change in the output voltage due to a
rising input must be a falling transition from 1 to 0.

Similar reasoning tells us that falling inputs must lead to rising outputs. In fact, for any non-constant
CMOS gate, we know that its output must be 1 when all inputs are 0 (since all the NFETs are off and
all the PFETs are on). And vice-versa: if all the inputs are 1, the gate’s output must be 0. This means
that so-called positive logic can’t be implemented with a single CMOS gate.

Look at this truth table for the AND function. It’s value when both inputs are 0 or both inputs are 1 is
inconsistent with our deductions about the output of a CMOS gate for these combinations of inputs.
Furthermore, we can see that when A is 1 and B rises from 0 to 1, the output rises instead of falls.
Moral of the story: when you’re a CMOS designer, you’ll get very good at implementing functionality
with inverting logic!

VDD

Page 67

Okay, now that we understand how to build combinational logic gates using CMOS, let’s turn our
attention to the timing specifications for the gates.

Here’s a simple circuit consisting of two CMOS inverters connected in series, which we’ll use to
understand how to characterize the timing of the inverter on the left. It will be helpful to build an
electrical model of what happens when we change , the voltage on the input to the left inverter. If

 makes a transition from a digital 0 to a digital 1, the PFET switch in the pullup turns off and the
NFET switch in pulldown turns on, connecting the output node of the left inverter to GND.

The electrical model for this node includes the distributed resistance and capacitance of the physical
wire connecting the output of the left inverter to the input of the right inverter. And there is also
capacitance associated with the gate terminals of the MOSFETs in the right inverter. When the output
node is connected to GND, the charge on this capacitance will flow towards the GND connection
through the resistance of the wire and the resistance of the conducting channel of the NFET pulldown
switch. Eventually the voltage on the wire will reach the potential of the GND connection, 0V. The
process is much the same for falling transitions on , which cause the output node to charge up to

.

Now let’s look at the voltage waveforms as a function of time.

The top plot shows both a rising and, later, a falling transition for . We see that the output
waveform has the characteristic exponential shape for the voltage of a capacitor being discharged or
charged though a resistor. The exponential is characterized by its associated R-C time constant, where,
in this case, the R is the net resistance of the wire and MOSFET channel, and the C is the net
capacitance of the wire and MOSFET gate terminals. Since neither the input nor output transition is
instantaneous, we have some choices to make about how to measure the inverter’s propagation delay.
Happily, we have just the guidance we need from our signaling thresholds!

VIN

VIN

VIN

VDD

VIN

Page 68

The propagation delay of a combinational logic gate is defined to be an upper bound on the delay from
valid inputs to valid outputs. Valid input voltages are defined by the and signaling thresholds,
and valid output voltages are defined by the and signaling thresholds. We’ve shown these
thresholds on the waveform plots.

To measure the delay associated with the rising transition on , first identify the time when the input
becomes a valid digital 1, i.e., the time at which crosses the threshold. Next identify the time
when the output becomes a valid digital 0, i.e., the time at which crosses the threshold. The
interval between these two time points is the delay for this particular set of input and output transitions.

We can go through the same process to measure the delay associated with a falling input transition.
First, identify the time at which cross the threshold. Then find the time at which crosses
the threshold. The resulting interval is the delay we wanted to measure.

Since the propagation delay, , is an upper bound on the delay associated with any input transition,
we’ll choose a value for that’s greater than or equal to the measurements we just made. When a
manufacturer selects the specification for a gate, it must take into account manufacturing
variations, the effects of different environmental conditions such as temperature and power-supply
voltage, and so on. It should choose a that will be an upper bound on any delay measurements their
customers might make on actual devices.

From the designer’s point of view, we can rely on this upper bound for each component of a larger
digital system and use it to calculate the system’s without having to repeat all the manufacturer’s
measurements. If our goal is to minimize the propagation delay of our system, then we’ll want to keep
the capacitances and resistances as small as possible. There’s an interesting tension here: to make the
effective resistance of a MOSFET switch smaller, we would increase its width. But that would add
additional capacitance to the switch’s gate terminal, slowing down transitions on the input node that
connects to the gate! It’s a fun optimization problem to figure out transistor sizing that minimizes the
overall propagation delay.

VIL VIH

VOL VOH

VIN

VIN VIH

VOUT VOL

VIN VIL VOUT

VOH

tPD

tPD

tPD

tPD

tPD

Page 69

Although not strictly required by the static discipline, it will be useful to define another timing
specification, called the contamination delay. It measures how long a gate’s previous output value
remains valid after the gate’s inputs start to change and become invalid. Technically, the contamination
delay will be a lower bound on the delay from an invalid input to an invalid output. We’ll make the
delay measurements much as we did for the propagation delay.

On a rising input transition, the delay starts when the input is no longer a valid digital 0, i.e., when
crosses the threshold. And the delay ends when the output becomes invalid, i.e., when
crosses the threshold. We can make a similar delay measurement for the falling input transition.
Since the contamination delay, , is a lower bound on the delay associated with any input transition,
we’ll choose a value for that’s less than or equal to the measurements we just made.

Do we really need the contamination delay specification? Usually not. And if not’s specified, designers
should assume that the for a combinational device is 0. In other words a conservative assumption
is that the outputs go invalid as soon as the inputs go invalid.

By the way, manufacturers often use the term “minimum propagation delay” to refer to a device’s
contamination delay. That terminology is a bit confusing, but now you know what it is they’re trying to
tell you.

VIN

VIL VOUT

VOH

tCD

tCD

tCD

Page 70

So here’s a quick summary of the timing specifications for combinational logic. These specifications
tell us how the timing of changes in the output waveform (labeled B in this example) are related to the
timing of changes in the input waveform (labeled A).

A combinational device may retain its previous output value for some interval of time after an input
transition. The contamination delay of the device is a guarantee on the minimum size of that interval,
i.e., is a lower bound on how long the old output value stays valid. As stated in Note 2, a
conservative assumption is that the contamination delay of a device is 0, meaning the device’s output
may change immediately after an input transition. So gives us information on when B will start to
change.

Similarly, it would be good to know when B is guaranteed to be done changing after an input
transition. In other words, how long do we have to wait for a change in the inputs to reflected in an
updated value on the outputs? This is what tells us since it is a upper bound on the time it takes for
B to become valid and stable after an input transition.

As Note 1 points out, in general there are no guarantees on the behavior of the output in the interval
after and before , as measured from the input transition. It would legal for the B output to
change several times in that interval, or even have a non-digital voltage for any part of the interval. As
we’ll see in the last part of this lecture, we’ll be able to offer more insights into B’s behavior in this
interval for a subclass of combinational devices. But in general, a designer should make no
assumptions about B’s value in the interval between and .

tCD

tCD

tPD

tCD tPD

tCD tPD

Page 71

How do we calculate the propagation and contamination delays of a larger combinational circuit from
the timing specifications of its components?

Our example is a circuit of four NAND gates where each NAND has a of 4 ns and of 1 ns. To
find the propagation delay for the larger circuit, we need to find the maximum delay from an input
transition on nodes A, B, or C to a valid and stable value on the output Y. To do this, consider each
possible path from one of the inputs to Y and compute the path delay by summing the s of the
components along the path. Choose the largest such path delay as the of the overall circuit. In our
example, the largest delay is a path that includes three NAND gates, with a cumulative propagation
delay of 12 ns. In other words, the output Y is guaranteed be stable and valid within 12 ns of a
transition on A, B, or C.

To find the contamination delay for the larger circuit, we again investigate all paths from inputs to
outputs, but this time we’re looking for the shortest path from an invalid input to an invalid output. So
we sum the s of the components along each path and choose the smallest such path delay as the

 of the overall circuit. In our example, the smallest delay is a path that includes two NAND gates
with a cumulative contamination delay of 2 ns. In other words, the output Y will retain its previous
value for at least 2 ns after one of the inputs goes invalid.

tPD tCD

tPD

tPD

tCD

tCD

Page 72

It turns out we can say a bit more about the timing of output transitions for CMOS logic gates. Let’s
start by considering the behavior of a non-CMOS combinational device that implements the NOR
function. Looking at the waveform diagram, we see that initially the A and B inputs are both 0, and the
output Z is 1, just as specified by the truth table. Now B makes a 0-to-1 transition and the Z output will
eventually reflect that change by making a 1-to-0 transition. As we learned in the previous video, the
timing of the Z transition is determined by the contamination and propagation delays of the NOR gate.
Note that we can’t say anything about the value of the Z output in the interval of to after the
input transition, which we indicate with a red shaded region on the waveform diagram.

Now, let’s consider a different set up, where initially both A and B are 1, and, appropriately, the output
Z is 0. Examining the truth table we see that if A is 1, the output Z will be 0 regardless of the value of
B. So what happens when B makes a 1-to-0 transition? Before the transition, Z was 0 and we expect it
to be 0 again, after the B transition. But, in general, we can’t assume anything about the value of Z
in the interval between and . Z could have any behavior it wants in that interval and the device
would still be a legitimate combinational device.

Many gate technologies — e.g., CMOS — adhere to even tighter restrictions.

tCD tPD

tPD

tCD tPD

Page 73

Let’s look in detail at the switch configuration in a CMOS implementation of a NOR gate when both
inputs are a digital 1. A high gate voltage will turn on NFET switches (as indicated by the red arrows)
and turn off PFET switches (as indicated by the red X's). Since the pullup circuit is not conducting and
the pulldown circuit is conducting, the output Z is connected to GND, the voltage for a digital 0 output.

Now, what happens when the B input transitions from 1 to 0? The switches controlled by B change
their configuration: the PFET switch is now on and the NFET switch is now off. But overall the pullup
circuit is still not conducting and there is still a pulldown path from Z to GND. So while there used to
be two paths from Z to GND and there is now only one path, Z has been connected to GND the whole
time and its value has remained valid and stable throughout B’s transition. In the case of a CMOS NOR
gate, when one input is a digital 1, the output will be unaffected by transitions on the other input.

A lenient combinational device is one that exhibits this behavior, namely that the output is guaranteed
to be be valid when any combination of inputs sufficient to determine the output value has been valid
for at least . When some of the inputs are in a configuration that triggers this lenient behavior,
transitions on the other inputs will have no effect on the validity of the output value. Happily most
CMOS implementations of logic gates are naturally lenient.

We can extend our truth-table notation to indicate lenient behavior by using X for the input values on
certain rows to indicate that input value is irrelevant when determining the correct output value. The
truth table for a lenient NOR gate calls out two such situations: when A is 1, the value of B is
irrelevant, and when B is 1, the value of A is irrelevant. Transitions on the irrelevant inputs don’t
trigger the and output timing normally associated with an input transition.

When does lenience matter? We’ll need lenient components when building memory components, a
topic we’ll get to in a couple of lectures.

You’re ready to try building some CMOS gates of your own!

tPD

tCD tPD

Page 74

Page 75

4: Combinational Logic

1. Functional Specifications
2. Here’s a Design Approach
3. Sum-of-products Building Blocks
4. Straightforward Synthesis
5. ANDs and ORs with > 2 Inputs
6. More Building Blocks
7. Universal Building Blocks
8. CMOS Loves Inverting Logic
9. Wide NANDs and NORs

10. CMOS Sum-of-products Implementation
11. Logic Simplification
12. Boolean Minimization
13. Truth Tables with Don’t Cares
14. The Case for a Non-minimal SOP
15. Karnuagh Maps: A Geometric Approach
16. Extending K-maps to 4-variable Tables
17. Finding Implicants
18. Finding Prime Implicants
19. Write Down Equations
20. Prime Implicants, Glitches & Leniency
21. We’ve Been Designing a MUX
22. Systematic Implementation Strategies
23. Synthesis By Table Lookup
24. Read-only Memory (ROM)
25. ROM Example
26. ROM Example continued
27. Faster ROMs
28. Logic According to ROMs
29. Summary

In this lecture, you’ll learn various techniques for creating combinational logic circuits that implement
a particular functional specification.

Page 76

A functional specification is part of the static discipline we use to build the combinational logic
abstraction of a circuit. One approach is to use natural language to describe the operation of a device.
This approach has its pros and cons. In its favor, natural language can convey complicated concepts in
surprisingly compact form and it is a notation that most of us know how to read and understand. But,
unless the words are very carefully crafted, there may be ambiguities introduced by words with
multiple interpretations or by lack of completeness since it’s not always obvious whether all
eventualities have been dealt with.

There are good alternatives that address the shortcomings mentioned above. Truth tables are a
straightforward tabular representation that specifies the values of the outputs for each possible
combination of the digital inputs. If a device has N digital inputs, its truth table will have rows. In
the example shown here, the device has 3 inputs, each of which can have the value 0 or the value 1.
There are combinations of the three input values, so there are 8 rows in the truth
table. It’s straightforward to systematically enumerate the 8 combinations, which makes it easy to
ensure that no combination is omitted when building the specification. And since the output values are
specified explicitly, there isn’t much room for misinterpreting the desired functionality!

Truth tables are an excellent choice for devices with small numbers of inputs and outputs. Sadly, they
aren’t really practical when the devices have many inputs. If, for example, we were describing the
functionality of a circuit to add two 32-bit numbers, there would be 64 inputs altogether and the truth
table would need rows. Hmm, not sure how practical that is! If we entered the correct output value
for a row once per second, it would take 584 billion years to fill in the table!

Another alternative specification is to use Boolean equations to describe how to compute the output
values from the input values using Boolean algebra. The operations we use are the logical operations
AND, OR, and XOR, each of which takes two Boolean operands, and NOT which takes a single
Boolean operand. Using the truth tables that describe these logical operations, it’s straightforward to
compute an output value from a particular combination of input values using the sequence of
operations laid out in the equation.

2
N

2 ⋅ 2 ⋅ 2 = 2
3

= 8

2
64

Page 77

Let me say a quick word about the notation used for Boolean equations. Input values are represented
by the name of the input, in this example one of A, B, or C. The digital input value 0 is equivalent to
the Boolean value FALSE and the digital input value 1 is equivalent to the Boolean value TRUE.

The Boolean operation NOT is indicated by a horizontal line drawn above a Boolean expression. In
this example, the first symbol following the equal sign is a C with line above it, indicating that the
value of C should be inverted before it’s used in evaluating the rest of the expression.

The Boolean operation AND is represented by the multiplication operation using standard
mathematical notation. Sometimes we’ll use an explicit multiplication operator — usually written as a
dot between two Boolean expressions — as shown in the first term of the example equation.
Sometimes the AND operator is implicit as shown in the remaining three terms of the example
equation.

The Boolean operation OR is represented by the addition operation, always shown as a “+” sign.

Boolean equations are useful when the device has many inputs. And, as we’ll see, it’s easy to convert a
Boolean equation into a circuit schematic.

Truth tables and Boolean equations are interchangeable. If we have a Boolean equation for each output,
we can fill in the output columns for a row of the truth table by evaluating the Boolean equations using
the particular combination of input values for that row. For example, to determine the value for Y in
the first row of the truth table, we’d substitute the Boolean value FALSE for the symbols A, B, and C
in the equation and then use Boolean algebra to compute the result.

We can go the other way too. We can always convert a truth table into a particular form of Boolean
equation called a sum-of-products. Let’s see how...

Page 78

Start by looking at the truth table and answering the question “When does Y have the value 1?” Or in
the language of Boolean algebra: “When is Y TRUE?” Well, Y is TRUE when the inputs correspond to
row 2 of the truth table, OR to row 4, OR to rows 7 OR 8. Altogether there are 4 combinations of
inputs for which Y is TRUE. The corresponding Boolean equation thus is the OR for four terms, where
each term is a Boolean expression which evaluates to TRUE for a particular combination of inputs.

Row 2 of the truth table corresponds to C=0, B=0, and A=1. The corresponding Boolean expression is
, an expression that evaluates to TRUE if and only if C is 0, B is 0, and A is 1.

The Boolean expression corresponding to row 4 is . And so on for rows 7 and 8.

This approach will always give us an expression in the form of a sum-of-products. “Sum” refers to the
OR operations and “products” refers to the groups of AND operations. In this example, we have the
sum of four product terms.

Our next step is to use the Boolean expression as a recipe for constructing a circuit implementation
using combinational logic gates.

¯̄¯̄

C ⋅
¯̄¯̄

B ⋅ A

¯̄¯̄

C ⋅ B ⋅ A

Page 79

As circuit designers, we’ll be working with a library of combinational logic gates, which either is given
to us by the integrated circuit manufacturer, or which we’ve designed ourselves as CMOS gates using
NFET and PFET switches.

One of the simplest gates is the inverter, which has the schematic symbol shown here. The small circle
on the output wire indicates an inversion, a common convention used in schematics. We can see from
its truth table that the inverter implements the Boolean NOT function.

The AND gate outputs 1 if and only if the A input is 1 and the B input is 1, hence the name AND. The
library will usually include AND gates with 3 inputs, 4 inputs, etc., which produce a 1 output if and
only if all of their inputs are 1.

The OR gate outputs 1 if the A input is 1 *or* if the B input is 1, hence the name OR. Again, the
library will usually include OR gates with 3 inputs, 4 inputs, etc., which produce a 1 output when at
least one of their inputs is 1.

These are the standard schematic symbols for AND and OR gates. Note that the AND symbol is
straight on the input side, while the OR symbol is curved. With a little practice, you’ll find it easy to
remember which schematic symbols are which.

Now let’s use these building blocks to build a circuit that implements a sum-of-products Boolean
equation.

Page 80

The structure of the circuit exactly follows the structure of the Boolean equation. We use inverters to
perform the necessary Boolean NOT operations. In a sum-of-products equation the inverters are
operating on particular input values, in this case A, B and C. To keep the schematic easy to read we’ve
used a separate inverter for each of the four NOT operations in the Boolean equation, but in real life we
might invert the C input once to produce a NOT-C signal, then use that signal whenever a NOT-C value
is needed.

Each of the four product terms is built using a 3-input AND gate. And the product terms are ORed
together using a 4-input OR gate. The final circuit has a layer of inverters, a layer of AND gates and
final OR gate. In the next section, we’ll talk about how to build AND or OR gates with many inputs
from library components with fewer inputs.

The propagation delay for a sum-of-products circuit looks pretty short: the longest path from inputs to
outputs includes an inverter, an AND gate and an OR gate. Can we really implement any Boolean
equation in a circuit with a of three gate delays?

Actually not, since building ANDs and ORs with many inputs will require additional layers of
components, which will increase the propagation delay. We’ll learn about this in the next section.

The good news is that we now have straightforward techniques for converting a truth table to its
corresponding sum-of-products Boolean equation, and for building a circuit that implements that
equation.

tPD

Page 81

On our to-do list from the previous section is figuring out how to build AND and OR gates with many
inputs. These will be needed when creating circuit implementations using a sum-of-products equation
as our template. Let’s assume our gate library only has 2-input gates and figure how to build wider
gates using the 2-input gates as building blocks. We’ll work on creating 3- and 4-input gates, but the
approach we use can be generalized to create AND and OR gates of any desired width.

The approach shown here relies on the associative property of the AND operator. This means we can
perform an N-way AND by doing pair-wise ANDs in any convenient order. The OR and XOR
operations are also associative, so the same approach will work for designing wide OR and XOR
circuits from the corresponding 2-input gate. Simply substitute 2-input OR gates or 2-input XOR gates
for the 2-input AND gates shown below and you’re good to go!

Let’s start by designing a circuit that computes the AND of three inputs A, B, and C. In the circuit
shown here, we first compute (A AND B), then AND that result with C.

Using the same strategy, we can build a 4-input AND gate from three 2-input AND gates. Essentially
we’re building a chain of AND gates, which implement an N-way AND using N-1 2-input AND gates.

We can also associate the four inputs a different way: computing (A AND B) in parallel with (C AND
D), then combining those two results using a third AND gate. Using this approach, we’re building a
tree of AND gates.

Which approach is best: chains or trees? First we have to decide what we mean by “best.” When
designing circuits, we’re interested in cost, which depends on the number of components, and
performance, which we characterize by the propagation delay of the circuit.

Both strategies require the same number of components since the total number of pair-wise ANDs is
the same in both cases. So it’s a tie when considering costs. Now consider propagation delay.

The chain circuit in the middle has a of 3 gate delays, and we can see that the for an N-input
chain will be N-1 gate delays. The propagation delay of chains grows linearly with the number of

tPD tPD

Page 82

inputs.

The tree circuit on the bottom has a of 2 gates, smaller than the chain. The propagation delay of
trees grows logarithmically with the number of inputs. Specifically, the propagation delay of tree
circuits built using 2-input gates grows as log2(N). When N is large, tree circuits can have dramatically
better propagation delay than chain circuits.

The propagation delay is an upper bound on the worst-case delay from inputs to outputs and is a good
measure of performance assuming that all inputs arrive at the same time. But in large circuits, A, B, C
and D might arrive at different times depending on the of the circuit generating each one. Suppose
input D arrives considerably after the other inputs. If we used the tree circuit to compute the AND of
all four inputs, the additional delay in computing Z is two gate delays after the arrival of D. However,
if we use the chain circuit, the additional delay in computing Z might be as little as one gate delay.

The moral of this story: it’s hard to know which implementation of a subcircuit, like the 4-input AND
shown here, will yield the smallest overall unless we know the of the circuits that compute the
values for the input signals.

tPD

tPD

tPD tPD

Page 83

In designing CMOS circuits, the individual gates are naturally inverting, so instead of using AND and
OR gates, for the best performance we want to the use the NAND and NOR gates shown here. NAND
and NOR gates can be implemented as a single CMOS gate involving one pullup circuit and one
pulldown circuit. AND and OR gates require two CMOS gates in their implementation, e.g., a NAND
gate followed by an INVERTER. We’ll talk about how to build sum-of-products circuitry using
NANDs and NORs in the next section.

Note that NAND and NOR operations are not associative: NAND(A,B,C) is not equal to
NAND(NAND(A,B),C). So we can’t build a NAND gate with many inputs by building a tree of 2-
input NANDs. We’ll talk about this in the next section too!

We’ve mentioned the exclusive-or operation, sometimes called XOR, several times. This logic function
is very useful when building circuitry for arithmetic or parity calculations. As you’ll see in Lab 2,
implementing a 2-input XOR gate will take many more NFETs and PFETs than required for a 2-input
NAND or NOR.

Page 84

We know we can come up with a sum-of-products expression for any truth table and hence build a
circuit implementation using INVERTERs, AND gates, and OR gates. It turns out we can build circuits
with the same functionality using only 2-INPUT NAND gates — we say the 2-INPUT NAND is a
universal gate.

Here we show how to implement the sum-of-products building blocks using just 2-input NAND gates.
In a minute we’ll show a more direct implementation for sum-of-products using only NANDs, but
these little schematics are a proof-of-concept showing that NAND-only equivalent circuits exist.

2-INPUT NOR gates are also universal, as shown by these little schematics.

Inverting logic takes a little getting used to, but it’s the key to designing low-cost high-performance
circuits in CMOS.

Page 85

Now would be a good time to take a moment to look at the documentation for the library of logic gates
we’ll use for our designs — look for The Standard Cell Library handout. The information on this slide
is taken from there.

The library has both inverting gates (such as inverters, NANDs and NORs) and non-inverting gates
(such as buffers, ANDs and ORs). Why bother to include both types of gates? Didn’t we just learn we
can build any circuit using only NAND or NOR?

Good questions! We get some insight into the answers if we look at these three implementations for a
4-input AND function.

The upper circuit is a direct implementation using the 4-input AND gate available in the library. The
 of the gate is 160 picoseconds and its size is 20 square microns. Don’t worry too much about the

actual numbers, what matters on this slide is how the numbers compare between designs.

The middle circuit implements the same function, this time using a 4-INPUT NAND gate hooked to an
inverter to produce the AND functionality we want. The of this circuit is 90 picoseconds,
considerably faster than the single gate above. The tradeoff is that the size is somewhat larger.

How can this be? Especially since we know the AND gate implementation is the NAND/INVERTER
pair shown in the middle circuit. The answer is that the creators of the library decided to make the non-
inverting gates small but slow by using MOSFETs with much smaller widths than used in the inverting
logic gates, which were designed to be fast.

Why would we ever want to use a slow gate? Remember that the propagation delay of a circuit is set
by the longest path in terms of delay from inputs to outputs. In a complex circuit, there are many
input/output paths, but it’s only the components on the longest path that need to be fast in order to
achieve the best possible overall . The components on the other, shorter paths, can potentially be a
bit slower. And the components on short input/output paths can be very slow indeed. So for the
portions of the circuit that aren’t speed sensitive, it’s a good tradeoff to use slower but smaller gates.
The overall performance isn’t affected, but the total size is improved.

tPD

tPD

tPD

Page 86

So for faster performance we’ll design with inverting gates, and for smallest size we’ll design with
non-inverting gates. The creators of the gate library designed the available gates with this tradeoff in
mind.

The 4-input inverting gates are also designed with this tradeoff in mind. For the ultimate in
performance, we want to use a tree circuit of 2-input gates, as shown in the lower circuit. This
implementation shaves 10 picoseconds off the , while costing us a bit more in size.

Take a closer look at the lower circuit. This tree circuit uses two NAND gates whose outputs are
combined with a NOR gate. Does this really compute the AND of A, B, C, and D? Yup, as you can
verify by building the truth table for this combinational system using the truth tables for NAND and
NOR.

This circuit is a good example of the application of a particular Boolean identity known as Demorgan’s
Law. There are two forms of Demorgan’s law, both of which are shown here. The top form is the one
we’re interested in for analyzing the lower circuit. It tells us that the NOR of A with B is equivalent to
the AND of (NOT A) with (NOT B). So the 2-input NOR gate can be thought of as a 2-input AND
gate with inverting inputs. How does this help? We can now see that the lower circuit is actually a tree
of AND gates, where the inverting outputs of the first layer match up with the inverting inputs of the
second layer.

It’s a little confusing the first time you see it, but with practice you’ll be comfortable using Demorgan’s
law when building trees or chains of inverting logic.

tPD

Page 87

Using Demorgan’s Law we can answer the question of how to build NANDs and NORs with large
numbers of inputs. Our gate library includes inverting gates with up to 4 inputs. Why stop there? Well,
the pulldown chain of a 4-input NAND gate has 4 NFETs in series and the resistance of the conducting
channels is starting to add up. We could make the NFETs wider to compensate, but then the gate gets
much larger and the wider NFETs impose a higher capacitive load on the input signals. The number of
possible tradeoffs between size and speed grows rapidly with the number of inputs, so it’s usually just
best for the library designer to stop at 4-input gates and let the circuit designer take it from there.

Happily, Demorgan’s law shows us how build trees of alternating NANDs and NORs to build inverting
logic with a large number of inputs. Here we see schematics for an 8-input NAND and an 8-input NOR
gate.

Think of the middle layer of NOR gates in the left circuit as AND gates with inverting inputs and then
it’s easy to see that the circuit is a tree of ANDs with an inverting output.

Similarly, think of the middle layer of NAND gates in the right circuit as OR gates with inverting
inputs and see that we really have a tree of OR gates with an inverting output.

Page 88

Now let’s see how to build sum-of-products circuits using inverting logic. The two circuits shown here
implement the same sum-of-products logic function. The one on the top uses two layers of NAND
gates, the one on the bottom, two layers of NOR gates.

Let’s visualize Demorgan’s Law in action on the top circuit. The NAND gate with Y on its output can
be transformed by Demorgan’s Law into an OR gate with inverting inputs. So we can redraw the circuit
on the top left as the circuit shown on the top right. Now, notice that the inverting outputs of the first
layer are cancelled by the inverting inputs of the second layer [CLICK], a step we can show visually by
removing matching inversions. And, voila, we see the NAND/NAND circuit in sum-of-products form:
a layer of inverters, a layer of AND gates, and an OR gate to combine the product terms.

We can use a similar visualization to transform the output gate of the bottom circuit, giving us the
circuit on the bottom right. Match up the bubbles and we see that we have the same logic function as
above.

Looking at the NOR/NOR circuit on the bottom left, we see it has 4 inverters, where as the
NAND/NAND circuit only has one. Why would we ever use the NOR/NOR implementation? It has to
do with the loading on the inputs. In the top circuit, the input A connects to a total of four MOSFET
switches. In the bottom circuit, it connects to only the two MOSFET switches in the inverter. So, the
bottom circuit imposes half the capacitive load on the A signal. This might be significant if the signal A
connected to many such circuits.

The bottom line: when you find yourself needing a fast implementation for the AND/OR circuitry for a
sum-of-products expression, try using the NAND/NAND implementation. It’ll be noticeably faster
than using AND/OR.

Page 89

The previous sections showed us how to build a circuit that computes a given sum-of-products
expression. An interesting question to ask is if we can implement the same functionality using fewer
gates or smaller gates? In other words is there an equivalent Boolean expression that involves fewer
operations? Boolean algebra has many identities that can be used to transform an expression into an
equivalent, and hopefully smaller, expression.

The reduction identity in particular offers a transformation that simplifies an expression involving two
variables and four operations into a single variable and no operations. Let’s see how we might use that
identity to simplify a sum-of-products expression.

Page 90

Here’s the equation from the start of this chapter, involving 4 product terms. We’ll use a variant of the
reduction identity involving a Boolean expression alpha and a single variable A. Looking at the
product terms, the middle two offer an opportunity to apply the reduction identity if we let alpha be the
expression (C AND B). So we simplify the middle two product terms to just alpha, i.e., (C AND B),
eliminating the variable A from this part of the expression.

Considering the now three product terms, we see that the first and last terms can also be reduced, this
time letting alpha be the expression (NOT C and A). Wow, this equivalent equation is much smaller!
Counting inversions and pair-wise operations, the original equation has 14 operations, while the
simplified equation has 4 operations. The simplified circuit would be much cheaper to build and have a
smaller in the bargain!

Doing this sort of Boolean simplification by hand is tedious and error-prone. Just the sort of task a
computer program could help with. Such programs are in common use, but the computation needed to
discover the smallest possible form for an expression grows faster than exponentially as the number of
inputs increases. So for larger equations, the programs use various heuristics to choose which
simplifications to apply. The results are quite good, but not necessarily optimal. But it sure beats doing
the simplification by hand!

tPD

Page 91

Another way to think about simplification is by searching the truth table for don’t-care situations. For
example, look at the first and third rows of the original truth table on the left. In both cases A is 0, C is
0, and the output Y is 0. The only difference is the value of B, which we can then tell is irrelevant when
both A and C are 0. This gives us the first row of the truth table on the right, where we use X to
indicate that the value of B doesn’t matter when A and C are both 0. By comparing rows with the same
value for Y, we can find other don’t-care situations.

The truth table with don’t-cares has only three rows where the output is 1. And, in fact, the last row is
redundant in the sense that the input combinations it matches (011 and 111) are covered by the second
and fourth rows.

The product terms derived from rows two and four are exactly the product terms we found by applying
the reduction identity.

Page 92

Do we always want to use the simplest possible equation as the template for our circuits? Seems like
that would minimize the circuit cost and maximize performance, a good thing.

The simplified circuit is shown here. Let’s look at how it performs when A is 1, B is 1, and C makes a
transition from 1 to 0. Before the transition, C is 1 and we can see from the annotated node values that
it’s the bottom AND gate that’s causing the Y output to be 1.

When C transitions to 0, the bottom AND gate turns off and the top AND gate turns on, and, eventually
the Y output becomes 1 again. But the turning on of the top AND is delayed by the of the inverter,
so there’s a brief period of time where neither AND gate is on, and the output momentarily becomes 0.
This short blip in Y’s value is called a glitch and it may result in short-lived changes on many node
values as it propagates through other parts of the circuit. All those changes consume power, so it would
be good to avoid these sorts of glitches if we can.

If we include the third product term BA in our implementation, the circuit still computes the same
long-term answer as before. But now when A and B are both high, the output Y will be 1
independently of the value of the C input. So the 1-to-0 transition on the C input doesn’t cause a glitch
on the Y output. If you recall the last section of the previous chapter, the phrase we used to describe
such circuits is lenient.

tPD

Page 93

When trying to minimize a sum-of-products expression using the reduction identity, our goal is to find
two product terms that can be written as one smaller product term, eliminating the don’t-care variable.
This is easy to do when two the product terms come from adjacent rows in the truth table. For example,
look at the bottom two rows in this truth table. Since the Y output is 1 in both cases, both rows will be
represented in the sum-of-products expression for this function. It’s easy to spot the don’t care variable:
when C and B are both 1, the value of A isn’t needed to determine the value of Y. Thus, the last two
rows of the truth table can be represented by the single product term (B AND C).

Finding these opportunities would be easier if we reorganized the truth table so that the appropriate
product terms were on adjacent rows. That’s what we’ve done in the Karnaugh map, K-map for short,
shown on the right. The K-map organizes the truth table as a two-dimensional table with its rows and
columns labeled with the possible values for the inputs. In this K-map, the first row contains entries for
when C is 0 and the second row contains entries for when C is 1. Similarly, the first column contains
entries for when A is 0 and B is 0. And so on. The entries in the K-map are exactly the same as the
entries in the truth table, they’re just formatted differently.

Note that the columns have been listed in a special sequence that’s different from the usual binary
counting sequence. In this sequence, called a Gray Code, adjacent labels differ in exactly one of their
bits. In other words, for any two adjacent columns, either the value of the A label changed, or the value
of the B label changed.

In this sense, the leftmost and rightmost columns are also adjacent. We write the table as a two-
dimensional matrix, but you should think of it as cylinder with its left and right edges touching. If it
helps you visualize which entries are adjacent, the edges of the cube shows which 3-bit input values
differ by only one bit. As shown by the red arrows, if two entries are adjacent in the cube, they are also
adjacent in the table.

Page 94

It’s easy to extend the K-map notation to truth tables for functions with 4 inputs, as shown here. We’ve
used a Gray code sequencing for the rows as well as the columns. As before, the leftmost and rightmost
columns are adjacent, as are the top and bottom rows. Again, as we move to an adjacent column or an
adjacent row, only one of the four input labels will have changed.

To build a K-map for functions of 6 variables we’d need a 4x4x4 matrix of values. That’s hard to draw
on the 2D page and it would be a challenge to tell which cells in the 3D matrix were adjacent. For more
than 6 variables we’d need additional dimensions. Something we can handle with computers, but hard
those of us who live in only a three-dimensional space!

As a practical matter, K-maps work well for up to 4 variables, and we’ll stick with that. But keep in
mind that you can generalize the K-map technique to higher dimensions.

Page 95

So why talk about K-maps? Because patterns of adjacent K-map entries that contain 1’s will reveal
opportunities for using simpler product terms in our sum-of-products expression.

Let’s introduce the notion of an implicant, a fancy name for a rectangular region of the K-map where
the entries are all 1’s. Remember when an entry is a 1, we’ll want the sum-of-products expression to
evaluate to TRUE for that particular combination of input values.

We require the width and length of the implicant to be a power of 2, i.e., the region should have 1, 2, or
4 rows, and 1, 2, or 4 columns.

It’s okay for implicants to overlap. We say that an implicant is a prime implicant if it is not completely
contained in any other implicant. Each product term in our final minimized sum-of-products expression
will be related to some prime implicant in the K-map.

Let’s see how these rules work in practice using these two example K-maps. As we identify prime
implicants, we’ll circle them in red. Starting with the K-map on the left, the first implicant contains the
singleton 1-cell that’s not adjacent to any other cell containing 1’s.

The second prime implicant is the pair of adjacent 1’s in the upper right hand corner of the K-map.
This implicant is has one row and two columns, meeting our constraints on an implicant’s dimensions.

Finding the prime implicants in the right-hand K-map is a bit trickier. Recalling that the left and right
columns are adjacent, we can spot a 2x2 prime implicant. Note that this prime implicant contains many
smaller 1x2, 2x1 and 1x1 implicants, but none of those would be prime implicants since they are
completely contained in the 2x2 implicant.

It’s tempting draw a 1x1 implicant around the remaining 1, but actually we want to find the largest
implicant that contains this particular cell. In this case, that’s the 1x2 prime implicant shown here. Why
do we want to find the largest possible prime implicants? We’ll answer that question in a minute...

Page 96

Each implicant can be uniquely identified by a product term, a Boolean expression that evaluates to
TRUE for every cell contained within the implicant and FALSE for all other cells. Just as we did for
the truth table rows at the beginning of this chapter, we can use the row and column labels to help us
build the correct product term.

The first implicant we circled corresponds to the product term , an expression that evaluates
to TRUE when A is 0, B is 0, and C is 1.

How about the 1x2 implicant in the upper-right hand corner? We don’t want include the input variables
that change as we move around in the implicant. In this case the two input values that remain constant
are C (which has the value 0) and A (which has the value 1), so the corresponding product term is

.

Here are the two product terms for the two prime implicants in the right-hand K-map. Notice that the
larger the prime implicant, the smaller the product term! That makes sense: as we move around inside a
large implicant, the number of inputs that remain constant across the entire implicant is smaller. Now
we see why we want to find the largest possible prime implicants: they give us the smallest product
terms!

¯̄¯̄
A ⋅

¯̄¯̄
B ⋅ C

A ⋅
¯̄¯̄

C

Page 97

Let’s try another example. Remember that we’re looking for the largest possible prime implicants. A
good way to proceed is to find some un-circled 1, and then identify the largest implicant we can find
that incorporates that cell.

There’s a 2x4 implicant that covers the middle two rows of the table. Looking at the 1’s in the top row,
we can identify two 2x2 implicants that include those cells.

There’s a 4x1 implicant that covers the right column, leaving the lonely 1 in the lower left-hand corner
of the table. Looking for adjacent 1’s and remembering the table is cyclic, we can find a 2x2 implicant
that incorporates this last un-circled 1.

Notice that we’re always looking for the largest possible implicant, subject to constraint that each
dimension has to be either 1, 2 or 4. It’s these largest implicants that will turn out to be prime
implicants.

Page 98

Now that we’ve identified the prime implicants, we’re ready to build the minimal sum-of-products
expression.

Here are two example K-maps where we’ve shown only the prime implicants needed to cover all the
1’s in the map. This means, for example, that in the 4-variable map, we didn’t include the 4x1
implicant covering the right column. That implicant was a prime implicant since it wasn’t completely
contained by any other implicant, but it wasn’t needed to provide a cover for all the ones in the table.

Looking at the top table, we’ll assemble the minimal sum-of-products expression by including the
product terms for each of the shown implicants. The top implicant has the product term A AND (not
C), and the bottom implicant has the product term (B AND C). And we’re done! Why is the resulting
equation minimal? If there was some further reduction that could be applied, to produce a yet smaller
product term, that would mean there was a larger prime implicant that could have been circled in the
K-map.

Looking the bottom table, we can assemble the sum-of-products expression term-by-term. There were
4 prime implicants, so there are 4 product terms in the expression.

And we’re done. Finding prime implicants in a K-map is faster and less error-prone that fooling around
with Boolean algebra identities.

Note that the minimal sum-of-products expression isn’t necessarily unique. If we had used a different
mix of the prime implicants when building our cover, we would have come up with different sum-of-
products expression. Of course, the two expressions are equivalent in the sense that they produce the
same value of Y for any particular combination of input values — they were built from the same truth
table after all. And the two expressions will have the same number of operations.

So when you need to come with up a minimal sum-of-products expression for functions of up to 4
variables, K-maps are the way to go!

Page 99

We can also use K-maps to help us remove glitches from output signals. Earlier in the chapter we saw
this circuit and observed that when A was 1 and B was 1, then a 1-to-0 transition on C might produce a
glitch on the Y output as the bottom product term turned off and the top product term turned on.

That particular situation is shown by the yellow arrow on the K-map, where we’re transitioning from
the cell on the bottom row of the 1-1 column to the cell on the top row. It’s easy to see that we’re
leaving one implicant and moving to another. It’s the gap between the two implicants that leads to the
potential glitch on Y.

It turns out there’s a prime implicant that covers the cells involved in this transition shown here with a
dotted red outline. We didn’t include it when building the original sum-of-products implementation
since the other two product terms provided the necessary functionality. But if we do include that
implicant as a third product term in the sum-of products, no glitch can occur on the Y output.

To make an implementation lenient, simply include all the prime implicants in the sum-of-products
expression. That will bridge the gaps between product terms that lead to potential output glitches.

Page 100

The truth table we’ve been using as an example describes a very useful combinational device called a
2-to-1 multiplexer. A multiplexer, or MUX for short, selects one of its two input values as the output
value. When the select input, marked with an S in the diagram, is 0, the value on data input D0
becomes the value of the Y output. When S is 1, the value of data input D1 is selected as the Y output
value.

MUXes come in many sizes, depending on the number of select inputs. A MUX with K select inputs
will choose between the values of data inputs. For example, here’s a 4-to-1 multiplexer with 4 data
inputs and 2 select inputs.

Larger MUXes can be built from a tree of 2-to-1 MUXes, as shown here.

2
K

Page 101

Why are MUXes interesting? One answer is that they provide a very elegant and general way of
implementing a logic function. Consider the 8-to-1 MUX shown on the right. The 3 inputs — A, B,
and CIN — are used as the three select signals for the MUX. Think of the three inputs as forming a 3-
bit binary number. For example, when they’re all 0, the MUX will select data input 0, and when they’re
all 1, the MUX will select data input 7, and so on.

How does make it easy to implement the logic function shown in the truth table? Well, we’ll wire up
the data inputs of the MUX to the constant values shown in the output column in the truth table. The
values on the A, B and CIN inputs will cause the MUX to select the appropriate constant on the data
inputs as the value for the COUT output.

If later on we change the truth table, we don’t have to redesign some complicated sum-of-products
circuit, we simply have to change the constants on the data inputs. Think of the MUX as a table-lookup
device that can be reprogrammed to implement, in this case, any three-input equation. This sort of
circuit can be used to create various forms of programmable logic, where the functionality of the
integrated circuit isn’t determined at the time of manufacture, but is set during a programming step
performed by the user at some later time. Modern programmable logic circuits can be programmed to
replace millions of logic gates. Very handy for prototyping digital systems before committing to the
expense of a custom integrated circuit implementation.

Page 102

So MUXes with N select lines are effectively stand-ins for N-input logic circuits. Such a MUX would
have data inputs. They’re useful for N up to 5 or 6, but for functions with more inputs, the
exponential growth in circuit size makes them impractical.

Not surprisingly, MUXes are universal as shown by these MUX-based implementations for the sum-of-
products building blocks. There is some speculation that in molecular-scale logic technologies, MUXes
may be the natural gate, so it’s good to know they can be used to implement any logic function.

Even XOR is simple to implement with a single 2-to-1 MUX!

2
N

Page 103

Here’s a final logic implementation strategy using read-only memories. This strategy is useful when
you need to generate many different outputs from the same set of inputs, a situation we’ll see a lot
when we get to finite state machines later on in the course. Where MUXes are good for implementing
truth tables with one output column, read-only memories are good for implementing truth tables with
many output columns.

One of the key components in a read-only memory is the decoder which has K select inputs and
data outputs. Only one of the data outputs will be 1 (or HIGH) at any given time, which one is
determined by the value on the select inputs. The Jth output will be 1 when the select lines are set to
the binary representation of J.

2
K

Page 104

Here’s a read-only memory implementation for the 2-output truth table shown on the left. This
particular 2-output device is a full adder, which is used as a building block in addition circuits.

The three inputs to the function (A, B, and CI) are connected to the select lines of a 3-to-8 decoder. The
8 outputs of the decoder run horizontally in the schematic diagram and each is labeled with the input
values for which that output will be HIGH. So when the inputs are 000, the top decoder output will be
HIGH and all the other decoder outputs LOW. When the inputs are 001 — i.e., when A and B are 0 and
CI is 1 — the second decoder output will be HIGH. And so on.

The decoder outputs control a matrix of NFET pulldown switches. The matrix has one vertical column
for each output of the truth table. Each switch connects a particular vertical column to ground, forcing
it to a LOW value when the switch is on. The column circuitry is designed so that if no pulldown
switches force its value to 0, its value will be a 1. The value on each of the vertical columns is inverted
to produce the final output values.

Page 105

So how do we use all this circuitry to implement the function described by the truth table? For any
particular combination of input values, exactly one of the decoder outputs will be HIGH, all the others
will be low. Think of the decoder outputs as indicating which row of the truth table has been selected
by the input values. All of the pulldown switches controlled by the HIGH decoder output will be turned
ON, forcing the vertical column to which they connect LOW.

For example, if the inputs are 001, the decoder output labeled 001 will be HIGH. This will turn on the
circled pulldown switch, forcing the S vertical column LOW . The COUT vertical column is not pulled
down, so it will be HIGH. After the output inverters, S will be 1 and COUT will be 0, the desired
output values.

By changing the locations of the pulldown switches, this read-only memory can be programmed to
implement any 3-input, 2-output function.

Page 106

For read-only memories with many inputs, the decoders have many outputs and the vertical columns in
the switch matrix can become quite long and slow. We can reconfigure the circuit slightly so that some
of the inputs control the decoder and the other inputs are used to select among multiple shorter and
faster vertical columns. This combination of smaller decoders and output MUXes is quite common in
these sorts of memory circuits.

Page 107

Read-only memories, ROMs for short, are an implementation strategy that ignores the structure of the
particular Boolean expression to be implemented. The ROM’s size and overall layout are determined
only by the number of inputs and outputs. Typically the switch matrix is fully populated, with all
possible switch locations filled with an NFET pulldown. A separate physical or electrical programming
operation determines which switches are actually controlled by the decoder lines. The other switches
are configured to be in the permanently off state.

If the ROM has N inputs and M outputs, then the switch matrix will have rows and M output
columns, corresponding exactly to the size of the truth table.

As the inputs to the ROM change, various decoder outputs will turn off and on, but at slightly different
times. As the decoder lines cycle, the output values may change several times until the final
configuration of the pulldown switches is stable. So ROMs are not lenient and the outputs may show
the glitchy behavior discussed earlier.

2
N

Page 108

Whew! This has been a whirlwind tour of various circuits we can use to implement logic functions.
The sum-of-products approach lends itself nicely to implementation with inverting logic. Each circuit
is custom-designed to implement a particular function and as such can be made both fast and small.
The design and manufacturing expense of creating such circuits is worthwhile when you need high-end
performance or are producing millions of devices.

MUX and ROM circuit implementations are mostly independent of the specific function to be
implemented. That’s determined by a separate programming step, which may be completed after the
manufacture of the devices. They are particularly suited for prototyping, low-volume production, or
devices where the functionality may need to be updated after the device is out in the field.

Page 109

L5: Sequential Logic

1. Something We Can't Build (Yet)
2. Digital State: What We'd Like to Build
3. Memory: Using Capacitors
4. Memory: Using Feedback
5. Settable Memory Element
6. New Device: D Latch
7. A Plea for Lenience
8. ... With a Little Discipline
9. Let’s Try it Out!

10. Flakey Control Systems
11. Solution: Escapement Strategy (2 Gates)
12. Edge-triggered D Register
13. D-Register Waveforms
14. Um, About That Hold Time...
15. D-Register Timing
16. Single-clock Synchronous Circuits
17. Timing in a Single-clock System
18. Model: Discrete Time
19. Sequential Circuit Timing
20. Summary

Page 110

In the last lecture we learned how to build combinational logic circuits given a functional specification
that told us how output values were related to the current values of the inputs.

But here’s a simple device we can’t build with combinational logic. The device has a light that serves
as the output and push button that serves as the input. If the light is off and we push the button, the
light turns on. If the light is on and we push the button, the light turns off.

What makes this circuit different from the combinational circuits we’ve discussed so far? The biggest
difference is that the device’s output is not function of the device’s *current* input value. The behavior
when the button is pushed depends on what has happened in the past: odd numbered pushes turn the
light on, even numbered pushes turn the light off. The device is “remembering” whether the last push
was an odd push or an even push so it will behave according to the specification when the next button
push comes along. Devices that remember something about the history of their inputs are said to have
state.

The second difference is more subtle. The push of the button marks an event in time: we speak of the
state before the push (“the light is on”) and state after the push (“the light is off”). It’s the transition of
the button from un-pushed to pushed that we’re interested in, not the whether the button is currently
pushed or not.

The device’s internal state is what allows it to produce different outputs even though it receives the
same input. A combinational device can’t exhibit this behavior since its outputs depends only on the
current values of the input. Let’s see how we’ll incorporate the notion of device state into our circuitry.

Page 111

We’ll introduce a new abstraction of a memory component that will store the current state of the digital
system we want to build. The memory component stores one or more bits that encode the current state
of the system. These bits are available as digital values on the memory component’s outputs, shown
here as the wire marked “Current State”.

The current state, along with the current input values, are the inputs to a block of combinational logic
that produces two sets of outputs. One set of outputs is the next state of the device, encoded using the
same number of bits as the current state. The other set of outputs are the signals that serve as the
outputs of the digital system. The functional specification for the combinational logic (perhaps a truth
table, or maybe a set of Boolean equations) specifies how the next state and system outputs are related
to the current state and current inputs.

The memory component has two inputs: a LOAD control signal that indicates when to replace the
current state with the next state, and a data input that specifies what the next state should be. Our plan
is to periodically trigger the LOAD control, which will produce a sequence of values for the current
state. Each state in the sequence is determined from the previous state and the inputs at the time the
LOAD was triggered.

Circuits that include both combinational logic and memory components are called sequential logic. The
memory component has a specific capacity measured in bits. If the memory component stores K bits,
that puts an upper bound of on the number of possible states since the state of the device is encoded
using the K bits of memory.

So, we’ll need to figure out how to build a memory component that can loaded with new values now
and then. That’s the subject of this chapter. We’ll also need a systematic way of designing sequential
logic to achieve the desired sequence of actions. That’s the subject of the next chapter.

2K

Page 112

We’ve been representing bits as voltages, so we might consider using a capacitor to store a particular
voltage. The capacitor is passive two-terminal device. The terminals are connected to parallel
conducting plates separated by insulator. Adding charge Q to one plate of the capacitor generates a
voltage difference V between the two plate terminals. Q and V are related by the capacitance C of the
capacitor: Q = CV.

When we add charge to a capacitor by hooking a plate terminal to higher voltage, that’s called
“charging the capacitor”. And when we take away charge by connecting the plate terminal to a lower
voltage, that’s called “discharging the capacitor”.

So here’s how a capacitor-based memory device might work. One terminal of the capacitor is hooked
to some stable reference voltage. We’ll use an NFET switch to connect the other plate of the capacitor
to a wire called the bit line. The gate of the NFET switch is connected to a wire called the word line.

To write a bit of information into our memory device, drive the bit line to the desired voltage (i.e., a
digital 0 or a digital 1). Then set the word line HIGH, turning on the NFET switch. The capacitor will
then charge or discharge until it has the same voltage as the bit line. At this point, set the word line
LOW, turning off the NFET switch and isolating the capacitor’s charge on the internal plate. In a
perfect world, the charge would remain on the capacitor’s plate indefinitely.

At some later time, to access the stored information, we first charge the bit line to some intermediate
voltage. Then set the word line HIGH, turning on the NFET switch, which connects the charge on the
bit line to the charge on the capacitor. The charge sharing between the bit line and capacitor will have
some small effect on the charge on the bit line and hence its voltage. If the capacitor was storing a
digital 1 and hence was at a higher voltage, charge will flow from the capacitor into the bit line, raising
the voltage of the bit line. If the capacitor was storing a digital 0 and was at lower voltage, charge will
flow from the bit line into the capacitor, lowering the voltage of the bit line. The change in the bit line’s
voltage depends on the ratio of the bit line capacitance to C, the storage capacitor’s capacitance, but is
usually quite small. A very sensitive amplifier, called a sense amp, is used to detect that small change
and produce a legal digital voltage as the value read from the memory cell.

Page 113

Whew! Reading and writing require a whole sequence of operations, along with carefully designed
analog electronics. The good news is that the individual storage capacitors are quite small — in modern
integrated circuits we can fit billions of bits of storage on relatively inexpensive chips called dynamic
random-access memories, or DRAMs for short. DRAMs have a very low cost per bit of storage.

The bad news is that the complex sequence of operations required for reading and writing takes a
while, so access times are relatively slow. And we have to worry about carefully maintaining the
charge on the storage capacitor in the face of external electrical noise. The really bad news is that the
NFET switch isn’t perfect and there’s a tiny amount leakage current across the switch even when it’s
officially off. Over time that leakage current can have a noticeable impact on the stored charge, so we
have to periodically refresh the memory by reading and re-writing the stored value before the leakage
has corrupted the stored information. In current technologies, this has to be done every 10ms or so.

Hmm. Maybe we can get around the drawbacks of capacitive storage by designing a circuit that uses
feedback to provide a continual refresh of the stored information...

Page 114

Here’s a circuit using combinational inverters hooked in a positive feedback loop. If we set the input of
one of the inverters to a digital 0, it will produce a digital 1 on its output. The second inverter will then
a produce a digital 0 on its output, which is connected back around to the original input. This is a stable
system and these digital values will be maintained, even in the presence of noise, as long as this
circuitry is connected to power and ground. And, of course, it’s also stable if we flip the digital values
on the two wires. The result is a system that has two stable configurations, called a bi-stable storage
element.

Here’s the voltage transfer characteristic showing how and of the two-inverter system are
related. The effect of connecting the system’s output to its input is shown by the added constraint that

 equal . We can then graphically solve for values of and that satisfy both
constraints. There are three possible solutions where the two curves intersect.

The two points of intersection at either end of the VTC are stable in the sense that small changes in
(due, say, to electrical noise), have no effect on . So the system will return to its stable state
despite small perturbations.

The middle point of intersection is what we call metastable. In theory the system could “balance” at
this particular voltage forever, but the smallest perturbation will cause the voltages to
quickly transition to one of the stable solutions. Since we’re planing to use this bi-stable storage
element as our memory component, we’ll need to figure out how to avoid getting the system into this
metastable state. More on this in the next chapter.

Now let’s figure out how to load new values into our bi-stable storage element.

VOUT VIN

VIN VOUT VIN VOUT

VIN

VOUT

VIN/VOUT

Page 115

We can use a 2-to-1 multiplexer to build a settable storage element. Recall that a MUX selects as its
output value the value of one of its two data inputs. The output of the MUX serves as the state output
of the memory component. Internally to the memory component we’ll also connect the output of the
MUX to its D0 data input. The MUX{}’s D1 data input will become the data input of the memory
component. And the select line of the MUX will become the memory component’s load signal, here
called the gate.

When the gate input is LOW, the MUX{}’s output is looped back through MUX through the D0 data
input, forming the bi-stable positive feedback loop discussed in the last section. Note our circuit now
has a cycle, so it no longer qualifies as a combinational circuit.

When the gate input is HIGH, the MUX{}’s output is determined by the value of the D1 input, i.e., the
data input of the memory component.

To load new data into the memory component, we set the gate input HIGH for long enough for the Q
output to become valid and stable. Looking at the truth table, we see that when G is 1, the Q output
follows the D input. While the G input is HIGH, any changes in the D input will be reflected as
changes in the Q output, the timing being determined by the tPD of the MUX.

Then we can set the gate input LOW to switch the memory component into memory mode, where the
stable Q value is maintained indefinitely by the positive feedback loop as shown in the first two rows of
the truth table.

Page 116

Our memory device is a called a D latch, or just a latch for short, with the schematic symbol shown
here.

When the latch’s gate is HIGH, the latch is open and information flows from the D input to the Q
output. When the latch’s gate is LOW, the latch is closed and in “memory mode”, remembering
whatever value was on the D input when the gate transitioned from HIGH to LOW.

This is shown in the timing diagrams on the right. The waveforms show when a signal is stable, i.e., a
constant signal that’s either LOW or HIGH, and when a signal is changing, shown as one or more
transitions between LOW and HIGH.

When G is HIGH, we can see Q changing to a new stable output value no later than tPD after D
reaches a new stable value.

Our theory is that after G transitions to a LOW value, Q will stay stable at whatever value was on D
when G made the HIGH to LOW transition. But, we know that in general, we can’t assume anything
about the output of a combinational device until tPD after the input transition — the device is allowed
to do whatever it wants in the interval between tCD and tPD after the input transition. But how will our
memory work if the 1-to-0 transition on G causes the Q output to become invalid for a brief interval?
After all it’s the value on the Q output we’re trying to remember! We’re going to have ensure that a 1-
to-0 transition on G doesn’t affect the Q output.

Page 117

That’s why we specified a lenient MUX for our memory component. The truth table for a lenient MUX
is shown here. The output of a lenient MUX remains valid and stable even after an input transition
under any of the following three conditions.

(1) When we’re loading the latch by setting G HIGH, once the D input has been valid and stable for
tPD, we are guaranteed that the Q output will be stable and valid with the same value as the D input,
independently of Q’s initial value.

Or (2) If both Q and D are valid and stable for tPD, the Q output will be unaffected by subsequent
transitions on the G input. This is the situation that will allow us to have a 1-to-0 transition on G
without contaminating the Q output.

Or, finally, (3) if G is LOW and Q has been stable for at least tPD, the output will be unaffected by
subsequent transitions on the D input.

Does lenience guarantee a working latch? Well, only if we’re careful about ensuring that signals are
stable at the right times so we can leverage the lenient behavior of the MUX.

Page 118

Here are the steps we need to follow in order to ensure the latch will work as we want.

First, while the G input is HIGH, set the D input to the value we wish store in the latch. Then, after
tPD, we’re guaranteed that value will be stable and valid on the Q output. This is condition (1) from the
previous slide.

Now we wait another tPD so that the information about the new value on the Q’ input propagates
through the internal circuitry of the latch. Now, both D *and* Q’ have been stable for at least tPD,
giving us condition (2) from the previous slide.

So if D is stable for 2*tPD, transitions on G will not affect the Q output. This requirement on D is
called the setup time of the latch: it’s how long D must be stable and valid before the HIGH-to-LOW
transition of G.

Now we can set G to LOW, still holding D stable and valid. After another tPD to allow the new G
value to propagate through the internal circuitry of the latch, we’ve satisfied condition (3) from the
previous slide, and the Q output will be unaffected by subsequent transitions on D.

This further requirement on D’s stability is called the hold time of the latch: it’s how long after the
transition on G that D must stay stable and valid.

Together the setup and hold time requirements are called the dynamic discipline, which must be
followed if the latch is to operate correctly.

In summary, the dynamic discipline requires that the D input be stable and valid both both before and
after a transition on G. If our circuit is designed to obey the dynamic discipline, we can guarantee that
this memory component will reliably store the information on D when the gate makes a HIGH-to-LOW
transition.

Page 119

Let’s try using the latch as the memory component in our sequential logic system.

To load the encoding of the new state into the latch, we open the latch by setting the latch’s gate input
HIGH, letting the new value propagate to the latch’s Q output, which represents the current state. This
updated value propagates through the combinational logic, updating the new state information. Oops, if
the gate stays HIGH too long, we’ve created a loop in our system and our plan to load the latch with
new state goes awry as the new state value starts to change rapidly as information propagates around
and around the loop.

So to make this work, we need to carefully time the interval when G is HIGH. It has to be long enough
to satisfy the constraints of the dynamic discipline, but it has to be short enough that the latch closes
again before the new state information has a chance to propagate all the way around the loop.

Hmm. I think Mr. Blue is right: this sort of tricky system timing would likely be error-prone since the
exact timing of signals is almost impossible to guarantee. We have upper and lower bounds on the
timing of signal transitions but no guarantees of exact intervals. To make this work, we want to a load
signal that marks an instant in time, not an interval.

Page 120

Here’s an analogy that will help us understand what’s happening and what we can do about it. Imagine
a line cars waiting at a toll booth gate. The sequence of cars represents the sequence of states in our
sequential logic and the gated toll both represents the latch.

Initially the gate is closed and the cars are waiting patiently to go through the toll booth. When the gate
opens, the first car proceeds out of the toll both. But you can see that the timing of when to close the
gate is going to be tricky. It has to be open long enough for the first car to make it through, but not too
long lest the other cars also make it through. This is exactly the issue we faced with using the latch as
our memory component in our sequential logic.

So how do we ensure only one car makes it through the open gate?

Page 121

One solution is to use two gates! Here’s the plan: Initially Gate 1 is open allowing exactly one car to
enter the toll booth and Gate 2 is closed. Then at a particular point in time, we close Gate 1 while
opening Gate 2. This lets the car in the toll booth proceed on, but prevents any other car from passing
through. We can repeat this two-step process to deal with each car one-at-time. The key is that at no
time is there a path through both gates.

This is the same arrangement as the escapement mechanism in a mechanical clock. The escapement
ensures that the gear attached to the clock’s spring only advances one tooth at a time, preventing the
spring from spinning the gear wildly causing a whole day to pass at once!

If we observed the toll booth’s output, we would see a car emerge shortly after the instant in time when
Gate 2 opens. The next car would emerge shortly after the next time Gate 2 opens, and so on. Cars
would proceed through the toll booth at a rate set by the interval between Gate 2 openings.

Let’s apply this solution to design a memory component for our sequential logic.

Page 122

Taking our cue from the 2-gate toll both, we’ll design a new component, called a D register, using two
back-to-back latches. The load signal for a D register is typically called the register’s “clock”, but the
register’s D input and Q output play the same roles as they did for the latch.

First we’ll describe the internal structure of the D register, then we’ll describe what it does and look in
detail at how it does it.

The D input is connected to what we call the master latch and the Q output is connected to the slave
latch.

Note that the clock signal is inverted before it’s connected to the gate input of the master latch. So
when the master latch is open, the slave is closed, and vice versa. This achieves the escapement
behavior we saw on the previous slide: at no time is there active path from the register’s D input to the
register’s Q output.

The delay introduced by the inverter on the clock signal might give us cause for concern. When there’s
a rising 0-to-1 transition on the clock signal, might there be a brief interval when the gate signal is
HIGH for both latches since there will be a small delay before the inverter’s output transitions from 1
to 0? Actually the inverter isn’t necessary: Mr Blue is looking at a slightly different latch schematic
where the latch is open when G is LOW and closed when G is high. Just what we need for the master
latch!

By the way, you’ll sometimes hear a register called a flip-flop because of the bistable nature of the
positive feedback loops in the latches.

That’s the internal structure of the D register. In the next section we’ll take a step-by-step tour of the
register in operation.

Page 123

We’ll get a good understanding of how the register operates as we follow the signals through the
circuit.

The overall operation of the register is simple: At the rising 0-to-1 transition of the clock input, the
register samples the value of the D input and stores that value until the next rising clock edge. The Q
output is simply the value stored in the register. Let’s see how the register implements this
functionality.

The clock signal is connected to the gate inputs of the master and slave latches. Since all the action
happens when the clock makes a transition, it’s those events we’ll focus on. The clock transition from
LOW to HIGH is called the rising edge of the clock. And its transition from HIGH to LOW is called
the falling edge. Let’s start by looking the operation of the master latch and its output signal, which is
labeled STAR in the diagram.

On the rising edge of the clock, the master latch goes from open to closed, sampling the value on its
input and entering memory mode. The sampled value thus becomes the output of the latch as long as
the latch stays closed. You can see that the STAR signal remains stable whenever the clock signal is
high.

On the falling edge of the clock the master latch opens and its output will then reflect any changes in
the D input, delayed by the tPD of the latch.

Now let’s figure out what the slave is doing. It’s output signal, which also serves as the output of D
register, is shown as the bottom waveform. On the rising edge of the clock the slave latch opens and its
output will follow the value of the STAR signal. Remember though that the STAR signal is stable
while the clock is HIGH since the master latch is closed, so the Q signal is also stable after an initial
transition if value saved in the slave latch is changing.

At the falling clock edge [CLICK], the slave goes from open to closed, sampling the value on its input
and entering memory mode. The sampled value then becomes the output of the slave latch as long as

Page 124

the latch stays closed. You can see that that the Q output remains stable whenever the clock signal is
LOW.

Now let’s just look at the Q signal by itself for a moment. It only changes when the slave latch opens at
the rising edge of the clock. The rest of the time either the input to slave latch is stable or the slave
latch is closed. The change in the Q output is triggered by the rising edge of the clock, hence the name
“positive-edge-triggered D register”.

The convention for labeling the clock input in the schematic icon for an edge-triggered device is to use
a little triangle. You can see that here in the schematic symbol for the D register.

Page 125

There is one tricky problem we have to solve when designing the circuitry for the register. On the
falling clock edge, the slave latch transitions from open to closed and so its input (the STAR signal)
must meet the setup and hold times of the slave latch in order to ensure correct operation.

The complication is that the master latch opens at the same time, so the STAR signal may change
shortly after the clock edge. The contamination delay of the master latch tells us how long the old value
will be stable after the falling clock edge. And the hold time on the slave latch tells us how long it has
to remain stable after the falling clock edge.

So to ensure correct operation of the slave latch, the contamination delay of the master latch has to be
greater than or equal to the hold time of the slave latch. Doing the necessary analysis can be a bit tricky
since we have to consider manufacturing variations as well as environmental factors such as
temperature and power supply voltage. If necessary, extra gate delays (e.g., pairs of inverters) can be
added between the master and slave latches to increase the contamination delay on the slave’s input
relative to the falling clock edge. Note that we can only solve slave latch hold time issues by changing
the design of the circuit.

Page 126

Here’s a summary of the timing specifications for a D register.

Changes in the Q signal are triggered by a rising edge on the clock input. The propagation delay of
the register is an upper bound on the time it takes for the Q output to become valid and stable after the
rising clock edge.

The contamination delay of the register is a lower bound on the time the previous value of Q remains
valid after the rising clock edge.

Note that both and are measured relative to the rising edge of the clock. Registers are designed
to be lenient in the sense that if the previous value of Q and the new value of Q are the same, the
stability of the Q signal is guaranteed during the rising clock edge. In other words, the and
specifications only apply when the Q output actually changes.

In order to ensure correct operation of the master latch, the register’s D input must meet the setup and
hold time constraints for the master latch. So the following two specifications are determined by the
timing of the master latch.

 is the amount of time that the D input must be valid and stable before the rising clock edge and
 is the amount of time that D must be valid and stable after the rising clock. This region of

stability surrounding the clock edge ensures that we’re obeying the dynamic discipline for the master
latch.

So when you use a D register component from a manufacturer’s gate library, you’ll need to look up
these four timing specifications in the register’s data sheet in order to analyze the timing of your overall
circuit. We’ll see how this analysis is done in the next section.

tPD

tCD tPD

tCD tPD

tSETUP

tHOLD

Page 127

In 6.004, we have a specific plan on how we’ll use registers in our designs, which we call the single-
clock synchronous discipline.

Looking at the sketch of a circuit on the left, we see that it consists of registers — the rectangular icons
with the edge-triggered symbol — and combinational logic circuits, shown here as little clouds with
inputs and outputs.

Remembering that there is no combinational path between a register’s input and output, the overall
circuit has no combinational cycles. In other words, paths from system inputs and register outputs to
the inputs of registers never visit the same combinational block twice.

A single periodic clock signal is shared among all the clocked devices. Using multiple clock signals is
possible, but analyzing the timing for signals that cross between clock domains is quite tricky, so life is
much simpler when all registers use the same clock.

The details of which data signals change when are largely unimportant. All that matters is that signals
hooked to register inputs are stable and valid for long enough to meet the registers’ setup time. And, of
course, stay stable long enough to meet the registers’ hold time.

We can guarantee that the dynamic discipline is obeyed by choosing the clock period to be greater then
the of every path from register outputs to register inputs, plus, of course, the registers’ setup time.

A happy consequence of choosing the clock period in this way is that at the moment of the rising clock
edge, there are no other noise-inducing logic transitions happening anywhere in the circuit. Which
means there should be no noise problems when we update the stored state of each register.

Our next task is to learn how to analyze the timing of a single-clock synchronous system.

tPD

Page 128

Here’s a model of a particular path in our synchronous system. A large digital system will have many
such paths and we have to do the analysis below for each one in order to find the path that will
determine the smallest workable clock period. As you might suspect, there are computed-aided design
programs that will do these calculations for us.

There’s an upstream register, whose output is connected to a combinational logic circuit which
generates the input signal, labeled STAR, to the downstream register.

Let’s build a carefully-drawn timing diagram showing when each signal in the system changes and
when it is stable.

The rising edge of the clock triggers the upstream register, whose output (labeled) changes
as specified by the contamination and propagation delays of the register. maintains its old
value for at least the contamination delay of REG1, and then reaches its final stable value by the
propagation delay of REG1. At this point will remain stable until the next rising clock edge.

Now let’s figure out the waveforms for the output of the combinational logic circuit, marked with a red
star in the diagram. The contamination delay of the logic determines the earliest time STAR will go
invalid measured from when went invalid. The propagation delay of the logic determines the
latest time STAR will be stable measured from when became stable.

Now that we know the timing for STAR, we can determine whether STAR will meet the setup and hold
times for the downstream register REG2. Time t1 measures how long STAR will stay valid after the
rising clock edge. t1 is the sum of REG1’s contamination delay and the logic’s contamination delay.
The HOLD time for REG2 measures how long STAR has to stay valid after the rising clock edge in
order to ensure correct operation. So t1 has to be greater than or equal to the HOLD time for REG2.

Time t2 is the sum of the propagation delays for REG1 and the logic, plus the SETUP time for REG2.
This tells us the earliest time at which the next rising clock edge can happen and still ensure that the
SETUP time for REG2 is met. So t2 has to be less than or equal to the time between rising clock edges,

Q\textscr1

Q\textscr1

Q\textscr1

Q\textscr1

Q\textscr1

Page 129

called the clock period or tCLK. If the next rising clock happens before t2, we’ll be violating the
dynamic discipline for REG2.

So we have two inequalities that must be satisfied for every register-to-register path in our digital
system. If either inequality is violated, we won’t be obeying the dynamic discipline for REG2 and our
circuit will not be guaranteed to work correctly.

Looking at the inequality involving tCLK, we see that the propagation delay of the upstream register
and setup time for the downstream register take away from the time available useful work performed
by the combinational logic. Not surprisingly, designers try to use registers that minimize these two
times.

What happens if there’s no combinational logic between the upstream and downstream registers? This
happens when designing shift registers, digital delay lines, etc. Well, then the first inequality tells us
that the contamination delay of the upstream register had better be greater than or equal to the hold
time of the downstream register. In practice, contamination delays are smaller than hold times, so in
general this wouldn’t be the case. So designers are often required to insert dummy logic, e.g., two
inverters in series, in order to create the necessary contamination delay.

Finally we have to worry about the phenomenon called clock skew, where the clock signal arrives at
one register before it arrives at the other. We won’t go into the analysis here, but the net effect is to
increase the apparent setup and hold times of the downstream register, assuming we can’t predict the
sign of the skew.

The clock period, tCLK, characterizes the performance of our system. You may have noticed that Intel
is willing to sell you processor chips that run at different clock frequencies, e.g., a 1.7 GHz processor
vs. a 2 GHz processor. Did you ever wonder how those chips are different? As is turns out they’re not!
What’s going on is that variations in the manufacturing process mean that some chips have better tPDs
than others. On fast chips, a smaller tPD for the logic means that they can have a smaller tCLK and
hence a higher clock frequency. So Intel manufactures many copies of the same chip, measures their
tPDs and selects the fast ones to sell as higher-performance parts. That’s what it takes to make money
in the chip biz!

Page 130

Using a D register as the memory component in our sequential logic system works great! At each rising
edge of the clock, the register loads the new state, which then appears at the register’s output as the
current state for the rest of the clock period. The combinational logic uses the current state and the
value of the inputs to calculate the next state and the values for the outputs. A sequence of rising clock
edges and inputs will produce a sequence of states, which leads to a sequence of outputs. In the next
chapter we’ll introduce a new abstraction, finite state machines, that will make it easy to design
sequential logic systems.

Page 131

Let’s use the timing analysis techniques we’ve learned on the sequential logic system shown here. The
timing specifications for the register and combinational logic are as shown. Here are the questions we
need to answer.

The contamination delay of the combinational logic isn’t specified. What does it have to be in order for
the system to work correctly? Well, we know that the sum of register and logic contamination delays
has to be greater than or equal to the hold time of the register. Using the timing parameters we do know
along with a little arithmetic tells us that the contamination delay of the logic has to be at least 1 ns.

What is the minimum value for the clock period tCLK? The second timing inequality from the
previous section tells us that tCLK has be greater than than the sum of the register and logic
propagation delays plus the setup time of the register. Using the known values for these parameters
gives us a minimum clock period of 10ns.

What are the timing constraints for the Input signal relative to the rising edge of the clock? For this
we’ll need a diagram! The Next State signal is the input to the register so it has to meet the setup and
hold times as shown here. Next we show the Input signal and how the timing of its transitions affect to
the timing of the Next State signal. Now it’s pretty easy to figure out when Input has to be stable before
the rising edge of the clock, i.e., the setup time for Input. The setup time for Input is the sum of
propagation delay of the logic plus the setup time for the register, which we calculate as 7ns. In other
words, if the Input signal is stable at least 7ns before the rising clock edge, then Next State will be
stable at least 2ns before the rising clock edge and hence meet the register’s specified setup time.

Similarly, the hold time of Input has to be the hold time of the register minus the contamination delay
of the logic, which we calculate as 1 ns. In other words, if Input is stable at least 1 ns after the rising
clock edge, then Next State will be stable for another 1 ns, i.e., a total of 2 ns after the rising clock
edge. This meets the specified hold time of the register.

This completes our introduction to sequential logic. Pretty much every digital system out there is a
sequential logic system and hence is obeying the timing constraints imposed by the dynamic discipline.
So next time you see an ad for a 1.7 GHz processor chip, you’ll know where the “1.7” came from!

Page 132

Page 133

6: Finite State Machines

1. Our New Machine
2. A Simple Sequential Circuit
3. Abstraction du jour: Finite State Machines
4. State Transition Diagram
5. Valid State Diagrams
6. State Transition Diagram as a Truth Table
7. Now Put It in Hardware
8. Discrete Time, Discrete State
9. Housekeeping Issues...

10. FSM States
11. What’s My Transition Diagram?
12. FSM Equivalence
13. Let's Build a RoboAnt
14. Lost in Space
15. Bonk!
16. A Little to the Right...
17. Then a Little to the Left...
18. Dealing With Outside Corners
19. Equivalent State Reduction
20. An Evolutionary Step
21. Building the Transition Table
22. Implementation Details
23. Ant Schematic
24. FSMs All the Way Down?
25. The World Doesn’t Run on Our Clock!
26. The Bounded-tie Synchronizer
27. Unsolvable? That Can’t Be True...
28. The Mysterious Metastable State
29. Metastable State: Properties
30. Solution: Delay Increases Reliability

Page 134

In the last chapter we developed sequential logic, which contains both combinational logic and
memory components.

The combinational logic cloud is an acyclic graph of components that obeys the static discipline. The
static discipline guarantees if we supply valid and stable digital inputs, then we will get valid and stable
digital outputs by some specified interval after the last input transition. There’s also a functional
specification that tells us the output values for every possible combination of input values. In this
diagram, there are k+m inputs and k+n outputs, so the truth table for the combinational logic will have

 rows and k+n output columns.

The job of the state registers is to remember the current state of the sequential logic. The state is
encoded as some number k of bits, which will allow us to represent unique states. Recall that the
state is used to capture, in some appropriate way, the relevant history of the input sequence. To the
extent that previous input values influence the operation of the sequential logic, that happens through
the stored state bits. Typically the LOAD input of the state registers is triggered by the rising edge of a
periodic clock signal, which updates the stored state with the new state calculated by the combinational
logic.

As designers we have several tasks: first we must decide what output sequences need to be generated in
response to the expected input sequences. A particular input may, in fact, generate a long sequence of
output values. Or the output may remain unchanged while the input sequence is processed, step-by-
step, where the FSM is remembering the relevant information by updating its internal state. Then we
have to develop the functional specification for the logic so it calculates the correct output and next
state values. Finally, we need to come up with an actual circuit diagram for sequential logic system.

All the tasks are pretty interesting, so let’s get started!

2k+m

2k

Page 135

As an example sequential system, let’s make a combination lock. The lock has a 1-bit input signal,
where the user enters the combination as a sequence of bits. There’s one output signal, UNLOCK,
which is 1 if and only if the correct combination has been entered. In this example, we want to assert
UNLOCK, i.e., set UNLOCK to 1, when the last four input values are the sequence 0-1-1-0.

Mr. Blue is asking a good question: how many state bits do we need? Do we have to remember the last
four input bits? In which case, we’d need four state bits. Or can we remember less information and still
do our job? Aha! We don’t need the complete history of the last four inputs, we only need to know if
the most recent entries represent some part of a partially-entered correct combination. In other words if
the input sequence doesn’t represent a correct combination, we don’t need to keep track of exactly how
it’s incorrect, we only need to know that is incorrect.

With that observation in mind, let’s figure out how to represent the desired behavior of our digital
system.

Page 136

We can characterize the behavior of a sequential system using a new abstraction called a finite state
machine, or FSM for short. The goal of the FSM abstraction is to describe the input/output behavior of
the sequential logic, independent of its actual implementation.

A finite state machine has a periodic CLOCK input. A rising clock edge will trigger the transition from
the current state to the next state. The FSM has a some fixed number of states, with a particular state
designated as the initial or starting state when the FSM is first turned on. One of the interesting
challenges in designing an FSM is to determine the required number of states since there’s often a
tradeoff between the number of state bits and the complexity of the internal combinational logic
required to compute the next state and outputs.

There are some number of inputs, used to convey all the external information necessary for the FSM to
do its job. Again, there are interesting design tradeoffs. Suppose the FSM required 100 bits of input.
Should we have 100 inputs and deliver the information all at once? Or should we have a single input
and deliver the information as a 100-cycle sequence? In many real world situations where the
sequential logic is much faster than whatever physical process we’re trying to control, we’ll often see
the use of bit-serial inputs where the information arrives as a sequence, one bit at a time. That will
allow us to use much less signaling hardware, at the cost of the time required to transmit the
information sequentially.

The FSM has some number outputs to convey the results of the sequential logic’s computations. The
comments before about serial vs. parallel inputs applies equally to choosing how information should be
encoded on the outputs.

There are a set of transition rules, specifying how the next state S-prime is determined from the current
state S and the inputs I. The specification must be complete, enumerating S-prime for every possible
combination of S and I.

And, finally, there’s the specification for how the output values should be determined. The FSM design
is often a bit simpler if the outputs are strictly a function of the current state S, but, in general, the
outputs can be a function of both S and the current inputs.

Page 137

Now that we have our abstraction in place, let’s see how to use it to design our combinational lock.

\section{State Transition Diagrams}

Page 138

We’ll describe the operation of the FSM for our combination lock using a state transition diagram.
Initially, the FSM has received no bits of the combination, a state we’ll call SX. In the state transition
diagram, states are represented as circles, each labeled for now with a symbolic name chosen to remind
us of what history it represents. For this FSM, the unlock output U will be a function of the current
state, so we’ll indicate the value of U inside the circle. Since in state SX we know nothing about past
input bits, the lock should stay locked and so U = 0. We’ll indicate the initial state with a wide border
on the circle.

We’ll use the successive states to remember what we’ve seen so far of the input combination. So if the
FSM is in state SX and it receives a 0 input, it should transition to state S0 to remind us that we’ve seen
the first bit of the combination of 0-1-1-0. We use arrows to indicate transitions between states and
each arrow has a label telling us when that transition should occur. So this particular arrow is telling us
that when the FSM is in state SX and the next input is a 0, the FSM should transition to state S0.
Transitions are triggered by the rising edge of the FSM’s clock input.

Let’s add the states for the remainder of the specified combination. The rightmost state, S0110,
represents the point at which the FSM has detected the specified sequence of inputs, so the unlock
signal is 1 in this state. Looking at the state transition diagram, we see that if the FSM starts in state
SX, the input sequence 0-1-1-0 will leave the FSM in state S0110.

So far, so good. What should the FSM do if an input bit is not the next bit in the combination? For
example, if the FSM is in state SX and the input bit is a 1, it still has not received any correct
combination bits, so the next state is SX again. Here are the appropriate non-combination transitions
for the other states. Note that an incorrect combination entry doesn’t necessarily take the FSM to state
SX. For example, if the FSM is in state S0110, the last four input bits have been 0-1-1-0. If the next
input is a 1, then the last four inputs bits are now 1-1-0-1, which won’t lead to an open lock. But the
last two bits might be the first two bits of a valid combination sequence and so the FSM transitions to
S01, indicating that a sequence of 0-1 has been entered over the last two bits.

Page 139

We’ve been working with an FSM where the outputs are function of the current state, called a Moore
machine. Here the outputs are written inside the state circle.

If the outputs are a function of both the current state and the current inputs, it’s called a Mealy
machine. Since the transitions are also a function of the current state and current inputs, we’ll label
each transition with appropriate output values using a slash to separate input values from output values.
So, looking at the state transition diagram on the right, suppose the FSM is in state S3. If the input is a
0, look for the arrow leaving S3 labeled “0/”. The value after the slash tells us the output value, in this
case 1. If the input had been a 1, the output value would be 0.

There are some simple rules we can use to check that a state transition diagram is well formed. The
transitions from a particular state must be mutually exclusive, i.e., for a each state, there can’t be more
than one transition with the same input label. This makes sense: if the FSM is to operate consistently
there can’t be any ambiguity about the next state for a given current state and input. By “consistently”
we mean that the FSM should make the same transitions if it’s restarted at the same starting state and
given the same input sequences.

Moreover, the transitions leaving each state should be collectively exhaustive, i.e., there should a
transition specified for each possible input value. If we wish the FSM to stay in it’s current state for
that particular input value, we need to show a transition from the current state back to itself.

With these rules there will be exactly one transition selected for every combination of current state and
input value.

Page 140

All the information in a state transition diagram can be represented in tabular form as a truth table. The
rows of the truth table list all the possible combinations of current state and inputs. And the output
columns of the truth table tell us the next state and output value associated with each row.

If we substitute binary values for the symbolic state names, we end up with a truth table just like the
ones we saw in Chapter 4. If we have K states in our state transition diagram we’ll need state
bits, rounded up to the next integer since we don’t have fractional bits! In our example, we have a 5-
state FSM, so we’ll need 3 state bits.

We can assign the state encodings in any convenient way, e.g., 000 for the first state, 001 for the second
state, and so on. But the choice of state encodings can have a big effect on the logic needed to
implement the truth table. It’s actually fun to figure out the state encoding that produces the simplest
possible logic.

With a truth table in hand, we can use the techniques from Chapter 4 to design logic circuits that
implement the combinational logic for the FSM. Of course, we can take the easy way out and simply
use a read-only memory to do the job!

log2 K

Page 141

w

In this circuit, a read-only memory is used to compute the next state and outputs from the current state
and inputs. We’re encoding the 5 states of the FSM using a 3-bit binary value, so we have a 3-bit state
register. The rectangle with the edge-triggered input is schematic shorthand for a multi-bit register. If a
wire in the diagram represents a multi-bit signal, we use a little slash across the wire with a number to
indicate how many bits are in the signal. In this example, both current_state and next_state are 3-bit
signals.

The read-only memory has a total of 4 input signals — 3 for the current state and 1 for the input value
— so the read-only memory has locations, which correspond to the 16 rows in the truth table.
Each location in the ROM supplies the output values for a particular row of the truth table. Since we
have 4 output signals — 3 for the next state and 1 for the output value — each location supplies 4 bits
of information. Memories are often annotated with their number of locations and the number of bits in
each location. So our memory is a 16-by-4 ROM: 16 locations of 4-bits each.

Of course, in order for the state registers to work correctly, we need to ensure that the dynamic
discipline is obeyed. We can use the timing analysis techniques described at the end of Chapter 5 to
check that this is so. For now, we’ll assume that the timing of transitions on the inputs are properly
synchronized with the rising edges of the clock.

24 = 16

Page 142

So now we have the FSM abstraction to use when designing the functionality of a sequential logic
system, and a general-purpose circuit implementation of the FSM using a ROM and a multi-bit state
register. Recapping our design choices: the output bits can be strictly a function of the current state (the
FSM would then be called a Moore machine), or they can be a function of both the current state and
current inputs, in which case the FSM is called a Mealy machine. We can choose the number of state
bits — S state bits will give us the ability to encode possible states. Note that each extra state bit
DOUBLES the number of locations in the ROM! So when using ROMs to implement the necessary
logic, we’re very interested in minimizing the number of state bits.

The waveforms for our circuitry are pretty straightforward. The rising edge of the clock triggers a
transition in the state register outputs. The ROM then does its thing, calculating the next state, which
becomes valid at some point in the clock cycle. This is the value that gets loaded into the state registers
at the next rising clock edge. This process repeats over-and-over as the FSM follows the state
transitions dictated by the state transition diagram.

2S

Page 143

There are a few housekeeping details that need our attention.

On start-up we need some way to set the initial contents of the state register to the correct encoding for
the initial state. Many designs use a RESET signal that’s set to 1 to force some initial state and then set
to 0 to start execution. We could adopt that approach here, using the RESET signal to select an initial
value to be loaded into the state register.

In our example, we used a 3-bit state encoding which would allow us to implement an FSM with up to
 states. We’re only using 5 of these encodings, which means there are locations in the ROM

we’ll never access. If that’s a concern, we can always use logic gates to implement the necessary
combinational logic instead of ROMs. Suppose the state register somehow got loaded with one of the
unused encodings? Well, that would be like being in a state that’s not listed in our state transition
diagram. One way to defend against this problem is design the ROM contents so that unused states
always point to the initial state. In theory the problem should never arise, but with this fix at least it
won’t lead to unknown behavior.

We mentioned earlier the interesting problem of finding a state encoding that minimized the
combinational logic. There are computer-aided design tools to help do this as part of the larger problem
of finding minimal logic implementations for Boolean functions. Mr. Blue is showing us another
approach to building the state register for the combination lock: use a shift register to capture the last
four input bits, then simply look at the recorded history to determine if it matches the combinations. No
fancy next state logic here!

Finally, we still have to address the problem of ensuring that input transitions don’t violate the dynamic
discipline for the state register. We’ll get to this in the last section of this chapter.

23 = 8

Page 144

Let’s think a bit more about the FSM abstraction.

If we see an FSM that uses K state bits, what can we say about the number of states in its state
transition diagram? Well, we know the FSM can have at most states, since that’s the number of
unique combinations of K bits.

Suppose we connect two FSMs in series, with the outputs of the first FSM serving as the inputs to the
second. This larger system is also an FSM — how many states does it have? Well, if we don’t know the
details of either of the component FSMs, the upper bound on the number of states for the larger system
is M*N. This is because it may be possible for the first FSM to be in any of its M states while the
second FSM is any of its N states. Note that the answer doesn’t depend on X or Y, the number of input
signals to each of the component FSMs. Wider inputs just mean that there are longer labels on the
transitions in the state transition diagram, but doesn’t tell us anything about the number of internal
states.

Finally, here’s a question that’s a bit trickier than it seems. I give you an FSM with two inputs labeled 0
and 1, and one output implemented as a light. Then I ask you to discover its state transition diagram.
Can you do it? Just to be a bit more concrete, you experiment for an hour pushing the buttons in a
variety of sequences. Each time you push the 0 button the light turns off if it was on. And when you
push the 1 button the light turns on if it was off, otherwise nothing seems to happen. What state
transition diagram could we draw based on our experiments?

2K

Page 145

Consider the following two state transition diagrams. The top diagram describes the behavior we
observed in our experiments: pushing 0 turns the light off, pushing 1 turns the light on.

The second diagram appears to do the same thing unless you happened to push the 1 button 4 times in a
row!

If we don’t have an upper bound on the number of states in the FSM, we can never be sure that we’ve
explored all of its possible behaviors.

But if we do have an upper bound, say, K, on the number of states and we reset the FSM to its initial
state, we can discover its behavior. This is because in a K-state FSM every reachable state can reached
in less than K transitions, starting from the initial state. So if we try all the possible K-step input
sequences one after the other starting each trial at the initial state, we’ll be guaranteed to have visited
every state in the machine.

Our answer is also complicated by the observation that FSMs with different number of states may be
equivalent.

Page 146

Here are two FSMs, one with 2 states, one with 5 states. Are they different? Well, not in any practical
sense. Since the FSMs are externally indistinguishable, we can use them interchangeably. We say that
two FSMs are equivalent if and only if every input sequence yields identical output sequences from
both FSMs.

So as engineers, if we have an FSM we would like to find the the simplest (and hence the least
expensive) equivalent FSM. We’ll talk about how to find smaller equivalent FSMs in the context of our
next example.

Page 147

Surprise! We’ve just been given a robotic ant that has an FSM for its brain. The inputs to the FSM
come from the ant’s two antennae, labeled L and R. An antenna input is 1 if the antenna is touching
something, otherwise its 0. The outputs of the FSM control the ant’s motion. We can make it step
forward by setting the F output to 1, and turn left or right by asserting the TL or TR outputs
respectively. If the ant tries to both turn and step forward, the turn happens first. Note that the ant can
turn when its antenna are touching something, but it can’t move forward. We’ve been challenged to
design an ant brain that will let it find its way out of a simple maze like the one shown here.

We remember reading that if the maze doesn’t have any unconnected walls (i.e.,no islands), we can
escape using the “right-hand rule” where we put our right hand on the wall and walk so that our hand
stays on the wall.

Let’s try to implement this strategy.

Page 148

We’ll assume that initially our ant is lost in space. The only sensible strategy to walk forward until we
find a maze wall. So our initial state, labeled LOST, asserts the F output, causing the ant to move
forward until at least one of the antennae touches something, i.e., at least one of the L or R inputs is a
1.

Page 149

So now the ant finds itself in one of these three situations. To implement the right-hand rule, the ant
should turn left (counterclockwise) until it’s antennae have just cleared the wall. To do this, we’ll add a
rotate-counterclockwise state, which asserts the turn-left output until both L and R are 0.

Page 150

Now the ant is standing with a wall to its right and we can start the process of following the wall with
its right antenna. So we have the ant step forward and right, assuming that it will immediately touch the
wall again. The WALL1 state asserts both the turn-right and forward outputs, then checks the right
antenna to see what to do next.

Page 151

If the right antenna does touch, as expected, the ant turns left to free the antenna and then steps
forward. The WALL2 state asserts both the turn-left and forward outputs, then checks the antennae. If
the right antenna is still touching, it needs to continue turning. If the left antenna touches, it’s run into a
corner and needs to reorient itself so the new wall is on its right, the situation we dealt with the rotate-
counterclockwise state. Finally, if both antennae are free, the ant should be in the state of the previous
slide: standing parallel to the wall, so we return the WALL1 state.

Our expectation is that the FSM will alternate between the WALL1 and WALL2 states as the ant moves
along the wall. If it reaches an inside corner, it rotates to put the new wall on its right and keeps going.
What happens when it reaches an outside corner?

Page 152

When the ant is in the WALL1 state, it moves forward and turns right, then checks its right antenna,
expecting the find the wall its traveling along. But if its an outside corner, there’s no wall to touch! The
correct strategy in this case is to keep turning right and stepping forward until the right antenna touches
the wall that’s around the corner. The CORNER state implements this strategy, transitioning to the
WALL2 state when the ant reaches the wall again.

Hey, this might even work!

Page 153

Earlier we talked about about finding equivalent FSMs with fewer states. Now we’ll develop an
approach for finding such FSMs by looking for two states that that can be merged into a single state
without changing the behavior of the FSM in any externally distinguishable manner.

Two states are equivalent if they meet the following two criteria. First, the states must have identical
outputs. This makes sense: the outputs are visible to the outside, so if their values differed between the
two states, that difference would clearly be externally distinguishable!

Second, for each combination of input values, the two states transition to equivalent states.

Our strategy for deriving an equivalent machine with fewer states will be to start with our original
FSM, find pairs of equivalent states and merge those states. We’ll keep repeating the process until we
can’t find any more equivalent states.

Let’s try this on our ant FSM. First we need to find a pair of states that have the same outputs. As it
turns out, there’s only one such pair: WALL1 and CORNER, both of which assert the turn-right and
forward outputs.

Okay, so let’s assume that WALL1 and CORNER are equivalent and ask if they transition to equivalent
states for each applicable combination of input values. For these two states, all the transitions depend
only on the value of the R input, so we just have to check two cases. If R is 0, both states transition to
CORNER. If R is 1, both states transition to WALL2.

So both equivalence criteria are satisfied and we can conclude that the WALL1 and CORNER states
are equivalent and can be merged.

Page 154

This gives us the four-state FSM shown here, where we’ve called the single merged state WALL1. This
smaller, equivalent FSM behaves exactly as the previous 5-state FSM. The implementation of the 5-
state machine requires 3 state bits; the implementation of the 4-state machine only requires 2 state bits.
Reducing the number of state bits by 1 is huge since it reduces the size of the required ROM by half!

Just as we were able to achieve considerable hardware savings by minimizing Boolean equations, we
can do the same in sequential logic by merging equivalent states.

Roboant customers are looking forward to the price cut!

Page 155

Let’s look at what we’d need to do if we wanted to implement the FSM using logic gates instead a
ROM for the combinational logic. First we have to build the truth table, entering all the transitions in
the state transition diagram. We’ll start with the LOST state. So if the FSM is in this state, the F output
should be 1. If both antenna inputs are 0, the next state is also LOST. Assigning the LOST state the
encoding 00, we’ve captured this information in the first row of the table.

If either antenna is touching, the FSM should transition from LOST to the rotate-counterclockwise
state. We’ve given this an encoding of 01. There are three combinations of L and R values that match
this transition, so we’ve added three rows to the truth table. This takes care of all the transitions from
the LOST state.

Now we can tackle the transitions from the rotate-counterclockwise state. If either antenna is touching,
the next state is again rotate-counterclockwise. So we’ve identified the matching values for the inputs
and added the appropriate three rows to the transition table.

We can continue in a similar manner to encode the transitions one-by-one.

Page 156

Here’s the final table, where we’ve used don’t cares to reduce the number of rows for presentation.
Next we want to come up with Boolean equations for each of the outputs of the combinational logic,
i.e., the two next-state bits and the three motion-control outputs.

Here are the Karnaugh maps for the two next-state bits. Using our K-map skills from Chapter 4, we’ll
find a cover of the prime implicants for S1-prime and write down the corresponding product terms in a
minimal sum-of-products equation. And then do the same for the other next-state bit.

We can follow a similar process to derive minimal sum-of-products expressions for the motion-control
outputs.

Page 157

Implementing each sum-of-products in a straight-forward fashion with AND and OR gates, we get the
following schematic for the ant brain. Pretty neat! Who knew that maze following behavior could be
implemented with a couple of D registers and a handful of logic gates?

Page 158

There are many complex behaviors that can be created with surprisingly simple FSMs. Early on, the
computer graphics folks learned that group behaviors like swarming, flocking and schooling can be
modeled by equipping each participant with a simple FSM. So next time you see the massive battle
scene from the Lord of the Rings movie, think of many FSMs running in parallel!

Physical behaviors that arise from simple interactions between component molecules can sometimes be
more easily modeled using cellular automata — arrays of communicating FSMS — than by trying to
solve the partial differential equations that model the constraints on the molecules’ behavior.

And here’s an idea: what if we allowed the FSM to modify its own transition table? Hmm. Maybe
that’s a plausible model for evolution!

FSMs are everywhere! You’ll see FSMs for the rest of your life...

Page 159

Okay, it’s finally time to investigate issues caused by asynchronous inputs to a sequential logic circuit.
By “asynchronous” we mean that the timing of transitions on the input is completely independent of
the timing of the sequential logic clock. This situation arises when the inputs arrive from the outside
world where the timing of events is not under our control.

As we saw at the end of Lecture 5, to ensure reliable operation of the state registers, inputs to a
sequential logic system have to obey setup and hold time constraints relative to the rising edge of the
system clock. Clearly if the input can change at anytime, it can change at time that would violate the
setup and hold times.

Maybe we can come up with a synchronizer circuit that takes an unsynchronized input signal and
produces a synchronized signal that only changes shortly after the rising edge of the clock. We’d use a
synchronizer on each asynchronous input and solve our timing problems that way.

Page 160

Here’s a detailed specification for our synchronizer.

The synchronizer has two inputs, IN and CLK, which have transitions at time and respectively.

If IN’s transition happens sufficiently before C’s transition, we want the synchronizer to output a 1
within some bounded time after CLK’s transition.

And if CLK’s transition happens sufficient before IN’s transition, we want the synchronizer to output a
0 within time after CLK’s transition.

Finally, if the two transitions are closer together than some specified interval , the synchronizer can
output either a 0 or a 1 within time of CLK’s transition. Either answer is fine so long as it’s a stable
digital 0 or digital 1 by the specified deadline.

This turns out to be an unsolvable problem! For no finite values of and can we build a
synchronizer that’s guaranteed to meet this specification even when using components that are 100%
reliable.

tIN tC

tD

tD

tE

tD

tE tD

Page 161

But can’t we just use a D register to solve the problem? We’ll connect IN to the register’s data input
and connect CLK to the register’s clock input. We’ll set the decision time to the propagation delay
of the register and the allowable error interval to the larger of the register’s setup and hold times.

Our theory is that if the rising edge of IN occurs at least before the rising edge of CLK, the
register is guaranteed to output a 1. And if IN transitions more than after the rising edge of
CLK, the register is guaranteed to output a 0. So far, so good. If IN transitions during the setup and
hold times with respect to the rising edge on CLK, we know we’ve violated the dynamic discipline and
we can’t tell whether the register will store a 0 or a 1. But in this case, our specification lets us produce
either answer, so we’re good to go, right?

Sadly, we’re not good to go. We’re lured by the digital abstraction into assuming that even if we violate
the dynamic discipline that Q must be either 1 or 0 after the propagation delay. But that isn’t a valid
assumption as we’ll see when we look more carefully at the operation of the register’s master latch
when B and C change at about the same time.

tD

tSETUP

tHOLD

Page 162

Recall that the master latch is really just a lenient MUX that can be configured as a bi-stable storage
element using a positive feedback loop. When the latch is in memory mode, it’s essentially a two-gate
cyclic circuit whose behavior has two constraints: the voltage transfer characteristic of the two-gate
circuit, shown in green on the graph, and that equals , a constraint that’s shown in red on the
graph.

These two curves intersect at three points. Our concern is the middle point of intersection. If IN and
CLK change at the same time, the voltage on Q may be in transition at the time the MUX closes and
enables the positive feedback loop. So the initial voltage in the feedback loop may happen to be at or
very near the voltage of the middle intersection point.

When Q is at the metastable voltage, the storage loop is in an unstable equilibrium called the
metastable state. In theory the system could balance at this point forever, but a small change in the
voltages in the loop will move the system away from the metastable equilibrium point and set it
irrevocably in motion towards the stable equilibrium points. Here’s the issue we face: we can’t bound
the amount of time the system will spend in the metastable state.

VIN tOUT

Page 163

Here’s what we know about the metastable state.

It’s in the forbidden zone of the digital signaling specifications and so corresponds to an invalid logic
level. Violating the dynamic discipline means that our register is no longer guaranteed to produce a
digital output in bounded time.

A persistent invalid logic level can wreak both logical and electrical havoc in our sequential logic
circuit. Since combinational logic gates with invalid inputs have unpredictable outputs, an invalid
signal may corrupt the state and output values in our sequential system.

At the electrical level, if an input to a CMOS gate is at the metastable voltage, both PFET and NFET
switches controlled by that input would be conducting, so we’d have a path between and GND,
causing a spike in the system’s power dissipation.

It’s an unstable equilibrium and will eventually be resolved by a transition to one of the two stable
equilibrium points. You can see from the graph that the metastable voltage is in the high-gain region of
the VTC, so a small change in results in a large change in , and once away from the
metastable point the loop voltage will move towards 0 or .

The time it takes for the system to evolve to a stable equilibrium is related to how close Q’s voltage
was to the metastable point when the positive feedback loop was enabled. The closer Q’s initial voltage
is to the metastable voltage, the longer it will take for the system to resolve the metastability. But since
there’s no lower bound on how close Q is to the metastable voltage, there’s no upper bound on the time
it will take for resolution. In other words, if you specify a bound, e.g., , on the time available for
resolution, there’s a range of initial Q voltages that won’t be resolved within that time.

If the system goes metastable at some point in time, then there’s a non-zero probability that the system
will still be metastable after some interval T, for any finite choice of T.

The good news is that the probability of being metastable at the end of the interval decreases
exponentially with increasing T.

VDD

VIN tOUT

VDD

tD

Page 164

Note that every bistable system has at least one metastable state. So metastability is the price we pay
for building storage elements from positive feedback loops.

If you’d like to read a more thorough discussion of synchronizers and related problems and learn about
the mathematics behind the exponential probabilities, please see Chapter 10 of the Course Notes.

Page 165

Our approach to dealing with asynchronous inputs is to put the potentially metastable value coming out
of our D-register synchronizer into quarantine by adding a second register hooked to the output of the
first register.

If a transition on the input violates the dynamic discipline and causes the first register to go metastable,
it’s not immediately an issue since the metastable value is stopped from entering the system by the
second register. In fact, during the first half of the clock cycle, the master latch in the second register is
closed, so the metastable value is being completely ignored.

It’s only at the next clock edge, an entire clock period later, that the second D register will need a valid
and stable input. There’s still some probability that the first register will be metastable after an entire
clock period, but we can make that probability as low as we wish by choosing a sufficiently long clock
period. In other words, the output of the second register, which provides the signal used by the internal
combinational logic, will be stable and valid with a probability of our choosing. Validity is not 100%
guaranteed, but the failure times are measured in years or decades, so it’s not an issue in practice.
Without the second register, the system might see a metastability failure every handful of hours — the
exact failure rate depends on the transition frequencies and gains in the circuit.

What happens if our clock period is short but we want a long quarantine time? We can use multiple
quarantine registers in series — it’s the total delay between when the first register goes metastable and
when the synchronized input is used by the internal logic that determines the failure probability.

The bottom line: we can use synchronizing registers to quarantine potentially metastable signals for
some period of time. Since the probability of still being metastable decreases exponentially with the
quarantine time, we can reduce the failure probability to any desired level. Not a 100% guaranteed, but
close enough that metastability is not a practical issue if we use our quarantine strategy.

Page 166

7: Performance Measures

1. Forget Circuits... Let’s solve a Real Problem
2. One Load At a Time
3. Doing N Loads of Laundry
4. Doing N Loads... The 6.004 Way
5. Performance Measures
6. Okay, Back to Circuits...
7. Pipelined Cicuits
8. Pipeline Diagrams
9. Pipeline Conventions

10. Ill-formed Pipeline
11. A Pipelining Methodology
12. Pipeline Example
13. Pipelined Components
14. How Do 6.004 Students Do Laundry?
15. Back to Our Bottleneck...
16. Circuit Interleaving I
17. Circuit Interleaving II
18. Circuit Interleaving III
19. Combine Techniques
20. And Add A Little Parallelism...
21. Control Structure Alternatives
22. Self-timed Example
23. Self-timed Example
24. Control Structure Taxonomy
25. Summary

In this lecture our goal is to introduce some metrics for measuring the performance of a circuit and then
investigate ways to improve that performance. We’ll start by putting aside circuits for a moment and
look at an everyday example that will help us understand the proposed performance metrics.

Page 167

Laundry is a processing task we all have to face at some point! The input to our laundry “system” is
some number of loads of dirty laundry and the output is the same loads, but washed, dried, and folded.
There two system components: a washer that washes a load of laundry in 30 minutes, and a dryer that
dries a load in 60 minutes. You may be used to laundry system components with different propagation
delays, but let’s go with these delays for our example.

Our laundry follows a simple path through the system: each load is first washed in the washer and
afterwards moved to the dryer for drying. There can, of course, be delays between the steps of loading
the washer, or moving wet, washed loads to the dryer, or in taking dried loads out of the dryer. Let’s
assume we move the laundry through the system as fast as possible, moving loads to the next
processing step as soon as we can.

Page 168

Most of us wait to do laundry until we’ve accumulated several loads. That turns out to be a good
strategy! Let’s see why...

To process a single load of laundry, we first run it through the washer, which takes 30 minutes. Then
we run it through the dryer, which takes 60 minutes. So the total amount of time from system input to
system output is 90 minutes. If this were a combinational logic circuit, we’d say the circuit’s
propagation delay is 90 minutes from valid inputs to valid outputs.

Okay, that’s the performance analysis for a single load of laundry. Now let’s think about doing N loads
of laundry.

Page 169

Here at MIT we like to make gentle fun of our colleagues at the prestigious institution just up the river
from us. So here’s how we imagine they do N loads of laundry at Harvard. They follow the
combinational recipe of supplying new system inputs after the system generates the correct output from
the previous set of inputs. So in step 1 the first load is washed and in step 2, the first load is dried,
taking a total of 90 minutes. Once those steps complete, Harvard students move on to step 3, starting
the processing of the second load of laundry. And so on...

The total time for the system to process N laundry loads is just N times the time it takes to process a
single load. So the total time is N*90 minutes.

Of course, we’re being silly here! Harvard students don’t actually do laundry. Mummy sends the
family butler over on Wednesday mornings to collect the dirty loads and return them starched and
pressed in time for afternoon tea.

But I hope you’re seeing the analogy we’re making between the Harvard approach to laundry and
combinational circuits. We can all see that the washer is sitting idle while the dryer is running and that
inefficiency has a cost in terms of the rate at which N load of laundry can move through the system.

Page 170

As engineering students here in 6.004, we see that it makes sense to overlap washing and drying. So in
step 1 we wash the first load. And in step 2, we dry the first load as before, but, in addition, we start
washing the second load of laundry. We have to allocate 60 minutes for step 2 in order to give the dryer
time to finish. There’s a slight inefficiency in that the washer finishes its work early, but with only one
dryer, it’s the dryer that determines how quickly laundry moves through the system.

Systems that overlap the processing of a sequence of inputs are called pipelined systems and each of
the processing steps is called a stage of the pipeline. The rate at which inputs move through the
pipeline is determined by the slowest pipeline stage. Our laundry system is a 2-stage pipeline with a
60-minute processing time for each stage.

We repeat the overlapped wash/dry step until all N loads of laundry have been processed [CLICK].
We’re starting a new washer load every 60 minutes and getting a new load of dried laundry from the
dryer every 60 minutes. In other words, the effective processing rate of our overlapped laundry system
is one load every 60 minutes. So once the process is underway N loads of laundry takes N*60 minutes.
And a particular load of laundry, which requires two stages of processing time, takes 120 minutes.

The timing for the first load of laundry is a little different since the timing of Step 1 can be shorter with
no dryer to wait for. But in the performance analysis of pipelined systems, we’re interested in the
steady state where we’re assuming that we have an infinite supply of inputs.

Page 171

We see that there are two interesting performance metrics. The first is the latency of the system, the
time it takes for the system to process a particular input. In the Harvard laundry system, it takes 90
minutes to wash and dry a load. In the 6.004 laundry, it takes 120 minutes to wash and dry a load,
assuming that it’s not the first load.

The second performance measure is throughput, the rate at which the system produces outputs. In
many systems, we get one set of outputs for each set of inputs, and in such systems, the throughput also
tells us the rate at inputs are consumed. In the Harvard laundry system, the throughput is 1 load of
laundry every 90 minutes. In the 6.004 laundry, the throughput is 1 load of laundry every 60 minutes.

The Harvard laundry has lower latency, the 6.004 laundry has better throughput. Which is the better
system? That depends on your goals! If you need to wash 100 loads of laundry, you’d prefer to use the
system with higher throughput. If, on the other hand, you want clean underwear for your date in 90
minutes, you’re much more concerned about the latency.

The laundry example also illustrates a common tradeoff between latency and throughput. If we
increase throughput by using pipelined processing, the latency usually increases since all pipeline
stages must operate in lock-step and the rate of processing is thus determined by the slowest stage.

Page 172

Okay, now let’s apply all this analysis to improving the performance of our circuits. The latency of a
combinational logic circuit is simply its propagation delay . And the throughput is just
since we start processing the next input only after finishing the computation on the current input.

Consider a combinational system with three components: F, G, and H, where F and G work in parallel
to produce the inputs to H. Using this timing diagram we can follow the processing of a particular input
value X. Sometime after X is valid and stable, the F and G modules produce their outputs F(X) and
G(X).

Now that the inputs to H are valid and stable, the H module will produce the system output P(X) after a
delay set by the propagation delay of H. The total elapsed time from valid input to valid output is
determined by the propagation delays of the component modules. Assuming we use those modules as-
is, we can’t make any improvements on this latency.

But what about the system’s throughput? Observe that after producing their outputs, the F and G
modules are sitting sitting idle, just holding their outputs stable while H performs its computation. Can
we figure out a way for F and G to get started processing the next input while still letting H do its job
on the first input? In other words, can we divide the processing of the combinational circuit into two
stages where the first stage computes F(X) and G(X), and the second stage computes H(X)? If we can,
then we can increase the throughput of the system.

tPD 1/t\textscpd

Page 173

Mr. Blue’s inspiration is to use registers to hold the values F(X) and G(X) for use by H, while the F and
G modules start working on the next input value. To make our timing analysis a little easier, we’ll
assume that our pipelining registers have a zero propagation delay and setup time.

The appropriate clock period for this sequential circuit is determined by the propagation delay of the
slowest processing stage. In this example, the stage with F and G needs a clock period of at least 20 ns
to work correctly. And the stage with H needs a clock period of 25 ns to work correctly. So the second
stage is the slowest and sets the system clock period at 25 ns.

This will be our general plan for increasing the throughput of combinational logic: we’ll use registers
to divide the processing into a sequence of stages, where the registers capture the outputs from one
processing stage and hold them as inputs for the next processing stage. A particular input will progress
through the system at the rate of one stage per clock cycle.

In this example, there are two stages in the processing pipeline and the clock period is 25 ns, so the
latency of the pipelined system is 50 ns, i.e., the number of stages times the system’s clock period. The
latency of the pipeline system is a little longer than the latency of the unpipelined system. However, the
pipeline system produces 1 output every clock period, or 25 ns. The pipeline system has considerably
better throughput at the cost of a small increase in latency.

Page 174

Pipeline diagrams help us visualize the operation of a pipelined system. The rows of the pipeline
diagram represent the pipeline stages and the columns are successive clock cycles.

At the beginning of clock cycle the input becomes stable and valid. Then during clock cycle the
F and G modules process that input and at the end of the cycle the results F() and G() are
captured by the pipeline registers between the first and second stages.

Then in cycle , H uses the captured values do its share of the processing of . And, meanwhile,
the F and G modules are working on . You can see that the processing for a particular input value
moves diagonally through the diagram, one pipeline stage per clock cycle.

At the end of cycle i+1, the output of H is captured by the final pipeline register and is available for use
during cycle i+2. The total time elapsed between the arrival of an input and the availability of the
output is two cycles.

The processing continues cycle after cycle, producing a new output every clock cycle.

Using the pipeline diagram we can track how a particular input progresses through the system or see
what all the stages are doing in any particular cycle.

i Xi i
Xi Xi

i + 1 Xi

Xi+1

Page 175

We’ll define a K-stage pipeline (or K-pipeline for short) as an acyclic circuit having exactly K registers
on every path from input to output. An unpipelined combinational circuit is thus a 0-stage pipeline.

To make it easy to build larger pipelined systems out of pipelined components, we’ll adopt the
convention that every pipeline stage, and hence every K-stage pipeline, has a register on its OUTPUT.

We’ll use the techniques we learned for analyzing the timing of sequential circuits to ensure the clock
signal common to all the pipeline registers has a period sufficient to ensure correct operation of each
stage. So for every register-to-register and input-to-register path, we need to compute the sum of the
propagation delay of the input register, plus the propagation delay of the combinational logic, plus the
setup time of the output register. Then we’ll choose the system’s clock period to be greater than or
equal to the largest such sum.

With the correct clock period and exactly K-registers along each path from system input to system
output, we are guaranteed that the K-pipeline will compute the same outputs as the original unpipelined
combinational circuit.

The latency of a K-pipeline is K times the period of the system’s clock. And the throughput of a K-
pipeline is the frequency of the system’s clock, i.e., 1 over the clock period.

Page 176

Here’s a failed attempt at pipelining a circuit. For what value of K is the circuit a K-pipeline? Well,
let’s count the number of registers along each path from system inputs to system outputs.

The top path through the A and C components has 2 registers. As does the bottom path through the B
and C components. But the middle path through all three components has only 1 register. Oops, this not
a well-formed K-pipeline.

Why do we care? We care because this pipelined circuit does not compute the same answer as the
original unpipelined circuit. The problem is that successive generations of inputs get mixed together
during processing. For example, during cycle i+1, the B module is computing with the current value of
the X input but the previous value of the Y input.

This can’t happen with a well-formed K-pipeline. So we need to develop a technique for pipelining a
circuit that guarantees the result will be well-formed.

Page 177

Here’s our strategy that will ensure if we add a pipeline register along one path from system inputs to
system outputs, we will add pipeline registers along every path.

Step 1 is to draw a contour line that crosses every output in the circuit and mark its endpoints as the
terminal points for all the other contours we’ll add.

During Step 2 continue to draw contour lines between the two terminal points across the signal
connections between modules. Make sure that every signal connection crosses the new contour line in
the same direction. This means that system inputs will be one side of the contour and system outputs
will be on the other side. These contours demarcate pipeline stages.

Place a pipeline register wherever a signal connection intersects the pipelining contours. Here we’ve
marked the location of pipeline registers with large black dots.

By drawing the contours from terminal point to terminal point we guarantee that we cross every input-
output path, thus ensuring our pipeline will be well-formed.

Now we can compute the system’s clock period by looking for the pipeline stage with the longest
register-to-register or input-to-register propagation delay. With these contours and assuming ideal zero-
delay pipeline registers, the system clock must have a period of 8 ns to accommodate the operation of
the C module. This gives a system throughput of 1 output every 8 ns. Since we drew 3 contours, this is
a 3-pipeline and the system latency is 3 times 8 ns or 24 ns total.

Our usual goal in pipelining a circuit is to achieve maximum throughput using the fewest possible
registers. So our strategy is to find the slowest system component (in our example, the C component)
and place pipeline registers on its inputs and outputs. So we drew contours that pass on either side of
the C module. This sets the clock period at 8 ns, so we position the contours so that longest path
between any two pipeline registers is at most 8.

There are often several choices for how to draw a contour while maintaining the same throughput and
latency. For example, we could have included the E module in the same pipeline stage as the F module.

Page 178

Okay, let’s review our pipelining strategy.

First we draw a contour across all the outputs. This creates a 1-pipeline, which, as you can see, will
always have the same throughput and latency as the original combinational circuit.

Then we draw our next contour, trying to isolate the slowest component in the system. This creates a 2-
pipeline with a clock period of 2 and hence a throughput of 1/2, or double that of the 1-pipeline.

We can add additional contours, but note that the 2-pipeline had the smallest possible clock period, so
after that additional contours add stages and hence increase the system’s latency without increasing its
throughput. Not illegal, just not a worthwhile investment in hardware.

Note that the signal connection between the A and C module now has two back-to-back pipelining
registers. Nothing wrong with that; it often happens when we pipeline a circuit where the input-output
paths are of different lengths.

So our pipelining strategy will be to pipeline implementations with increased throughput, usually at the
cost of increased latency. Sometimes we get lucky and the delays of each pipeline stage are perfectly
balanced, in which case the latency will not increase. Note that a pipelined circuit will NEVER have a
smaller latency than the unpipelined circuit.

Notice that once we’ve isolated the slowest component, we can’t increase the throughput any further.
How do we continue to improve the performance of circuits in light of these performance bottlenecks?

Page 179

One solution is to use pipelined components if they’re available! Suppose we’re able to replace the
original A component with a 2-stage pipelined version A-prime.

We can redraw our pipelining contours, making sure we account for the internal pipeline registers in
the A-prime component. This means that 2 of our contours have to pass through the A-prime
component, guaranteeing that we’ll add pipeline registers elsewhere in the system that will account for
the two-cycle delay introduced by A-prime.

Now the maximum propagation delay in any stage is 1 ns, doubling the throughput from 1/2 to 1/1.
This is a 4-pipeline so the latency will be 4 ns.

This is great! But what can we do if our bottleneck component doesn’t have a pipelined substitute.
We’ll tackle that question in the next section.

Page 180

6.004 students work around the dryer bottleneck by finding a laundromat that has two dryers for every
washer. Looking at the timeline you can see the plan, which is divided into 30-minute steps. The
washer is in use every step, producing a newly-washed load every 30 minutes. Dryer usage is
interleaved, where Dryer #1 is used to dry the odd-numbered loads and Dryer #2 is used to dry the
even-numbered loads. Once started, a dryer runs for a duration of two steps, a total of 60 minutes.
Since the dryers run on a staggered schedule, the system as a whole produces a load of clean, dry
laundry every 30 minutes.

The steady-state throughput is 1 load of laundry every 30 minutes and the latency for a particular load
of laundry is 90 minutes.

And now here’s the take-home message from this example. Consider the operation of the two-dryer
system. Even though the component dryers themselves aren’t pipelined, the two-dryer interleaving
system is acting like a 2-stage pipeline with a clock period of 30 minutes and a latency of 60 minutes.
In other words, by interleaving the operation of 2 unpipelined components we can achieve the effect of
a 2-stage pipeline.

Page 181

Returning to the example of the previous section, we couldn’t improve the throughput of our pipelined
system past 1/8 ns since the minimum clock period was set the by the 8 ns latency of the C module.

To improve the throughput further we either need to find a pipelined version of the C component or use
an interleaving strategy to achieve the effect of a 2-stage pipeline using two instances of the
unpipelined C component. Let’s try that...

Page 182

Here’s a circuit for a general-purpose two-way interleaver, using, in this case, two copies of the
unpipelined C component, and .

The input for each C component comes from a D-latch, which has the job of capturing and holding the
input value. There’s also a multiplexer to select which C-component output will be captured by the
output register.

In the lower left-hand corner of the circuit is a very simple 2-state FSM with one state bit. The next-
state logic is a single inverter, which causes the state to alternate between 0 and 1 on successive clock
cycles. This timing diagram shows how the state bit changes right after each rising clock edge.

To help us understand the circuit, we’ll look at some signal waveforms to illustrate its operation.

C0 C1

Page 183

To start, here are the waveforms for the CLK signal and our FSM state bit from the previous slide.

A new X input arrives from the previous stage just after the rising edge of the clock.

Next, let’s follow the operation of the component. Its input latch is open when FSM Q is low, so the
newly arriving input passes through the latch and can begin its computation, producing its
result at the end of clock cycle #2. Note that the input latch closes at the beginning of the second
clock cycle, holding the input value stable even though the X input is starting to change. The effect
is that has a valid and stable input for the better part of 2 clock cycles giving it enough time to
compute its result.

The waveforms are similar, just shifted by one clock cycle. ’s input latch is open when FSM Q is
high, so the newly arriving input passes through the latch and can being its computation,
producing its result at the end of clock cycle #3.

Now let’s check the output of the multiplexer. When FSM Q is high, it selects the value from and
when FSM Q is low, it selects the value from . We can see that happening in the waveform shown.

Finally, at the rising edge of the clock, the output register captures the value on its input and holds it
stable for the remainder of the clock cycle.

The behavior of the interleaving circuit is like a 2-stage pipeline: the input value arriving in cycle i is
processed over two clock cycles and the result output becomes available on cycle i+2.

What about the clock period for the interleaving system? Well, there is some time lost to the
propagation delays of the upstream pipeline register that supplies the X input, the internal latches and
multiplexer, and the setup time of the output register. So the clock cycle has to be just a little bit longer
than half the propagation delay of the C module.

C0
X1 C0

C0

X1

C0

C1 C1
X2 C1

C0

C1

Page 184

We can treat the interleaving circuit as a 2-stage pipeline, consuming an input value every clock cycle
and producing a result two cycles later.

When incorporating an N-way interleaved component in our pipeline diagrams, we treat it just like a
N-stage pipeline. So N of our pipelining contours have to pass through the component.

Page 185

Here we’ve replaced the slow unpipelined C component with a 2-way interleaved C-prime component.

We can follow our process for drawing pipelining contours. First we draw a contour across all the
outputs. Then we add contours, ensuring that two of them pass through the C-prime component. Then
we add pipeline registers at the intersections of the contours with the signal connections. We see that
the contours passing through C-prime have caused extra pipeline registers to be added on the other
inputs to the F module, accommodating the 2-cycle delay through C-prime.

Somewhat optimistically we’ve specified the C-prime minimum to be 4 ns, so that means that the
slow component which determines the system’s clock period is now the F module, with a propagation
delay of 5 ns.

So the throughput of our new pipelined circuit is 1 output every 5 ns, and with 5 contours, it’s a 5-
pipeline so the latency is 5 times the clock period or 25 ns.

tCLK

Page 186

By running pipelined systems in parallel we can continue to increase the throughput. Here we show a
laundry with 2 washers and 4 dryers, essentially just two copies of the 1-washer, 2-dryer system shown
earlier. The operation is as described before, except that at each step the system produces and
consumes two loads of laundry.

So the throughput is 2 loads every 30 minutes for an effective rate of 1 load every 15 minutes. The
latency for a load hasn’t changed; it’s still 90 minutes per load.

We’ve seen that even with slow components we can use interleaving and parallelism to continue to
increase throughput. Is there an upper bound on the throughput we can achieve? Yes! The timing
overhead of the pipeline registers and interleaving components will set a lower bound on the
achievable clock period, thus setting an upper bound on the achievable throughput. Sorry, no infinite
speed-up is possible in the real world.

Page 187

We’ve been designing our processing pipelines to have all the stages operate in lock step, choosing the
clock period to accommodate the worst-case processing time over all the stages. This is what we’d call
a synchronous, globally timed system.

But what if there are data dependencies in the processing time, i.e., if for some data inputs a particular
processing stage might be able to produce its output in a shorter time? Can we design a system that
could take advantage of that opportunity to increase throughput?

One alternative is to continue to use a single system clock, but for each stage to signal when it’s ready
for a new input and when it has a new output ready for the next stage. It’s fun to design a simple 2-
signal handshake protocol to reliably transfer data from one stage to the next. The upstream stage
produces a signal called HERE-IS-X to indicate that is has new data for the downstream stage. And the
downstream stage produces a signal called GOT-X to indicate when it is willing to consume data. It’s a
synchronous system so the signal values are only examined on the rising edge of the clock.

The handshake protocol works as follows: the upstream stage asserts HERE-IS-X if it will have a new
output value available at the next rising edge of the clock. The downstream stage asserts GOT-X if it
will grab the next output at the rising edge of the clock. Both stages look at the signals on the rising
edge of the clock to decide what to do next. If both stages see that HERE-IS-X and GOT-X are asserted
at the same clock edge, the handshake is complete and the data transfer happens at that clock edge.
Either stage can delay a transfer if they are still working on producing the next output or consuming the
previous input.

Page 188

It’s possible, although considerably more difficult, to build a clock-free asynchronous self-timed
system that uses a similar handshake protocol. The handshake involves four phases. In phase 1, when
the upstream stage has a new output and GOT-X is deasserted, it asserts its HERE-IS-X signal and then
waits to see the downstream stage’s reply on the GOT-X signal. In phase 2, the downstream stage,
seeing that HERE-IS-X is asserted, asserts GOT-X when it has consumed the available input. In phase
3, the downstream stage waits to see the HERE-IS-X go low, indicating that the upstream stage has
successfully received the GOT-X signal. In phase 4, once HERE-IS-X is deasserted, the downstream
stage deasserts GOT-X and the transfer handshake is ready to begin again. Note that the upstream stage
waits until it sees the GOT-X deasserted before starting the next handshake.

The timing of the system is based on the transitions of the handshake signals, which can happen at any
time the conditions required by the protocol are satisfied. No need for a global clock here!

It’s fun to think about how this self-timed protocol might work when there are multiple downstream
modules, each with their own internal timing.

In this example, A’s output is consumed by both the B and C stages. We need a special circuit, shown
as a yellow box in the diagram, to combine the GOT-X signals from the B and C stages and produce a
summary signal for the A stage.

Let’s take a quick look at the timing diagram shown here. After A has asserted HERE-IS-X, the circuit
in the yellow box waits until both the B AND the C stage have asserted their GOT-X signals before
asserting GOT-X to the A stage. At this point the A stage deasserts HERE-IS-X, then the yellow box
waits until both the B and C stages have deasserted their GOT-X signals, before deasserting GOT-X to
the A stage.

Page 189

Let’s watch the system in action! When a signal is asserted we’ll show it in red, otherwise it’s shown in
black.

A new value for the A stage arrives on A’s data input and the module supplying the value then asserts
its HERE-IS-X signal to let A know it has a new input.

At some point later, A signals GOT-X back upstream to indicate that it has consumed the value, then
the upstream stage deasserts HERE-IS-X, followed by A deasserting its GOT-X output. This completes
the transfer of the data to the A stage.

When A is ready to send a new output to the B and C stages, it checks that its GOT-X input is
deasserted (which it is), so it asserts the new output value and signals HERE-IS-X to the yellow box
which forwards the signal to the downstream stages.

B is ready to consume the new input and so asserts its GOT-X output. Note that C is still waiting for its
second input and has yet to assert its GOT-X output.

After B finishes its computation, it supplies a new value to C and asserts its HERE-IS-X output to let C
know its second input is ready.

Now C is happy and signals both upstream stages that it has consumed its two inputs. Now that both
GOT-X inputs are asserted, the yellow box asserts A’s GOT-X input to let it know that the data has
been transferred. Meanwhile B completes its part of the handshake, and C completes its transaction
with B and A deasserts HERE-IS-X to indicate that it has seen its GOT-X input. When the B and C
stages see their HERE-IS-X inputs go low, they their finish their handshakes by deasserting their GOT-
X outputs, and when they’re both low, the yellow box lets A know the handshake is complete by
deserting A’s GOT-X input.

Whew! The system has returned to the initial state where A is now ready to accept some future input
value.

Page 190

This an elegant design based entirely on transition signaling. Each module is in complete control of
when it consumes inputs and produces outputs, and so the system can process data at the fastest
possible speed, rather than waiting for the worst-case processing delay.

Page 191

Let’s summarize what we’ve learned about controlling pipelined systems. The most straightforward
approach is to use a pipeline with the system clock chosen to accommodate the worst-case processing
time. These systems are easy to design but can’t produce higher throughputs if the processing stages
might run more quickly for some data values.

We saw that we could use a simple handshake protocol to move data through the system. All
communication still happens on the rising edge of the system clock, but the specific clock edge used to
transfer data is determined by the stages themselves.

It’s tempting to wonder if we can might adjust the global clock period to take advantage of data-
dependent processing speedups. But the necessary timing generators can be very complicated in large
systems. It’s usually much easier to use local communication between modules to determine system
timing than trying to figure out all the constraints at the system level. So this approach isn’t usually a
good one.

But what about locally-timed asynchronous systems like the example we just saw? Each generation of
engineers has heard the siren call of asynchronous logic. Sadly, it usually proves too hard to produce a
provably reliable design for a large system, say, a modern computer. But there are special cases, such
as the logic for integer division, where the data-dependent speed-ups make the extra work worthwhile.

Page 192

We characterized the performance of our systems by measuring their latency and throughput. For
combinational circuits, the latency is simply the propagation delay of the circuit and its throughput is
just 1/latency.

We introduced a systematic strategy for designing K-pipelines, where there’s a register on the outputs
of each stage, and there are exactly K registers on every path from input to output. The period of the
system clock is determined by the propagation delay of the slowest pipeline stage. The
throughput of a pipelined system is and its latency is .

Pipelining is the key to increasing the throughput of most high-performance digital systems.

tCLK

1/tCLK KtCLK

Page 193

8: Design Tradeoffs

1. Optimizing Your Design
2. CMOS Static Power Dissipation
3. CMOS Dynamic Power Dissipation I
4. CMOS Dynamic Power Dissipation II
5. How Can We Reduce Power?
6. Fewer Transitions → Lower Power
7. Improving Speed: Adder Example
8. Performance/Cost Analysis
9. Carry Select Adders

10. 32-bit Carry Select Adder
11. Wanted: Faster Carry Logic!
12. Carry Look-ahead Adders (CLA)
13. 8-bit CLA (generate G & P)
14. 8-bit CLA (carry generation)
15. 8-bit CLA (complete)
16. Binary Multiplication
17. Combinational Multiplier
18. 2's Complement Multiplication
19. 2's Complement Multiplier
20. Increase Throughput With Pipelining
21. Carry-save Pipelined Multiplier
22. Reduce Area With Sequential Logic
23. Summary

In this lecture, we’re going to look into optimizing digital systems to make them smaller, faster, higher
performance, more energy efficient, and so on. It would be wonderful if we could achieve all these
goals at the same time and for some circuits we can. But, in general, optimizing in one dimension
usually means doing less well in another. In other words, there are design tradeoffs to be made.

Page 194

Making tradeoffs correctly requires that we have a clear understanding of our design goals for the
system. Consider two different design teams: one is charged with building a high-end graphics card for
gaming, the other with building the Apple watch.

The team building the graphics card is mostly concerned with performance and, within limits, is
willing to trade-off cost and power consumption to achieve their performance goals. Graphics cards
have a set size, so there’s a high priority in making the system small enough to meet the required size,
but there’s little to be gained in making it smaller than that.

The team building the watch has very different goals. Size and power consumption are critical since it
has fit on a wrist and run all day without leaving scorch marks on the wearer’s wrist!

Suppose both teams are thinking about pipelining part of their logic for increased performance.
Pipelining registers are an obvious additional cost. The overlapped execution and higher made
possible by pipelining would increase the power consumption and the need to dissipate that power
somehow. You can imagine the two teams might come to very different conclusions about the correct
course of action!

This chapter takes a look at some of the possible tradeoffs. But as designers you’ll have to pick and
choose which tradeoffs are right for your design. This is the sort of design challenge on which good
engineers thrive! Nothing is more satisfying than delivering more than anyone thought possible within
the specified constraints.

tCLK

Page 195

Our first optimization topic is power dissipation, where the usual goal is to either meet a certain power
budget, or to minimize power consumption while meeting all the other design targets.

In CMOS circuits, there are several sources of power dissipation, some under our control, some not.

Static power dissipation is power that is consumed even when the circuit is idle, i.e., no nodes are
changing value. Using our simple switch model for the operation of MOSFETs, we’d expect CMOS
circuits to have zero static power dissipation. And in the early days of CMOS, we came pretty close to
meeting that ideal. But as the physical dimensions of the MOSFET have shrunk and the operating
voltages have been lowered, there are two sources of static power dissipation in MOSFETs that have
begun to loom large.

We’ll discuss the effects as they appear in n-channel MOSFETs, but keep in mind that they appear in p-
channel MOSFETs too.

The first effect depends on the thickness of the MOSFET’s gate oxide, shown as the thin yellow layer
in the MOSFET diagram on the left. In each new generation of integrated circuit technology, the
thickness of this layer has shrunk, as part of the general reduction in all the physical dimensions. The
thinner insulating layer means stronger electrical fields that cause a deeper inversion layer that leads to
NFETs that carry more current, producing faster gate speeds. Unfortunately the layers are now thin
enough that electrons can tunnel through the insulator, creating a small flow of current from the gate to
the substrate. With billions of NFETs in a single circuit, even tiny currents can add up to non-negligible
power drain.

The second effect is caused by current flowing between the drain and source of a NFET that is, in
theory, not conducting because is less than the threshold voltage. Appropriately this effect is
called sub-threshold conduction and is exponentially related to - (a negative value when the
NFET is off). So as has been reduced in each new generation of technology, is less
negative and the sub-threshold conduction has increased.

VGS

VGS VTH

VTH VGS − VTH

Page 196

One fix has been to change the geometry of the NFET so the conducting channel is a tall, narrow fin
with the gate terminal wrapped around 3 sides, sometimes referred to as a tri-gate configuration. This
has reduced the sub-threshold conduction by an order-of-magnitude or more, solving this particular
problem for now.

Neither of these effects is under the control of the system designer, except of course, if they’re free to
choose an older manufacturing process! We mention them here so that you’re aware that newer
technologies often bring additional costs that then become part of the trade-off process.

Page 197

A designer does have some control over the dynamic power dissipation of the circuit, the amount of
power spent causing nodes to change value during a sequence of computations. Each time a node
changes from 0-to-1 or 1-to-0, currents flow through the MOSFET pullup and pulldown networks,
charging and discharging the output node’s capacitance and thus changing its voltage.

Consider the operation of an inverter. As the voltage of the input changes, the pullup and pulldown
networks turn on and off, connecting the inverter’s output node to VDD or ground. This charges or
discharges the capacitance of the output node changing its voltage. We can compute the energy
dissipated by integrating the instantaneous power associated with the current flow through the pullups
and pulldowns over the time taken by the output transition.

The power dissipated across the resistance of the MOSFET channel is simply times . Here’s
the energy integral for the 1-to-0 transition of the output node, where we’re measuring using the
equation for the current flowing out of the output node’s capacitor: . Assuming that the
input signal is a clock signal of period and that each transition is taking half a clock cycle, we can
work through the math to determine that energy dissipated through the pulldown network is

, where the frequency tells us the number of such transitions per second, is the nodal
capacitance, and (the power supply voltage) is the starting voltage of the nodal capacitor.

There’s a similar integral for the current dissipated by pullup network when charging the capacitor and
it yields the same result.

So one complete cycle of charging then discharging dissipates joules. Note the all this energy
has come from the power supply — the first half is dissipated when the output node is charged and the
other half stored as energy in the capacitor. Then the capacitor’s energy is dissipated as it discharges.

IDS VDS

IDS

I = CdV /dt
tCLK

0.5fCV 2
DD f C

VDD

fCV 2

Page 198

These results are summarized in the lower left. We’ve added the calculation for the energy dissipation
of an entire circuit assuming N of the circuit’s nodes change each clock cycle.

How much energy could be consumed by a modern integrated circuit? Here’s a quick back-of-the-
envelope estimate for a current generation CPU chip. It’s operating at, say, 1 GHz and will have 100
million internal nodes that could change each clock cycle. Each nodal capacitance is around 1 femto
Farad and the power supply is about 1V. With these numbers, the estimated power consumption is 100
watts. We all know how hot a 100W light bulb gets! You can see it would be hard to keep the CPU
from overheating.

This is way too much energy to be dissipated in many applications, and modern CPUs intended, say,
for laptops only dissipate a fraction of this energy. So the CPU designers must have some tricks up
their sleeve, some of which we’ll see in a minute.

But first notice how important it’s been to be able to reduce the power supply voltage in modern
integrated circuits. If we’re able to reduce the power supply voltage from 3.3V to 1V, that alone
accounts for more than a factor of 10 in power dissipation. So the newer circuit can be say, 5 times
larger and 2 times faster with the same power budget!

Newer technologies trends are shown here. The net effect is that newer chips would naturally dissipate
more power if we could afford to have them do so. We have to be very clever in how we use more and
faster MOSFETs in order not to run up against the power dissipation constraints we face.

Page 199

To see what we can do to reduce power consumption, consider the following diagram of an arithmetic
and logic unit (ALU) like the one you’ll design in the final lab in this part of the course. There are four
independent component modules, performing the separate arithmetic, boolean, shifting and comparison
operations typically found in an ALU. Some of the ALU control signals are used to select the desired
result in a particular clock cycle, basically ignoring the answers produced by the other modules.

Of course, just because the other answers aren’t selected doesn’t mean we didn’t dissipate energy in
computing them. This suggests an opportunity for saving power! Suppose we could somehow “turn
off” modules whose outputs we didn’t need? One way to prevent them from dissipating power is to
prevent the module’s inputs from changing, thus ensuring that no internal nodes would change and
hence reducing the dynamic power dissipation of the “off” module to zero.

Page 200

One idea is to put latches on the inputs to each module, only opening a module’s input latch if an
answer was required from that module in the current cycle. If a module’s latch stayed closed, its
internal nodes would remain unchanged, eliminating the module’s dynamic power dissipation. This
could save a substantial amount of power. For example, the shifter circuitry has many internal nodes
and so has a large dynamic power dissipation. But there are comparatively few shift operations in most
programs, so with our proposed fix, most of the time those energy costs wouldn’t be incurred.

A more draconian approach to power conservation is to literally turn off unused portions of the circuit
by switching off their power supply. This is more complicated to achieve, so this technique is usually
reserved for special power-saving modes of operation, where we can afford the time it takes to reliably
power the circuity back up.

Another idea is to slow the clock (reducing the frequency of nodal transitions) when there’s nothing for
the circuit to do. This is particularly effective for devices that interact with the real world, where the
time scales for significant external events are measured in milliseconds. The device can run slowly
until an external event needs attention, then speed up the clock while it deals with the event.

All of these techniques and more are used in modern mobile devices to conserve battery power without
limiting the ability to deliver bursts of performance. There is much more innovation waiting to be done
in this area, something you may be asked to tackle as designers!

One last question is whether computation has to consume energy? There have been some interesting
theoretical speculations about this question — see section 6.5 of the course notes to read more.

Page 201

The most straightforward way to improve performance is to reduce the propagation delay of a circuit.
Let’s look at a perennial performance bottleneck: the ripple-carry adder.

To fix it, we first have to figure out the path from inputs to outputs that has the largest propagation
delay, i.e., the path that’s determining the overall . In this case that path is the long carry chain
following the carry-in to carry-out path through each full adder module. To trigger the path add -1 and
1 by setting the A inputs to all 1’s and the B input to all 0’s except for the low-order bit which is 1. The
final answer is 0, but notice that each full adder has to wait for the carry-in from the previous stage
before it produces 0 on its sum output and generates a carry-out for the next full adder. The carry really
does ripple through the circuit as each full adder in turn does its thing.

To total propagation delay along this path is N-1 times the carry-in to carry-out delay of each full
adder, plus the delay to produce the final bit of the sum.

How would the overall latency change if we, say, doubled the size of the operands, i.e., made N twice
as large? It’s useful to summarize the dependency of the latency on N using the “order-of” notation to
give us the big picture. Clearly as N gets larger the delay of the XOR gate at the end becomes less
significant, so the order-of notation ignores terms that are relatively less important as N grows.

In this example, the latency is , which tells us that the latency would be expected to essentially
double if we made N twice as large.

tPD

Θ(N)

Page 202

The order-of notation, which theoreticians call asymptotic analysis, tells us the term that would
dominate the result as N grows. The yellow box contains the official definition, but an example might
make it easier to understand what’s happening.

Suppose we want to characterize the growth in the value of the equation as gets larger.
The dominant term is clearly and the value of our equation is bounded above and below by simple
multiples of , except for finitely many values of n. The lower bound is always true for greater than
or equal to 0. And in this case, the upper bound doesn’t hold only for equal to 0, 1, 2, or 3. For all
other positive values of the upper inequality is true. So we’d say that this equation was .

There are actually two variants for the order-of notation. We use the notation to indicate that
is bounded above AND below by multiples of . The notation is used when is only
bounded above by a multiple of .

n2 + 2n + 3 n
n2

n2 n
n

n Θ(n2)

Θ() g(n)
f(n) O() g(n)

f(n)

Page 203

Here’s a first attempt at improving the latency of our addition circuit. The trouble with the ripple-carry
adder is that the high-order bits have to wait for the carry-in from the low-order bits. Is there a way in
which we can get high half the adder working in parallel with the low half?

Suppose we wanted to build a 32-bit adder. Let’s make two copies of the high 16 bits of the adder, one
assuming the carry-in from the low 16 bits is 0, and the other assuming the carry-in is 1. So now we
have three 16-bit adders, all of which can operate in parallel on newly arriving A and B inputs. Once
the 16-bit additions are complete, we can use the actual carry-out from the low-half to select the
answer from the particular high-half adder that used the matching carry-in value. This type of adder is
appropriately named the carry-select adder.

The latency of this carry-select adder is just a little more than the latency of a 16-bit ripple-carry
addition. This is approximately half the latency of the original 32-bit ripple-carry adder. So at a cost of
about 50% more circuitry, we’ve halved the latency!

As a next step, we could apply the same strategy to halve the latency of the 16-bit adders. And then
again to halve the latency of the 8-bit adders used in the previous step. At each step we halve the adder
latency and add a MUX delay. After steps, will be 1 and we’re done.

At this point the latency would be some constant cost to do a 1-bit addition, plus times the
MUX latency to select the right answers. So the overall latency of the carry-select adder is .
Note that and only differ by a constant factor, so we ignore the base of the log in order-of
notation.

The carry-select adder shows a clear performance-size tradeoff available to the designer.

log2(N) N

log2(N)

Θ(logN)
log2 N logN

Page 204

Since adders play a big role in many digital systems, here’s a more carefully engineered version of a
32-bit carry-select adder. You could try this in your ALU design!

The size of the adder blocks has been chosen so that the trial sums and the carry-in from the previous
stage arrive at the carry-select MUX at approximately the same time. Note that since the select signal
for the MUXes is heavily loaded we’ve included a buffer to make the select signal transitions faster.

This carry-select adder is about two-and-a-half times faster than a 32-bit ripple-carry adder at the cost
of about twice as much circuitry. A great design to remember when you’re looking to double the speed
of your ALU!

Page 205

Here’s another approach to improving the latency of our adder, this time focusing just on the carry
logic. Early on in the course, we learned that by going from a chain of logic gates to a tree of logic
gates, we could go from a linear latency to a logarithmic latency. Let’s try to do that here.

We’ll start by rewriting the equations for the carry-out from the full adder module. The final form of
the rewritten equation has two terms. The G, or generate, term is true when the inputs will cause the
module to generate a carry-out right away, without having to wait for the carry-in to arrive. The P, or
propagate, term is true if the module will generate a carry-out only if there’s a carry-in.

So there only two ways to get a carry-out from the module: it’s either generated by the current module
or the carry-in is propagated from the previous module.

Actually, it’s usual to change the logic for the P term from “A OR B” to “A XOR B”. This doesn’t
change the truth table for the carry-out but will allow us to express the sum output as “P XOR carry-
in”. Here’s the schematic for the reorganized full adder module. The little sum-of-products circuit for
the carry-out can be implemented using 3 2-input NAND gates, which is a bit more compact than the
implementation for the three product terms we suggested in Lab 2. Time to update your full adder
circuit!

Page 206

Now consider two adjacent adder modules in a larger adder circuit: we’ll use the label H to refer to the
high-order module and the label L to refer to the low-order module.

We can use the generate and propagate information from each of the modules to develop equations for
the carry-out from the pair of modules treated as a single block.

We’ll generate a carry-out from the block when a carry-out is generated by the H module, or when a
carry-out is generated by the L module and propagated by the H module. And we’ll propagate the
carry-in through the block only if the L module propagates its carry-in to the intermediate carry-out
and H module propagates that to the final carry-out. So we have two simple equations requiring only a
couple of logic gates to implement.

Let’s use these equations to build a generate-propagate (GP) module and hook it to the H and L
modules as shown. The G and P outputs of the GP module tell us under what conditions we’ll get a
carry-out from the two individual modules treated as a single, larger block.

Page 207

We can use additional layers of GP modules to build a tree of logic that computes the generate and
propagate logic for adders with any number of inputs. For an adder with N inputs, the tree will contain
a total of N-1 GP modules and have a latency that’s .

In the next step, we’ll see how to use the generate and propagate information to quickly compute the
carry-in for each of the original full adder modules.

Θ(logN)

Page 208

Once we’re given the carry-in for the low-order bit, we can hierarchically compute the carry-in for
each full adder module.

Given the carry-in to a block of adders, we simply pass it along as the carry-in to the low-half of the
block. The carry-in for the high-half of the block is computed the using the generate and propagate
information from the low-half of the block.

We can use these equations to build a C module and arrange the C modules in a tree as shown to use
the carry-in to hierarchically compute the carry-in to each layer of successively smaller blocks,
until we finally reach the full adder modules. For example, these equations show how is computed
from , and is computed from .

Again the total propagation delay from the arrival of the input to the carry-ins for each full adder is
.

Notice that the and inputs to a particular C module are the same as two of the inputs to the GP
module in the same position in the GP tree.

C0

C0

C4

C0 C6 C4

C0

Θ(logN)

GL PL

Page 209

We can combine the GP module and C module to form a single carry-lookahead module that passes
generate and propagate information up the tree and carry-in information down the tree. The schematic
at the top shows how to wire up the tree of carry-lookahead modules.

And now we get to the payoff for all this hard work! The combined propagation delay to hierarchically
compute the generate and propagate information on the way up and the carry-in information on the
way down is , which is then the latency for the entire adder since computing the sum outputs
only takes one additional XOR delay. This is a considerable improvement over the latency of
the ripple-carry adder.

A final design note: we no longer need the carry-out circuitry in the full adder module, so it can be
removed.

Variations on this generate-propagate strategy form the basis for the fastest-known adder circuits. If
you’d like to learn more, look up “Kogge-Stone adders” on Wikipedia.

Θ(logN)
Θ(N)

Page 210

One of the biggest and slowest circuits in an arithmetic and logic unit is the multiplier. We’ll start by
developing a straightforward implementation and then, in the next section, look into tradeoffs to make
it either smaller or faster.

Here’s the multiplication operation for two unsigned 4-bit operands broken down into its component
operations. This is exactly how we learned to do it in primary school. We take each digit of the
multiplier (the B operand) and use our memorized multiplication tables to multiply it with each digit of
the multiplicand (the A operand), dealing with any carries into the next column as we process the
multiplicand right-to-left. The output from this step is called a partial product, and then we repeat the
step for the remaining bits of the multiplier. Each partial product is shifted one digit to the left,
reflecting the increasing weight of the multiplier digits.

In our case the digits are just single bits, i.e., they’re 0 or 1 and the multiplication table is pretty simple!
In fact, the 1-bit-by-1-bit binary multiplication circuit is just a 2-input AND gate. And look Mom, no
carries!

The partial products are N bits wide since there are no carries. If the multiplier has M bits, there will be
M partial products. And when we add the partial products together, we’ll get an N+M bit result if we
account for the possible carry-out from the high-order bit.

The easy part of the multiplication is forming the partial products — it just requires some AND gates.
The more expensive operation is adding together the M N-bit partial products.

Page 211

Here’s the schematic for the combinational logic needed to implement the 4x4 multiplication, which
would be easy to extend for larger multipliers (we’d need more rows) or larger multiplicands (we’d
need more columns).

The M*N 2-input AND gates compute the bits of the M partial products. The adder modules add the
current row’s partial product with the sum of the partial products from the earlier rows. Actually there
are two types of adder modules. The full adder is used when the modules needs three inputs. The
simpler half adder is used when only two inputs are needed.

The longest path through this circuit takes a moment to figure out. Information is always moving either
down a row or left to the adjacent column. Since there are M rows and, in any particular row, N
columns, there are at most N+M modules along any path from input to output. So the latency is ,
since M and N differ by just some constant factor.

Since this is a combinational circuit, the throughput is just 1/latency. And the total amount of hardware
is .

In the next section, we’ll investigate how to reduce the hardware costs, or, separately, how to increase
the throughput.

But before we do that, let’s take a moment to see how the circuit would change if the operands were
two’s complement integers instead of unsigned integers.

Θ(N)

Θ(N 2)

Page 212

With a two’s complement multiplier and multiplicand, the high-order bit of each has negative weight.
So when adding together the partial products, we’ll need to sign-extend each of the N-bit partial
products to the full N+M-bit width of the addition. This will ensure that a negative partial product is
properly treated when doing the addition. And, of course, since the high-order bit of the multiplier has
a negative weight, we’d subtract instead of add the last partial product.

Now for the clever bit. We’ll add 1’s to various of the columns and then subtract them later, with the
goal of eliminating all the extra additions caused by the sign-extension. We’ll also rewrite the
subtraction of the last partial product as first complementing the partial product and then adding 1. This
is all a bit mysterious but...

Here in step 3 we see the effect of all the step 2 machinations. Let’s look at the high order bit of the
first partial product X3Y0. If that partial product is non-negative, X3Y0 is a 0, so all the sign-extension
bits are 0 and can be removed. The effect of adding a 1 in that position is to simply complement X3Y0.

On the other hand, if that partial product is negative, X3Y0 is 1, and all the sign-extension bits are 1.
Now when we add a 1 in that position, we complement the X3Y0 bit back to 0, but we also get a carry-
out. When that’s added to the first sign-extension bit (which is itself a 1), we get zero with another
carry-out. And so on, with all the sign-extension bits eventually getting flipped to 0 as the carry ripples
to the end. Again the net effect of adding a 1 in that position is to simply complement X3Y0.

We do the same for all the other sign-extended partial products, leaving us with the results shown here.

In the final step we do a bit of arithmetic on the remaining constants to end up with this table of work
to done. Somewhat to our surprise, this isn’t much different than the original table for the unsigned
multiplication. There are a few partial product bits that need to be complemented, and two 1-bits that
need to be added to particular columns.

Page 213

The resulting circuitry is shown here. We’ve changed some of the AND gates to NAND gates to
perform the necessary complements. And we’ve changed the logic necessary to deal with the two 1-
bits that needed to be added in.

The colored elements show the changes made from the original unsigned multiplier circuitry. Basically,
the circuit for multiplying two’s complement operands has the same latency, throughput and hardware
costs as the original circuitry.

Page 214

Let’s see if we can improve the throughput of the original combinational multiplier design. We’ll use
our patented pipelining process to divide the processing into stages with the expectation of achieving a
smaller clock period and higher throughput. The number to beat is approximately 1 output every 2N,
where N is the number of bits in each of the operands.

Our first step is to draw a contour across all the outputs. This creates a 1-pipeline, which gets us started
but doesn’t improve the throughput.

Let’s add another contour, dividing the computations about in half. If we’re on the right track, we hope
to see some improvement in the throughput. And indeed we do: the throughput has doubled. Yet both
the before and after throughputs are . Is there any hope of a dramatically better throughput?

The necessary insight is that as long as an entire row is inside a single pipeline stage, the latency of the
stage will be since we have to leave time for the N-bit ripple-carry add to complete.

Θ(1/N)

Θ(N)

Page 215

There are several ways to tackle this problem. The technique illustrated here will be useful in our next
task. In this schematic we’ve redrawn the carry chains. Carry-outs are still connected to a module one
column to the left, but, in this case, a module that’s down a row. So all the additions that need to
happen in a specific column still happen in that column, we’ve just reorganized which row does the
adding.

Let’s pipeline this revised diagram, creating stages with approximately two module’s worth of
propagation delay.

The horizontal contours now break the long carry chains and the latency of each stage is now constant,
independent of N.

Note that we had to add extra rows to take of the propagating the carries all the way to the end
— the extra circuitry is shown in the grey box.

To achieve a latency that’s independent of N in each stage, we’ll need contours. This means the
latency is constant, which in order-of notation we write as .. But this means the clock period is
now independent of N, as is the throughput — they are both . With contours, there are

 pipeline stages, so the system latency is . The hardware cost is still . So the
pipelined carry-save multiplier has dramatically better throughput than the original circuit, another
design tradeoff we can remember for future use.

We’ll use the carry-save technique in our next optimization, which is to implement the multiplier using
only hardware.

Θ(N)

Θ(N)
Θ(1)

Θ(1) Θ(N)
Θ(N) Θ(N) Θ(N 2)

Θ(N)

Page 216

This sequential multiplier design computes a single partial product in each step and adds it to the
accumulating sum. It will take steps to perform the complete multiplication.

In each step, the next bit of the multiplier, found in the low-order bit of the B register, is ANDed with
the multiplicand to form the next partial product. This is sent to the N-bit carry-save adder to be added
to the accumulating sum in the P register. The value in the P register and the output of the adder are in
“carry-save format”. This means there are 32 data bits, but, in addition, 31 saved carries, to be added to
the appropriate column in the next cycle. The output of the carry-save adder is saved in the P register,
then in preparation for the next step both P and B are shifted right by 1 bit. So each cycle one bit of the
accumulated sum is retired to the B register since it can no longer be affected by the remaining partial
products. Think of it this way: instead of shifting the partial products left to account for the weight of
the current multiplier bit, we’re shifting the accumulated sum right!

The clock period needed for the sequential logic is quite small, and, more importantly is independent of
N. Since there’s no carry propagation, the latency of the carry-save adder is very small, i.e., only
enough time for the operation of a single full adder module.

After steps, we’ve generated the necessary partial products, but will need to continue for
another steps to finish propagating the carries through the carry-save adder.

But even at 2N steps, the overall latency of the multiplier is still . And at the end of the 2N steps,
we produce the answer in the P and B registers combined, so the throughput is . The big
change is in the hardware cost at , a dramatic improvement over the hardware cost of
the original combinational multiplier.

This completes our little foray into multiplier designs. We’ve seen that with a little cleverness we can
create designs with throughput, or designs with only hardware. The technique of carry-
save addition is useful in many situations and its use can improve throughput at constant hardware cost,
or save hardware at a constant throughput.

Θ(N)

Θ(N)
Θ(N)

Θ(N)
Θ(1/N)

Θ(N) Θ(N 2)

Θ(1) Θ(N)

Page 217

This discussion of design tradeoffs completes Part 1 of the course. We’ve covered a lot of ground in the
last eight lectures.

We started by looking at the mathematics underlying information theory and used it to help evaluate
various alternative ways of effectively using sequences of bits to encode information content. Then we
turned our attention to adding carefully-chosen redundancies to our encoding to ensure that we could
detect and even correct errors that corrupted our bit-level encodings.

Next we learned how analog signaling accumulates errors as we added processing elements to our
system. We solved the problem by using voltages “digitally” choosing two ranges of voltages to encode
the bit values 0 and 1. We had different signaling specifications for outputs and inputs, adding noise
margins to make our signaling more robust. Then we developed the static discipline for combinational
devices and were led to the conclusion that our devices had to be non-linear and exhibit gains > 1.

In our study of combinational logic, we fist learned about the MOSFET, a voltage-controlled switch.
We developed a technique for using MOSFETs to build CMOS combinational logic gates, which met
all the criteria of the static discipline. Then we discussed systematic ways of synthesizing larger
combinational circuits that could implement any functionality we could express in the form a truth
table.

To be able to perform sequences of operations, we first developed a reliable bistable storage element
based on a positive feedback loop. To ensure the storage elements worked correctly we imposed the
dynamic discipline which required inputs to the storage elements to be stable just before and after the
time the storage element was transitioned to “memory mode”. We introduced finite-state machines as a
useful abstraction for designing sequential logic. And then we figured out how to deal with
asynchronous inputs in way that minimized the chance of incorrect operation due to metastability.

In the last two lectures we developed latency and throughput as performance measures for digital
systems and discussed ways of achieving maximum throughput under various constraints. We
discussed how it’s possible to make tradeoffs to achieve goals of minimizing power dissipation and
increasing performance through decreased latency or increased throughput.

Page 218

Whew! That’s a lot of information in a short amount of time.

Page 219

9: Instruction Set Architectures

1. Example: Factorial I
2. Example: Factorial II
3. Datapath for Factorial
4. Control FSM for Factorial
5. Control FSM Hardware
6. So Far: Single-purpose Hardware
7. A Simple Programmable Datapath
8. A Control FSM for Factorial
9. New Problem → New Control FSM

10. The Eniac Computer
11. Programming The Eniac
12. The von Neumann Model
13. Key Idea: Stored-program Computer
14. Anatomy of a von Neumann Computer
15. Instructions
16. Instruction Set Architecture (ISA)
17. ISA Design
18. Beta ISA: Storage
19. Storage Conventions
20. Beta ISA: Instructions
21. Beta ALU Instructions
22. Implementation Sketch #1
23. Should We Support Constant Operands?
24. Beta ALU Instructions with Constant
25. Implementation Sketch #2
26. Beta Load and Store Instructions
27. Using LD and ST
28. Can We Solve Factorial with ALU Instructions?
29. Beta Branch Instructions
30. Can We Solve Factorial Now?
31. Beta JMP Instruction
32. Beta ISA Summary

Welcome to Part 2 of 6.004! In this part of the course, we turn our attention to the design and
implementation of digital systems that can perform useful computations on different types of binary
data. We’ll come up with a general-purpose design for these systems, we which we call “computers”,
so that they can serve as useful tools in many diverse application areas. Computers were first used to
perform numeric calculations in science and engineering, but today they are used as the central control
element in any system where complex behavior is required.

Page 220

We have a lot to do in this lecture, so let’s get started! Suppose we want to design a system to compute
the factorial function on some numeric argument N. N! is defined as the product of N times N-1 times
N-2, and so on down to 1.

We can use a programming language like C to describe the sequence of operations necessary to
perform the factorial computation. In this program there are two variables, “a” and “b”. “a” is used to
accumulate the answer as we compute it step-by-step. “b” is used to hold the next value we need to
multiply. “b” starts with the value of the numeric argument N. The DO loop is where the work gets
done: on each loop iteration we perform one of the multiplies from the factorial formula, updating the
value of the accumulator “a” with the result, then decrementing “b” in preparation for the next loop
iteration.

Page 221

If we want to implement a digital system that performs this sequence of operations, it makes sense to
use sequential logic! Here’s the state transition diagram for a high-level finite-state machine designed
to perform the necessary computations in the desired order. We call this a high-level FSM since the
“outputs” of each state are more than simple logic levels. They are formulas indicating operations to be
performed on source variables, storing the result in a destination variable.

The sequence of states visited while the FSM is running mirrors the steps performed by the execution
of the C program. The FSM repeats the LOOP state until the new value to be stored in “b” is equal to
0, at which point the FSM transitions into the final DONE state.

The high-level FSM is useful when designing the circuitry necessary to implement the desired
computation using our digital logic building blocks. We’ll use 32-bit D-registers to hold the “a” and
“b” values. And we’ll need a 2-bit D-register to hold the 2-bit encoding of the current state, i.e., the
encoding for either START, LOOP or DONE. We’ll include logic to compute the inputs required to
implement the correct state transitions. In this case, we need to know if the new value for “b” is zero or
not. And, finally, we’ll need logic to perform multiply and decrement, and to select which value should
be loaded into the “a” and “b” registers the end of each FSM cycle.

Page 222

Let’s start by designing the logic that implements the desired computations — we call this part of the
logic the “datapath”.

First we’ll need two 32-bit D-registers to hold the “a” and “b” values. Then we’ll draw the
combinational logic blocks needed to compute the values to be stored in those registers. In the START
state , we need the constant 1 to load into the “a” register and the constant N to load into the “b”
register. In the LOOP state, we need to compute a*b for the “a” register and b-1 for the “b” register.
Finally, in the DONE state , we need to be able to reload each register with its current value.

We’ll use multiplexers to select the appropriate value to load into each of the data registers. These
multiplexers are controlled by 2-bit select signals that choose which of the three 32-bit input values
will be the 32-bit value to be loaded into the register. So by choosing the appropriate values for
WASEL and WBSEL, we can make the datapath compute the desired values at each step in the FSM’s
operation.

Page 223

Next we’ll add the combinational logic needed to control the FSM’s state transitions. In this case, we
need to test if the new value to be loaded into the “b” register is zero. The Z signal from the datapath
will be 1 if that’s the case and 0 otherwise.

Now we’re all set to add the hardware for the control FSM, which has one input (Z) from the datapath
and generates two 2-bit outputs (WASEL and WBSEL) to control the datapath. Here’s the truth table
for the FSM’s combinational logic. S is the current state, encoded as a 2-bit value, and S’ is the next
state.

Page 224

Using our skills from Part 1 of the course, we’re ready to draw a schematic for the system! We know
how to design the appropriate multiplier and decrement circuitry. And we can use our standard register-
and-ROM implementation for the control FSM. The Z signal from the datapath is combined with the 2
bits of current state to form the 3 inputs to the combinational logic, in this case realized by a read-only
memory with locations. Each ROM location has the appropriate values for the 6 output bits: 2
bits each for WASEL, WBSEL, and next state. The table on the right shows the ROM contents, which
are easily determined from the table on the previous slide.

2
3
= 8

Page 225

Okay, we’ve figured out a way to design hardware to perform a particular computation: Draw the state
transition diagram for an FSM that describes the sequence of operations needed to complete the
computation. Then construct the appropriate datapath, using registers to store values and combinational
logic to implement the needed operations. Finally build an FSM to generate the control signals required
by the datapath.

Is the datapath plus control logic itself an FSM? Well, it has registers and some combinational logic,
so, yes, it is an FSM. Can we draw the truth table? In theory, yes. In practice, there are 66 bits of
registers and hence 66 bits of state, so our truth table would need rows! Hmm, not very likely that
we’d be able to draw the truth table! The difficulty comes from thinking of the registers in the datapath
as part of the state of our super-FSM. That’s why we think about the datapath as being separate from
the control FSM.

So how do we generalize this approach so we can use one computer circuit to solve many different
problems. Well, most problems would probably require more storage for operands and results. And a
larger list of allowable operations would be handy. This is actually a bit tricky: what’s the minimum set
of operations we can get away with? As we’ll see later, surprisingly simple hardware is sufficient to
perform any realizable computation. At the other extreme, many complex operations (e.g., fast fourier
transform) are best implemented as sequences of simpler operations (e.g., add and multiply) rather than
as a single massive combinational circuit. These sorts of design tradeoffs are what makes computer
architecture fun!

We’d then combine our larger storage with logic for our chosen set of operations into a general purpose
datapath that could be reused to solve many different problems. Let’s see how that would work...

2
66

Page 226

Here’s a datapath with 4 data registers to hold results. The ASEL and BSEL multiplexers allow any of
the data registers to be selected as either operand for our repertoire of arithmetic and boolean
operations. The result is selected by the OPSEL MUX and can be written back into any of the data
registers by setting the WEN control signal to 1 and using the 2-bit WSEL signal to select which data
register will be loaded at the next rising clock edge. Note that the data registers have a load-enable
control input: when this signal is 1, the register will load a new value from its D input, otherwise it
ignores the D input and simply reloads its previous value.

And, of course, we’ll add a control FSM to generate the appropriate sequence of control signals for the
datapath. The Z input from the datapath allows the system to perform data-dependent operations,
where the sequence of operations can be influenced by the actual values in the data registers.

Page 227

Here’s the state transition diagram for the control FSM we’d use if we wanted to use this datapath to
compute factorial assuming the initial contents of the data registers are as shown. We need a few more
states than in our initial implementation since this datapath can only perform one operation at each
step. So we need three steps for each iteration: one for the multiply, one for the decrement, and one for
the test to see if we’re done.

As seen here, it’s often the case that general-purpose computer hardware will need more cycles and
perhaps involve more hardware than an optimized single-purpose circuit.

Page 228

You can solve many different problems with this system: exponentiation, division, square root, and so
on, so long as you don’t need more than four data registers to hold input data, intermediate results, or
the final answer.

By designing a control FSM, we are in effect “programming” our digital system, specifying the
sequence of operations it will perform.

Page 229

This is exactly how the early digital computers worked! Here’s a picture of the ENIAC computer built
in 1943 at the University of Pennsylvania.

Page 230

The Wikipedia article on the ENIAC tells us that “ENIAC could be programmed to perform complex
sequences of operations, including loops, branches, and subroutines. The task of taking a problem and
mapping it onto the machine was complex, and usually took weeks. After the program was figured out
on paper, the process of getting the program into ENIAC by manipulating its switches and cables could
take days. This was followed by a period of verification and debugging, aided by the ability to execute
the program step by step.”

It’s clear that we need a less cumbersome way to program our computer!

Page 231

There are many approaches to building a general-purpose computer that can be easily re-programmed
for new problems. Almost all modern computers are based on the “stored program” computer
architecture developed by John von Neumann in 1945, which is now commonly referred to as the “von
Neumann model”.

The von Neumann model has three components. There’s a central processing unit (aka the CPU) that
contains a datapath and control FSM as described previously.

The CPU is connected to a read/write memory that holds some number W of words, each with N bits.
Nowadays, even small memories have a billion words and the width of each location is at least 32 bits
(usually more). This memory is often referred to as “main memory” to distinguish it from other
memories in the system. You can think of it as an array: when the CPU wishes to operate on values in
memory, it sends the memory an array index, which we call the address, and, after a short delay
(currently 10’s of nanoseconds) the memory will return the N-bit value stored at that address. Writes to
main memory follow the same protocol except, of course, the data flows in the opposite direction.
We’ll talk about memory technologies a couple of lectures from now.

And, finally, there are input/output devices that enable the computer system to communicate with the
outside world or to access data storage that, unlike main memory, will remember values even when
turned off.

Page 232

The key idea is to use main memory to hold the instructions for the CPU as well as data. Both
instructions and data are, of course, just binary data stored in main memory.

Interpreted as an instruction, a value in memory can be thought of as a set of fields containing one or
bits encoding information about the actions to be performed by the CPU. The opcode field indicates the
operation to be performed (e.g., ADD, XOR, COMPARE). Subsequent fields specify which registers
supply the source operands and the destination register where the result is stored. The CPU interprets
the information in the instruction fields and performs the requested operation. It would then move on to
the next instruction in memory, executing the stored program step-by-step. The goal of this chapter is
to discuss the details of what operations we want the CPU to perform, how many registers we should
have, and so on.

Of course, some values in memory are not instructions! They might be binary data representing
numeric values, strings of characters, and so on. The CPU will read these values into its temporary
registers when it needs to operate on them and write newly computed values back into memory.

Mr. Blue is asking a good question: how do we know which words in memory are instructions and
which are data? After all, they’re both binary values! The answer is that we can’t tell by looking at the
values — it’s how they are used by the CPU that distinguishes instructions from data. If a value is
loaded into the datapath, it’s being used as data. If a value is loaded by the control logic, it’s being used
an instruction.

Page 233

So this is the digital system we’ll build to perform computations. We’ll start with a datapath that
contains some number of registers to hold data values. We’ll be able to select which registers will
supply operands for the arithmetic and logic unit that will perform an operation. The ALU produces a
result and other status signals. The ALU result can be written back to one of the registers for later use.
We’ll provide the datapath with means to move data to and from main memory.

There will be a control unit that provides the necessary control signals to the datapath. In the example
datapath shown here, the control unit would provide ASEL and BSEL to select two register values as
operands and DEST to select the register where the ALU result will be written. If the datapath had, say,
32 internal registers, ASEL, BSEL and DEST would be 5-bit values, each specifying a particular
register number in the range 0 to 31. The control unit also provides the FN function code that controls
the operation performed by the ALU. The ALU we designed in Part 1 of the course requires a 6-bit
function code to select between a variety of arithmetic, boolean and shift operations.

The control unit would load values from main memory to be interpreted as instructions. The control
unit contains a register, called the “program counter”, that keeps track of the address in main memory
of the next instruction to be executed. The control unit also contains a (hopefully small) amount of
logic to translate the instruction fields into the necessary control signals. Note the control unit receives
status signals from the datapath that will enable programs to execute different sequences of instructions
if, for example, a particular data value was zero.

The datapath serves as the brawn of our digital system and is responsible for storing and manipulating
data values. The control unit serves as the brain of our system, interpreting the program stored in main
memory and generating the necessary sequence of control signals for the datapath.

Page 234

Instructions are the fundamental unit of work. They’re fetched by the control unit and executed one
after another in the order they are fetched. Each instruction specifies the operation to be performed
along with the registers to supply the source operands and destination register where the result will be
stored.

In a von Neumann machine, instruction execution involves the steps shown here: the instruction is
loaded from the memory location whose address is specified by the program counter. When the
requested data is returned by the memory, the instruction fields are converted to the appropriate control
signals for the datapath, selecting the source operands from the specified registers, directing the ALU
to perform the specified operation, and storing the result in the specified destination register. The final
step in executing an instruction is updating the value of the program counter to be the address of the
next instruction.

This execution loop is performed again and again. Modern machines can execute up more than a
billion instructions per second!

Page 235

The discussion so far has been a bit abstract. Now it’s time to roll up our sleeves and figure out what
instructions we want our system to support. The specification of instruction fields and their meaning
along with the details of the datapath design are collectively called the instruction set architecture
(ISA) of the system. The ISA is a detailed functional specification of the operations and storage
mechanisms and serves as a contract between the designers of the digital hardware and the
programmers who will write the programs. Since the programs are stored in main memory and can
hence be changed, we’ll call them software, to distinguish them from the digital logic which, once
implemented, doesn’t change. It’s the combination of hardware and software that determine the
behavior of our system.

The ISA is a new layer of abstraction: we can write programs for the system without knowing the
implementation details of the hardware. As hardware technology improves we can build faster systems
without having to change the software. You can see here that over a fifteen year timespan, the hardware
for executing the Intel x86 instruction set went from executing 300,000 instructions per second to
executing 5 billion instructions per second. Same software as before, we’ve just taken advantage of
smaller and faster MOSFETs to build more complex circuits and faster execution engines.

But a word of caution is in order! It’s tempting to make choices in the ISA that reflect the constraints of
current technologies, e.g., the number of internal registers, the width of the operands, or the maximum
size of main memory. But it will be hard to change the ISA when technology improves since there’s a
powerful economic incentive to ensure that old software can run on new machines, which means that a
particular ISA can live for decades and span many generations of technology. If your ISA is successful,
you’ll have to live with any bad choices you made for a very long time.

Page 236

Designing an ISA is hard! What are the operations that should be supported? How many internal
registers? How much main memory? Should we design the instruction encoding to minimize program
size or to keep the logic in the control unit as simple as possible? Looking into our crystal ball, what
can we say about the computation and storage capabilities of future technologies?

We’ll answer these questions by taking a quantitative approach. First we’ll choose a set of benchmark
programs, chosen as representative of the many types of programs we expect to run on our system. So
some of benchmark programs will perform scientific and engineering computations, some will
manipulate large data sets or perform database operations, some will require specialized computations
for graphics or communications, and so on. Happily, after many decades of computer use, several
standardized benchmark suites are available for us to use.

We’ll then implement the benchmark programs using our instruction set and simulate their execution
on our proposed datapath. We’ll evaluate the results to measure how well the system performs. But
what do we mean by “well”? That’s where it gets interesting: “well” could refer to execution speed,
energy consumption, circuit size, system cost, etc. If you’re designing a smart watch, you’ll make
different choices than if you’re designing a high-performance graphics card or a data-center server.

Whatever metric you choose to evaluate your proposed system, there’s an important design principle
we can follow: identify the common operations and focus on them as you optimize your design. For
example, in general-purpose computing, almost all programs spend a lot of their time on simple
arithmetic operations and accessing values in main memory. So those operations should be made as
fast and energy efficient as possible.

Now, let’s get to work designing our own instruction set and execution engine, a system we’ll call the
Beta.

Page 237

The Beta is an example of a reduced-instruction-set computer (RISC) architecture. “Reduced” refers to
the fact that in the Beta ISA, most instructions only access the internal registers for their operands and
destination. Memory values are loaded and stored using separate memory-access instructions, which
implement only a simple address calculation. These reductions lead to smaller, higher-performance
hardware implementations and simpler compilers on the software side. The ARM and MIPS ISAs are
other examples of RISC architectures. Intel’s x86 ISA is more complex.

There is a limited amount of storage inside of the CPU — using the language of sequential logic, we’ll
refer to this as the CPU state. There’s a 32-bit program counter (PC for short) that holds the address of
the current instruction in main memory. And there are thirty-two registers, numbered 0 through 31.
Each register holds a 32-bit value. We’ll use use 5-bit fields in the instruction to specify the number of
the register to be used an operand or destination. As shorthand, we’ll refer to a register using the prefix
“R” followed by its number, e.g., “R0” refers to the register selected by the 5-bit field 0b00000.

Register 31 (R31) is special — its value always reads as 0 and writes to R31 have no affect on its
value.

The number of bits in each register and hence the number of bits supported by ALU operations is a
fundamental parameter of the ISA. The Beta is a 32-bit architecture. Many modern computers are 64-
bit architectures, meaning they have 64-bit registers and a 64-bit datapath.

Main memory is an array of 32-bit words. Each word contains four 8-bit bytes. The bytes are numbered
0 through 3, with byte 0 corresponding to the low-order 7 bits of the 32-bit value, and so on. The Beta
ISA only supports word accesses, either loading or storing full 32-bit words. Most “real” computers
also support accesses to bytes and half-words.

Even though the Beta only accesses full words, following a convention used by many ISAs it uses byte
addresses. Since there are 4 bytes in each word, consecutive words in memory have addresses that
differ by 4. So the first word in memory has address 0, the second word address 4, and so on. You can
see the addresses to left of each memory location in the diagram shown here. Note that we’ll usually
use hexadecimal notation when specifying addresses and other binary values — the “0x” prefix

Page 238

indicates when a number is in hex. When drawing a memory diagram, we’ll follow the convention that
addresses increase as you read from top to bottom.

The Beta ISA supports 32-bit byte addressing, so an address fits exactly into one 32-bit register or
memory location. The maximum memory size is bytes or words — that’s 4 gigabytes (4 GB) or
one billion words of main memory. Some Beta implementations might actually have a smaller main
memory, i.e., one with fewer than 1 billion locations.

Why have separate registers and main memory? Well, modern programs and datasets are very large, so
we’ll want to have a large main memory to hold everything. But large memories are slow and usually
only support access to one location at a time, so they don’t make good storage for use in each
instruction which needs to access several operands and store a result. If we used only one large storage
array, then an instruction would need to have three 32-bit addresses to specify the two source operands
and destination — each instruction encoding would be huge! And the required memory accesses would
have to be one-after-the-other, really slowing down instruction execution.

On the other hand, if we use registers to hold the operands and serve as the destination, we can design
the register hardware for parallel access and make it very fast. To keep the speed up we won’t be able
to have very many registers — a classic size-vs-speed performance tradeoff we see in digital systems
all the time. In the end, the tradeoff leading to the best performance is to have a small number of very
fast registers used by most instructions and a large but slow main memory. So that’s what the BETA
ISA does.

2
32

2
30

Page 239

In general, all program data will reside in main memory. Each variable used by the program “lives” in a
specific main memory location and so has a specific memory address. For example, in the diagram
below, the value of variable “x” is stored in memory location 0x1008, and the value of “y” is stored in
memory location 0x100C, and so on.

To perform a computation, e.g., to compute x*37 and store the result in y, we would have to first load
the value of x into a register, say, R0. Then we would have the datapath multiply the value in R0 by 37,
storing the result back into R0. Here we’ve assumed that the constant 37 is somehow available to the
datapath and doesn’t itself need to be loaded from memory. Finally, we would write the updated value
in R0 back into memory at the location for y.

Whew! A lot of steps... Of course, we could avoid all the loading and storing if we chose to keep the
values for x and y in registers. Since there are only 32 registers, we can’t do this for all of our variables,
but maybe we could arrange to load x and y into registers, do all the required computations involving x
and y by referring to those registers, and then, when we’re done, store changes to x and y back into
memory for later use. Optimizing performance by keeping often-used values in registers is a favorite
trick of programmers and compiler writers.

So the basic program template is some loads to bring values into the registers, followed by
computation, followed by any necessary stores. ISAs that use this template are usually referred to as
“load-store architectures”.

Page 240

Having talked about the storage resources provided by the Beta ISA, let’s design the Beta instructions
themselves. This might be a good time to print a copy of the handout called the “Summary of Beta
Instruction Formats” so you’ll have it for handy reference.

The Beta has three types of instructions: compute instructions that perform arithmetic and logic
operations on register values, load and store instructions that access values in main memory, and
branch instructions that change the value of the program counter.

We’ll discuss each class of instructions in turn.

In the Beta ISA, all the instruction encodings are the same size: each instruction is encoded in 32 bits
and hence occupies exactly one 32-bit word in main memory. This instruction encoding leads to
simpler control-unit logic for decoding instructions. And computing the next value of the program
counter is very simple: for most instructions, the next instruction can be found in the following
memory location. We just need to add 4 to the current value of program counter to advance to the next
instruction.

As we saw in Part 1 of the course, fixed-length encodings are often inefficient in the sense that the
same information content (in this case, the encoded program) can be encoded using fewer bits. To do
better we would need a variable-length encoding for instructions, where frequently-occurring
instructions would use a shorter encoding. But hardware to decode variable-length instructions is
complex since there may be several instructions packed into one memory word, while other
instructions might require loading several memory words. The details can be worked out, but there’s a
performance and energy cost associated with the more efficient encoding.

Nowadays, advances in memory technology have made memory size less of an issue and the focus is
on the higher-performance needed by today’s applications. Our choice of a fixed-length encoding leads
to larger code size, but keeps the hardware execution engine small and fast.

Page 241

The computation performed by the Beta datapath happens in the arithmetic-and-logic unit (ALU).
We’ll be using the ALU designed in Part 1 of the course.

The Beta ALU instructions have 4 instruction fields. There’s a 6-bit field specifying the ALU operation
to be performed — this field is called the opcode. The two source operands come from registers whose
numbers are specified by the 5-bit “ra” and “rb” fields. So we can specify any register from R0 to R31
as a source operand. The destination register is specified by the 5-bit “rc” field.

This instruction format uses 21 bits of the 32-bit word, the remaining bits are unused and should be set
to 0. The diagram shows how the fields are positioned in the 32-bit word. The choice of position for
each field is somewhat arbitrary, but to keep the hardware simple, when we can we’ll want to use the
same field positions for similar fields in the other instruction encodings. For example, the opcode will
always be found in bits [31:26] of the instruction.

Here’s the binary encoding of an ADD instruction. The opcode for ADD is the 6-bit binary value
0b100000 — you can find the binary for each opcode in the Opcode Table in the handout mentioned
before. The “rc” field specifies that the result of the ADD will be written into R3. And the “ra” and
“rb” fields specify that the first and second source operands are R1 and R2 respectively. So this
instruction adds the 32-bit values found in R1 and R2, writing the 32-bit sum into R3.

Note that it’s permissible to refer to a particular register several times in the same instruction. So, for
example, we could specify R1 as the register for both source operands AND also as the destination
register. If we did, we’d be adding R1 to R1 and writing the result back into R1, which would
effectively multiply the value in R1 by 2.

Since it’s tedious and error-prone to transcribe 32-bit binary values, we’ll often use hexadecimal
notation for the binary representation of an instruction. In this example, the hexadecimal notation for
the encoded instruction is 0x80611000. However, it’s *much* easier if we describe the instructions
using a functional notation, e.g., “ADD(r1,r2,r3)”. Here we use a symbolic name for each operation,
called a mnemonic. For this instruction the mnemonic is “ADD”, followed by a parenthesized list of
operands, in this case the two source operands (r1 and r2), then the destination (r3). So we’ll

Page 242

understand that ADD(ra,rb,rc) is shorthand for asking the Beta to compute the sum of the values in
registers ra and rb, writing the result as the new value of register rc.

Here’s the list of the mnemonics for all the operations supported by the Beta. There is a detailed
description of what each instruction does in the Beta Documentation handout. Note that all these
instructions use same 4-field template, differing only in the value of the opcode field. This first step
was pretty straightforward — we simply provided instruction encodings for the basic operations
provided by the ALU.

Page 243

Now that we have our first group of instructions, we can create a more concrete implementation sketch.

Here we see our proposed datapath. The 5-bit “ra” and “rb” fields from the instruction are used to
select which of the 32 registers will be used for the two operands. Note that register 31 isn’t actually a
read/write register, it’s just the 32-bit constant 0, so that selecting R31 as an operand results in using
the value 0. The 5-bit “rc” field from the instruction selects which register will be written with the
result from the ALU. Not shown is the hardware needed to translate the instruction opcode to the
appropriate ALU function code — perhaps a 64-location ROM could be used to perform the translation
by table lookup.

The program counter logic supports simple sequential execution of instructions. It’s a 32-bit register
whose value is updated at the end of each instruction by adding 4 to its current value. This means the
next instruction will come from the memory location following the one that holds the current
instruction.

In this diagram we see one of the benefits of a RISC architecture: there’s not much logic needed to
decode the instruction to produce the signals needed to control the datapath. In fact, many of the
instruction fields are used as-is!

Page 244

ISA designers receive many requests for what are affectionately known as “features” — additional
instructions that, in theory, will make the ISA better in some way. Dealing with such requests is the
moment to apply our quantitive approach in order to be able to judge the tradeoffs between cost and
benefits.

Our first “feature request” is to allow small constants as the second operand in ALU instructions. So if
we replaced the 5-bit “rb” field, we would have room in the instruction to include a 16-bit constant as
bits [15:0] of the instruction. The argument in favor of this request is that small constants appear
frequently in many programs and it would make programs shorter if we didn’t have use load operations
to read constant values from main memory. The argument against the request is that we would need
additional control and datapath logic to implement the feature, increasing the hardware cost and
probably decreasing the performance.

So our strategy is to modify our benchmark programs to use the ISA augmented with this feature and
measure the impact on a simulated execution. Looking at the results, we find that there is compelling
evidence that small constants are indeed very common as the second operands to many operations.
Note that we’re not so much interested in simply looking at the code. Instead we want to look at what
instructions actually get executed while running the benchmark programs. This will take into account
that instructions executed during each iteration of a loop might get executed 1000’s of times even
though they only appear in the program once.

Looking at the results, we see that over half of the arithmetic instructions have a small constant as their
second operand.

Comparisons involve small constants 80% of the time. This probably reflects the fact that during
execution comparisons are used in determining whether we’ve reached the end of a loop.

And small constants are often found in address calculations done by load and store operations.

Operations involving constant operands are clearly a common case, one well worth optimizing. Adding
support for small constant operands to the ISA resulted in programs that were measurably smaller and

Page 245

faster. So: feature request approved!

Page 246

Here we see the second of the two Beta instruction formats. It’s a modification of the first format where
we’ve replaced the 5-bit “rb” field with a 16-bit field holding a constant in two’s complement format.
This will allow us to represent constant operands in the range of 0x8000 (decimal -32768) to 0x7FFF
(decimal 32767).

Here’s an example of the add-constant (ADDC) instruction which adds the contents of R1 and the
constant -3, writing the result into R3. We can see that the second operand in the symbolic
representation is now a constant (or, more generally, an expression that can evaluated to get a constant
value).

One technical detail needs discussion: the instruction contains a 16-bit constant, but the datapath
requires a 32-bit operand. How does the datapath hardware go about converting from, say, the 16-bit
representation of -3 to the 32-bit representation of -3?

Comparing the 16-bit and 32-bit representations for various constants, we see that if the 16-bit two’s-
complement constant is negative (i.e., its high-order bit is 1), the high sixteen bits of the equivalent 32-
bit constant are all 1’s. And if the 16-bit constant is non-negative (i.e., its high-order bit is 0), the high
sixteen bits of the 32-bit constant are all 0’s. Thus the operation the hardware needs to perform is “sign
extension” where the sign-bit of the 16-bit constant is replicated sixteen times to form the high half of
the 32-constant. The low half of the 32-bit constant is simply the 16-bit constant from the instruction.
No additional logic gates will be needed to implement sign extension — we can do it all with wiring.

Here are the fourteen ALU instructions in their “with constant” form, showing the same instruction
mnemonics but with a “C” suffix indicate the second operand is a constant. Since these are additional
instructions, these have different opcodes than the original ALU instructions.

Finally, note that if we need a constant operand whose representation does NOT fit into 16 bits, then
we have to store the constant as a 32-bit value in a main memory location and load it into a register for
use just like we would any variable value.

Page 247

To give some sense for the additional datapath hardware that will be needed, let’s update our
implementation sketch to add support for constants as the second ALU operand. We don’t have to add
much hardware: just a multiplexer which selects either the “rb” register value or the sign-extended
constant from the 16-bit field in the instruction. The BSEL control signal that controls the multiplexer
is 1 for the ALU-with-constant instructions and 0 for the regular ALU instructions.

We’ll put the hardware implementation details aside for now and revisit them in a few lectures.

Page 248

Now let’s turn our attention to the second class of instructions: load (LD) and store (ST), which allow
the CPU to access values in memory. Note that since the Beta is a load-store architecture these
instructions are the *only* mechanism for accessing memory values.

The LD and ST instructions use the same instruction template as the ALU-with-constant instructions.
To access memory, we’ll need a memory address, which is computed by adding the value of the “ra”
register to the sign-extended 16-bit constant from the low-order 16 bits of the instruction. This
computation is exactly the one performed by the ADDC instruction — so we’ll reuse that hardware —
and the sum is sent to main memory as the byte address of the location to be accessed. For the LD
instruction, the data returned by main memory is written to the “rc” register.

The store instruction (ST) performs the same address calculation as LD, then reads the data value from
the “rc” register and sends both to main memory. The ST instruction is special in several ways: it’s the
only instruction that needs to read the value of the “rc” register, so we’ll need to adjust the datapath
hardware slightly to accommodate that need. And since “rc” is serving as a source operand, it appears
as the first operand in the symbolic form of the instruction, followed by “const” and “ra” which are
specifying the destination address. ST is the only instruction that does *not* write a result into the
register file at end of the instruction.

Page 249

Here’s the example we saw earlier, where we needed to load the value of the variable x from memory,
multiply it by 37 and write the result back to the memory location that holds the value of the variable y.

Now that we have actual Beta instructions, we’ve expressed the computation as a sequence of three
instructions. To access the value of variable x, the LD instruction adds the contents of R31 to the
constant 0x1008, which sums to 0x1008, the address we need to access. The ST instruction specifies a
similar address calculation to write into the location for the variable y.

The address calculation performed by LD and ST works well when the locations we need to access
have addresses that fit into the 16-bit constant field. What happens when we need to access locations at
addresses higher than 0x7FFF? Then we need to treat those addresses as we would any large constant,
and store those large addresses in main memory so they can be loaded into a register to be used by LD
and ST. Okay, but what if the number of large constants we need to store is greater than will fit in low
memory, i.e., the addresses we can access directly? To solve this problem, the Beta includes a “load
relative” (LDR) instruction, which we’ll see in the lecture on the Beta implementation.

Page 250

Finally, let’s discuss the third class of instructions that let us change the program counter. Up until now,
the program counter has simply been incremented by 4 at the end of each instruction, so that the next
instruction comes from the memory location that immediately follows the location that held the current
instruction, i.e., the Beta has been executing instructions sequentially from memory.

But in many programs, such as in factorial, we need to disrupt sequential execution, either to loop back
to repeat some earlier instruction, or to skip over instructions because of some data dependency. We
need a way to change the program counter based on data values generated by the program’s execution.
In the factorial example, as long as b is not equal to 0, we need to keep executing the instructions that
calculate a*b and decrement b. So we need instructions to test the value of b after it’s been
decremented and if it’s non-zero, change the PC to repeat the loop one more time.

Changing the PC depending on some condition is implemented by a branch instruction, and the
operation is referred to as a “conditional branch”. When the branch is taken, the PC is changed and
execution is restarted at the new location, which is called the branch target. If the branch is not taken,
the PC is incremented by 4 and execution continues with the instruction following the branch.

As the name implies, a branch instruction represents a potential fork in the execution sequence. We’ll
use branches to implement many different types of control structures: loops, conditionals, procedure
calls, etc.

Page 251

Branch instructions also use the instruction format with the 16-bit signed constant. The operation of the
branch instructions are a bit complicated, so let’s walk through their operation step-by-step.

Let’s start by looking at the operation of the BEQ instruction. First the usual PC+4 calculation is
performed, giving us the address of the instruction following the BEQ. This value is written to the “rc”
register whether or not the branch is taken. This feature of branches is pretty handy and we’ll use it to
implement procedure calls a couple of lectures from now. Note that if we don’t need to remember the
PC+4 value, we can specify R31 as the “rc” register.

Next, BEQ tests the value of the “ra” register to see if it’s equal to 0. If it is equal to 0, the branch is
taken and the PC is incremented by the amount specified in the constant field of the instruction.
Actually the constant, called an offset since we’re using it to offset the PC, is treated as a word offset
and is multiplied by 4 to convert it a byte offset since the PC uses byte addressing. If the contents of the
“ra” register is not equal to 0, the PC is incremented by 4 and execution continues with the instruction
following the BEQ.

Let me say a few more words about the offset. The branches are using what’s referred to as “pc-relative
addressing”. That means the address of the branch target is specified relative to the address of the
branch, or, actually, relative to the address of the instruction following the branch. So an offset of 0
would refer to the instruction following the branch and an offset of -1 would refer to the branch itself.
Negative offsets are called “backwards branches” and are usually seen at branches used at the end of
loops, where the looping condition is tested and we branch backwards to the beginning of the loop if
another iteration is called for. Positive offsets are called “forward branches” and are usually seen in
code for “if statements”, where we might skip over some part of the program if a condition is not true.

We can use BEQ to implement a so-called unconditional branch, i.e., a branch that is always taken. If
we test R31 to see if it’s 0, that’s always true, so BEQ(R31,...) would always branch to the specified
target.

There’s also a BNE instruction, identical to BEQ in its operation except the sense of the condition is
reversed: the branch is taken if the value of register “ra” is non-zero.

Page 252

It might seem that only testing for zero/non-zero doesn’t let us do everything we might want to do. For
example, how would we branch if “a < b”? That’s where the compare instructions come in — they do
more complicated comparisons, producing a non-zero value if the comparison is true and a zero value
if the comparison is false. Then we can use BEQ and BNE to test the result of the comparison and
branch appropriately.

Page 253

At long last we’re finally in a position to write Beta code to compute factorial using the iterative
algorithm shown in C code on the left. In the Beta code, the loop starts at the second instruction and is
marked with the “L:” label. The body of the loop consists of the required multiplication and the
decrement of b. Then, in the fourth instruction, b is tested and, if it’s non-zero, the BNE will branch
back to the instruction with the label L.

Note that in our symbolic notation for BEQ and BNE instructions we don’t write the offset directly
since that would be a pain to calculate and would change if we added or removed instructions from the
loop. Instead we reference the instruction to which we want to branch, and the program that translates
the symbolic code into the binary instruction fields will do the offset calculation for us.

There’s a satisfying similarity between the Beta code and the operations specified by the high-level
FSM we created for computing factorial in the simple programmable datapath discussed earlier in this
lecture. In this example, each state in the high-level FSM matches up nicely with a particular Beta
instruction. We wouldn’t expect that high degree of correspondence in general, but since our Beta
datapath and the example datapath were very similar, the states and instructions match up pretty well.

Page 254

Finally, our last instruction! Branches conditionally transfer control to a specific target instruction. But
we’ll also need the ability to compute the address of the target instruction — that ability is provided by
the JMP instruction which simply sets the program counter to value from register “ra”. Like branches,
JMP will write the PC+4 value into to the specified destination register.

This capability is very useful for implementing procedures in Beta code. Suppose we have a procedure
“sqrt” that computes the square root of its argument, which is passed in, say, R0. We don’t show the
code for sqrt on the right, except for the last instruction, which is a JMP.

On the left we see that the programmer wants to call the sqrt procedure from two different places in his
program. Let’s watch what happens...

The first call to the sqrt procedure is implemented by the unconditional branch at location 0x100 in
main memory. The branch target is the first instruction of the sqrt procedure, so execution continues
there. The BEQ also writes the address of the following instruction (0x104) into its destination register,
R28. When we reach the end of first procedure call, the JMP instruction loads the value in R28, which
is 0x104, into the PC, so execution continues with the instruction following the first BEQ. So we’ve
managed to return from the procedure and continue execution where we left off in the main program.

When we get to the second call to the sqrt procedure, the sequence of events is the same as before
except that this time R28 contains 0x67C, the address of the instruction following the second BEQ. So
the second time we reach the end of the sqrt procedure, the JMP sets the PC to 0x67C and execution
resumes with the instruction following the second procedure call.

Neat! The BEQs and JMP have worked together to implement procedure call and return. We’ll discuss
the implementation of procedures in detail in an upcoming lecture.

Page 255

That wraps up the design of the Beta instruction set architecture. In summary, the Beta has 32 registers
to hold values that can be used as operands for the ALU. All other values, along with the binary
representation of the program itself, are stored in main memory. The Beta supports 32-bit memory
addresses and can access values in gigabytes of main memory. All Beta memory access refer
to 32-bit words, so all addresses will be a multiple of 4 since there are 4 bytes/word.

The are two instruction formats. The first specifies an opcode, two source registers and a destination
register. The second replaces the second source register with a 32-bit constant, derived by sign-
extending a 16-bit constant stored in the instruction itself.

There are three classes of instructions: ALU operations, LD and ST for accessing main memory, and
branches and JMPs that change the order of execution.

And that’s it! As we’ll see in the next lecture, we’ll be able parlay this relatively simple repertoire of
operations into a system that can execute any computation we can specify.

2
32

= 4

Page 256

10a: Assembly Language

1. Beta ISA Summary
2. Programming Languages
3. Assembly Language
4. Example UASM Source File
5. How Does It Get Assembled?
6. Registers are Predefined Symbols
7. Labels and Offsets
8. Mighty Macroinstructions
9. Assembly of Instructions

10. Example Assembly
11. UASM Macros for Beta Instructions
12. Pseudoinstructions
13. Factorial with Pseudoinstructions
14. Raw Data
15. UASM Expressions and Layout
16. Summary: Assembly Language

Page 257

In the previous lecture we developed the instruction set architecture for the Beta, the computer system
we’ll be building throughout this part of the course. The Beta incorporates two types of storage or
memory. In the CPU datapath there are 32 general-purpose registers, which can be read to supply
source operands for the ALU or written with the ALU result. In the CPU’s control logic there is a
special-purpose register called the program counter, which contains the address of the memory location
holding the next instruction to be executed.

The datapath and control logic are connected to a large main memory with a maximum capacity of
bytes, organized as 32-bit words. This memory holds both data and instructions.

Beta instructions are 32-bit values comprised of various fields. The 6-bit OPCODE field specifies the
operation to be performed. The 5-bit Ra, Rb, and Rc fields contain register numbers, specifying one of
the 32 general-purpose registers. There are two instruction formats: one specifying an opcode and three
registers, the other specifying an opcode, two registers, and a 16-bit signed constant.

There three classes of instructions. The ALU instructions perform an arithmetic or logic operation on
two operands, producing a result that is stored in the destination register. The operands are either two
values from the general-purpose registers, or one register value and a constant. The yellow highlighting
indicates instructions that use the second instruction format.

The Load/Store instructions access main memory, either loading a value from main memory into a
register, or storing a register value to main memory.

And, finally, there are branches and jumps whose execution may change the program counter and
hence the address of the next instruction to be executed.

2
32

2
30

Page 258

To program the Beta we’ll need to load main memory with binary-encoded instructions. Figuring out
each encoding is clearly the job for a computer, so we’ll create a simple programming language that
will let us specify the opcode and operands for each instruction. So instead of writing the binary at the
top of slide, we’ll write assembly language statements to specify instructions in symbolic form. Of
course we still have think about which registers to use for which values and write sequences of
instructions for more complex operations.

By using a high-level language we can move up one more level abstraction and describe the
computation we want in terms of variables and mathematical operations rather than registers and ALU
functions.

In this lecture we’ll describe the assembly language we’ll use for programming the Beta. And in the
next lecture we’ll figure out how to translate high-level languages, such as C, into assembly language.

The layer cake of abstractions gets taller yet: we could write an interpreter for say, Python, in C and
then write our application programs in Python. Nowadays, programmers often choose the
programming language that’s most suitable for expressing their computations, then, after perhaps many
layers of translation, come up with a sequence of instructions that the Beta can actually execute.

Page 259

Okay, back to assembly language, which we’ll use to shield ourselves from the bit-level representations
of instructions and from having to know the exact location of variables and instructions in memory. A
program called the “assembler” reads a text file containing the assembly language program and
produces an array of 32-bit words that can be used to initialize main memory.

We’ll learn the UASM assembly language, which is built into BSim, our simulator for the Beta ISA.
UASM is really just a fancy calculator! It reads arithmetic expressions and evaluates them to produce
8-bit values, which it then adds sequentially to the array of bytes which will eventually be loaded into
the Beta’s memory. UASM supports several useful language features that make it easier to write
assembly language programs. Symbols and labels let us give names to particular values and addresses.
And macros let us create shorthand notations for sequences of expressions that, when evaluated, will
generate the binary representations for instructions and data.

Page 260

Here’s an example UASM source file. Typically we write one UASM statement on each line and can
use spaces, tabs and newlines to make the source as readable as possible. We’ve added some color
coding to help in our explanation.

Comments (shown in green) allow us to add text annotations to the program. Good comments will help
remind you how your program works. You really don’t want to have figure out from scratch what a
section of code does each time you need to modify or debug it! There are two ways to add comments to
the code. “//” starts a comment, which then occupies the rest of the source line. Any characters after
“//” are ignored by the assembler, which will start processing statements again at the start of the next
line in the source file. You can also enclose comment text using the delimiters “/*” and “*/” and the
assembler will ignore everything in-between. Using this second type of comment, you can “comment-
out” many lines of code by placing “/*” at the start and, many lines later, end the comment section with
“*/”.

Symbols (shown in red) are symbolic names for constant values. Symbols make the code easier to
understand, e.g., we can use N as the name for an initial value for some computation, in this case the
value 12. Subsequent statements can refer to this value using the symbol N instead of entering the
value 12 directly. When reading the program, we’ll know that N means this particular initial value. So
if later we want to change the initial value, we only have to change the definition of the symbol N
rather than find all the 12’s in our program and change them. In fact some of the other appearances of
12 might not refer to this initial value and so to be sure we only changed the ones that did, we’d have to
read and understand the whole program to make sure we only edited the right 12’s. You can imagine
how error-prone that might be! So using symbols is a practice you want to follow!

Note that all the register names are shown in red. We’ll define the symbols R0 through R31 to have the
values 0 through 31. Then we’ll use those symbols to help us understand which instruction operands
are intended to be registers, e.g., by writing R1, and which operands are numeric values, e.g., by
writing the number 1. We could just use numbers everywhere, but the code would be much harder to
read and understand.

Page 261

Labels (shown in yellow) are symbols whose value are the address of a particular location in the
program. Here, the label “loop” will be our name for the location of the MUL instruction in memory. In
the BNE at the end of the code, we use the label “loop” to specify the MUL instruction as the branch
target. So if R1 is non-zero, we want to branch back to the MUL instruction and start another iteration.

We’ll use indentation for most UASM statements to make it easy to spot the labels defined by the
program. Indentation isn’t required, it’s just another habit assembly language programmers use to keep
their programs readable.

We use macro invocations (shown in blue) when we want to write Beta instructions. When the
assembler encounters a macro, it “expands” the macro, replacing it with a string of text provided by in
the macro’s definition. During expansion, the provided arguments are textually inserted into the
expanded text at locations specified in the macro definition. Think of a macro as shorthand for a longer
text string we could have typed in. We’ll see how all this works in the next video segment.

Page 262

Let’s follow along as the assembler processes our source file. The assembler maintains a symbol table
that maps symbols names to their numeric values. Initially the symbol table is loaded with mappings
for all the register symbols.

The assembler reads the source file line-by-line, defining symbols and labels, expanding macros, or
evaluating expressions to generate bytes for the output array. Whenever the assembler encounters a use
of a symbol or label, it’s replaced by the corresponding numeric value found in the symbol table.

The first line, N = 12, defines the value of the symbol N to be 12, so the appropriate entry is made in
the symbol table.

Advancing to the next line, the assembler encounters an invocation of the ADDC macro with the
arguments “r31”, “N”, and “r1”. As we’ll see in a couple of slides, this triggers a series of nested macro
expansions that eventually lead to generating a 32-bit binary value to be placed in memory location 0.
The 32-bit value is formatted here to show the instruction fields and the destination address is shown in
brackets.

The next instruction is processed in the same way, generating a second 32-bit word.

On the fourth line, the label loop is defined to have the value of the location in memory that’s about to
filled (in this case, location 8). So the appropriate entry is made in the symbol table and the MUL
macro is expanded into the 32-bit word to be placed in location 8.

The assembler processes the file line-by-line until it reaches the end of the file. Actually the assembler
makes two passes through the file. On the first pass it loads the symbol table with the values from all
the symbol and label definitions. Then, on the second pass, it generates the binary output. The two-pass
approach allows a statement to refer to symbol or label that is defined later in the file, e.g., a forward
branch instruction could refer to the label for an instruction later in the program.

Page 263

As we saw in the previous slide, there’s nothing magic about the register symbols — they are just
symbolic names for the values 0 through 31. So when processing ADDC(r31,N,r1), UASM replaces
the symbols with their values and actually expands ADDC(31,12,1).

UASM is very simple. It simply replaces symbols with their values, expands macros and evaluates
expressions. So if you use a register symbol where a numeric value is expected, the value of the
symbol is used as the numeric constant. Probably not what the programmer intended.

Similarly, if you use a symbol or expression where a register number is expected, the low-order 5 bits
of the value is used as the register number, in this example, as the Rb register number. Again probably
not what the programmer intended.

The moral of the story is that when writing UASM assembly language programs, you have to keep
your wits about you and recognize that the interpretation of an operand is determined by the opcode
macro, not by the way you wrote the operand.

Page 264

Recall from Lecture 9 that branch instructions use the 16-bit constant field of the instruction to encode
the address of the branch target as a word offset from the location of the branch instruction. Well,
actually the offset is calculated from the instruction immediately following the branch, so an offset of
-1 would refer to the branch itself.

The calculation of the offset is a bit tedious to do by hand and would, of course, change if we added or
removed instructions between the branch instruction and branch target. Happily macros for the branch
instructions incorporate the necessary formula to compute the offset from the address of the branch and
the address of the branch target. So we just specify the address of the branch target, usually with a
label, and let UASM do the heavy lifting.

Here we see that BNE branches backwards by three instructions (remember to count from the
instruction following the branch) so the offset is -3. The 16-bit two’s complement representation of -3
is the value placed in the constant field of the BNE instruction.

Page 265

Let’s take a closer look at how macros work in UASM. Here we see the definition of the macro
“consec” which has a single parameter “n”. The body of the macro is a sequence of four expressions.
When there’s an invocation of the “consec” macro, in this example with the argument 37, the body of
the macro is expanded replacing all occurrences of “n” with the argument 37. The resulting text is then
processed as if it had appeared in place of the macro invocation. In this example, the four expressions
are evaluated to give a sequence of four values that will be placed in the next four bytes of the output
array.

Macro expansions may contain other macro invocations, which themselves will be expanded,
continuing until all that’s left are expressions to be evaluated. Here we see the macro definition for
WORD, which assembles its argument into two consecutive bytes. And for the macro LONG, which
assembles its argument into four consecutive bytes, using the WORD macro to process the low 16 bits
of the value, then the high 16 bits of the value.

These two UASM statements cause the constant 0xDEADBEEF to converted to 4 bytes, which are
deposited in the output array starting at index 0x100.

Note that the Beta expects the least-significant byte of a multi-byte value to be stored at the lowest byte
address. So the least-significant byte 0xEF is placed at address 0x100 and the most-significant byte
0xDE is placed at address 0x103. This is the “little-endian” convention for multi-byte values: the least-
significant byte comes first. Intel’s x86 architecture is also little-endian.

There is a symmetrical “big-endian” convention where the most-significant byte comes first. Both
conventions are in active use and, in fact, some ISAs can be configured to use either convention!
There’s no “right answer” for which convention to use, but the fact that there two conventions means
that we have to be alert for the need to convert the representation of multi-byte values when moving
values between one ISA and another, e.g., when we send a data file to another user.

As you can imagine there are strong advocates for both schemes who are happy to defend their point of
view at great length. Given the heat of the discussion, it’s appropriate that the names for the

Page 266

conventions were drawn from Jonathan Swift’s “Gulliver’s Travels” in which a civil war is fought over
whether to open a soft-boiled egg at its big end or its little end.

Page 267

Let’s look at the macros used to assemble Beta instructions. The BETAOP helper macro supports the 3-
register instruction format, taking as arguments the values to be placed in the OPCODE, Ra, Rb, and
Rc fields. The “.align 4” directive is a bit of administrative bookkeeping to ensure that instructions will
have a byte address that’s a multiple of 4, i.e., that they span exactly one 32-bit word in memory. That’s
followed by an invocation of the LONG macro to generate the 4 bytes of binary data representing the
value of the expression shown here. The expression is where the actual assembly of the fields takes
place. Each field is limited to requisite number of bits using the modulo operator (%), then shifted left
(<<) to the correct position in the 32-bit word.

And here are the helper macros for the instructions that use a 16-bit constant as the second operand.

Let’s follow the assembly of an ADDC instruction to see how this works. The ADDC macro expands
into an invocation of the BETAOPC helper macro, passing along the correct value for the ADDC
opcode, along with the three operands.

The BETAOPC macro does the following arithmetic: The OP argument, in this case the value 0x30, is
shifted left to occupy the high-order 6 bits of the instruction. Then the RA argument, in this case 15, is
placed in its proper location. The 16-bit constant -32768 is positioned in the low 16 bits of the
instruction. And, finally, the Rc argument, in this case 0, is positioned in the Rc field of the instruction.

You can see why we call this processing “assembling an instruction”. The binary representation of an
instruction is assembled from the binary values for each of the instruction fields. It’s not a complicated
process, but it requires a lot of shifting and masking, tasks that we’re happy to let a computer handle.

Page 268

Here’s the entire sequence of macro expansions that assemble this ADDC instruction into an
appropriate 32-bit binary value in main memory.

You can see that the knowledge of Beta instruction formats and opcode values is built into the bodies
of the macro definitions. The UASM processing is actually quite general — with a different set of
macro definitions it could process assembly language programs for almost any ISA!

Page 269

All the macro definitions for the Beta ISA are provided in the beta.uasm file, which is included in each
of the assembly language lab assignments. Note that we include some convenience macros to define
shorthand representations that provide common default values for certain operands. For example,
except for procedure calls, we don’t care about the PC+4 value saved in the destination register by
branch instructions, so almost always would specify R31 as the Rc register, effectively discarding the
PC+4 value saved by branches. So we define two-argument branch macros that automatically provide
R31 as the destination register. Saves some typing, and, more importantly, it makes it easier to
understand the assembly language program.

Page 270

Here are a whole set of convenience macros intended to make programs more readable. For example,
unconditional branches can be written using the BR() macro rather than the more cumbersome
BEQ(R31,...). And it’s more readable to use branch-false (BF) and branch-true (BT) macros when
testing the results of a compare instruction.

And note the PUSH and POP macros at the bottom of page. These expand into multi-instruction
sequences, in this case to add and remove values from a stack data structure pointed to by the SP
register.

We call these macros “pseudo instructions” since they let us provide the programmer with what
appears a larger instruction set, although underneath the covers we’ve just using the same small
instruction repertoire developed in Lecture 9.

Page 271

In this example we’ve rewritten the original code we had for the factorial computation using pseudo
instructions. For example, CMOVE is a pseudo instruction for moving small constants into a register.
It’s easier for us to read and understand the intent of a “constant move” operation than an “add a value
to 0” operation provided by the ADDC expansion of CMOVE. Anything we can do to remove the
cognitive clutter will be very beneficial in the long run.

Page 272

So far we’ve talked about assembling instructions. What about data? How do we allocate and initialize
data storage and how do we get those values into registers so that they can be used as operands?

Here we see a program that allocates and initializes two memory locations using the LONG macro.
We’ve used labels to remember the addresses of these locations for later reference.

When the program is assembled the values of the label N and factN are 0 and 4 respectively, the
addresses of the memory locations holding the two data values.

To access the first data value, the program uses a LD instruction, in this case one of convenience
macros that supplies R31 as the default value of the Ra field. The assembler replaces the reference to
the label N with its value 0 from the symbol table. When the LD is executed, it computes the memory
address by adding the constant (0) to the value of the Ra register (which is R31 and hence the value is
0) to get the address (0) of the memory location from which to fetch the value to be placed in R1.

Page 273

The constants needed as values for data words and instruction fields can be written as expressions.
These expressions are evaluated by the assembler as it assembles the program and the resulting value is
used as needed. Note that the expressions are evaluated at the time the assembler runs. By the time the
program runs on the Beta, the resulting value is used. The assembler does NOT generate ADD and
MUL instructions to compute the value during program execution. If a value is needed for an
instruction field or initial data value, the assembler has to be able to perform the arithmetic itself. If you
need the program to compute a value during execution, you have to write the necessary instructions as
part of your program.

One last UASM feature: there’s a special symbol “.”, called “dot”, whose value is the address of the
next main memory location to be filled by the assembler when it generates binary data. Initially “.” is 0
and it’s incremented each time a new byte value is generated.

We can set the value of “.” to tell the assembler where in memory we wish to place a value. In this
example, the constant 0xDEADBEEF is placed into location 0x100 of main memory. And we can use
“.” in expressions to compute the values for other symbols, as shown here when defining the value for
the symbol “k”. In fact, the label definition “k:” is exactly equivalent to the UASM statement “k = .”

We can even increment the value of “.” to skip over locations, e.g., if we wanted to leave space for an
un initialized array.

Page 274

And that’s assembly language! We use assembly language as a convenient notation for generating the
binary encoding for instructions and data. We let the assembler build the bit-level representations we
need and to keep track of the addresses where these values are stored in main memory.

UASM itself provides support for values, symbols, labels and macros.

Values can be written as constants or expressions involving constants.

We use symbols to give meaningful names to values so that our programs will be more readable and
more easily modified. Similarly, we use labels to give meaningful names to addresses in main memory
and then use the labels in referring to data locations in LD or ST instructions, or to instruction locations
in branch instructions.

Macros hide the details of how instructions are assembled from their component fields.

And we can use “.” to control where the assembler places values in main memory.

The assembler is itself a program that runs on our computer. That raises an interesting “chicken and
egg problem”: how did the first assembler program get assembled into binary so it could run on a
computer? Well, it was hand-assembled into binary. I suspect it processed a very simple language
indeed, with the bells and whistles of symbols, labels, macros, expression evaluation, etc. added only
after basic instructions could be assembled by the program. And I’m sure they were very careful not
loose the binary so they wouldn’t have to do the hand-assembly a second time!

Page 275

10b: Models of Computation

1. Univsersality?
2. Models of Computation
3. FSM Limitations
4. Turing Machines
5. Other Models of Computation
6. Other Models of Computation
7. Turing Machines Galore!
8. The Universal Function
9. Universality

10. Turing Universality
11. Coded Algorithms: Key to CS
12. Uncomputability!
13. Why f_H is Uncomputable

Page 276

An interesting question for computer architects is what capabilities must be included in the ISA? When
we studied Boolean gates in Part 1 of the course, we were able to prove that NAND were universal,
i.e., that we could implement any Boolean function using only circuits constructed from NAND gates.

We can ask the corresponding question of our ISA: is it universal, i.e., can it be used to perform any
computation? what problems can we solve with a von Neumann computer? Can the Beta solve any
problem FSMs can solve? Are there problems FSMs can’t solve? If so, can the Beta solve those
problems? Do the answers to these questions depend on the particular ISA?

To provide some answers, we need a mathematical model of computation. Reasoning about the model,
we should be able to prove what can be computed and what can’t. And hopefully we can ensure that
the Beta ISA has the functionality needed to perform any computation.

Page 277

The roots of computer science stem from the evaluation of many alternative mathematical models of
computation to determine the classes of computation each could represent. An elusive goal was to find
a universal model, capable of representing *all* realizable computations. In other words if a
computation could be described using some other well-formed model, we should also be able to
describe the same computation using the universal model.

One candidate model might be finite state machines (FSMs), which can be built using sequential logic.
Using Boolean logic and state transition diagrams we can reason about how an FSM will operate on
any given input, predicting the output with 100% certainty.

Are FSMs the universal digital computing device? In other words, can we come up with FSM
implementations that implement all computations that can be solved by any digital device?

Page 278

Despite their usefulness and flexibility, there are common problems that cannot be solved by any FSM.
For example, can we build an FSM to determine if a string of parentheses (properly encoded into a
binary sequence) is well-formed? A parenthesis string is well-formed if the parentheses balance, i.e.,
for every open parenthesis there is a matching close parenthesis later in the string. In the example
shown here, the input string on the top is well-formed, but the input string on the bottom is not. After
processing the input string, the FSM would output a 1 if the string is well-formed, 0 otherwise.

Can this problem be solved using an FSM? No, it can’t. The difficulty is that the FSM uses its internal
state to encode what it knows about the history of the inputs. In the paren checker, the FSM would
need to count the number of unbalanced open parens seen so far, so it can determine if future input
contains the required number of close parens. But in a finite state machine there are only a fixed
number of states, so a particular FSM has a maximum count it can reach. If we feed the FSM an input
with more open parens than it has the states to count, it won’t be able to check if the input string is
well-formed.

The “finite-ness” of FSMs limits their ability to solve problems that require unbounded counting.
Hmm, what other models of computation might we consider? Mathematics to the rescue, in this case in
the form of a British mathematician named Alan Turing.

Page 279

In the early 1930’s Alan Turing was one of many mathematicians studying the limits of proof and
computation. He proposed a conceptual model consisting of an FSM combined with a infinite digital
tape that could read and written under the control of the FSM. The inputs to some computation would
be encoded as symbols on the tape, then the FSM would read the tape, changing its state as it
performed the computation, then write the answer onto the tape and finally halting. Nowadays, this
model is called a Turing Machine (TM). Turing Machines, like other models of the time, solved the
“finite” problem of FSMs.

So how does all this relate to computation? Assuming the non-blank input on the tape occupies a finite
number of adjacent cells, it can be expressed as a large integer. Just construct a binary number using
the bit encoding of the symbols from the tape, alternating between symbols to the left of the tape head
and symbols to the right of the tape head. Eventually all the symbols will be incorporated into the (very
large) integer representation.

So both the input and output of the TM can be thought of as large integers, and the TM itself as
implementing an integer function that maps input integers to output integers.

The FSM brain of the Turing Machine can be characterized by its truth table. And we can
systematically enumerate all the possible FSM truth tables, assigning an index to each truth table as it
appears in the enumeration. Note that indices get very large very quickly since they essentially
incorporate all the information in the truth table. Fortunately we have a very large supply of integers!

We’ll use the index for a TM’s FSM to identify the TM as well. So we can talk about TM 347 running
on input 51, producing the answer 42.

Page 280

There are many other models of computation, each of which describes a class of integer functions
where a computation is performed on an integer input to produce an integer answer. Kleene, Post and
Turing were all students of Alonzo Church at Princeton University in the mid-1930’s. They explored
many other formulations for modeling computation: recursive functions, rule-based systems for string
rewriting, and the lambda calculus. They were all particularly intrigued with proving the existence of
problems unsolvable by realizable machines. Which, of course, meant characterizing the problems that
could be solved by realizable machines.

Page 281

It turned out that each model was capable of computing exactly the same set of integer functions! This
was proved by coming up with constructions that translated the steps in a computation between the
various models. It was possible to show that if a computation could be described by one model, an
equivalent description exists in the other model. This lead to a notion of computability that was
independent of the computation scheme chosen. This notion is formalized by Church’s Thesis, which
says that every discrete function computable by any realizable machine is computable by some Turing
Machine. So if we say the function f(x) is computable, that’s equivalent to saying that there’s a TM that
given x as an input on its tape will write f(x) as an output on the tape and halt.

As yet there’s no proof of Church’s Thesis, but it’s universally accepted that it’s true. In general
“computable” is taken to mean “computable by some TM”.

If you’re curious about the existence of uncomputable functions, please see the optional video at the
end of this lecture.

Page 282

Okay, we’ve decided that Turing Machines can model any realizable computation. In other words for
every computation we want to perform, there’s a (different) Turing Machine that will do the job. But
how does this help us design a general-purpose computer? Or are there some computations that will
require a special-purpose machine no matter what?

Page 283

What we’d like to find is a universal function U: it would take two arguments, k and j, and then
compute the result of running on input j. Is U computable, i.e., is there a universal Turing Machine

? If so, then instead of many ad-hoc TMs, we could just use to compute the results for any
computable function.

Surprise! U is computable and exists. If fact there are infinitely many universal TMs, some quite
simple - the smallest known universal TM has 4 states uses 6 tape symbols. A universal machine is
capable of performing any computation that can be performed by any TM!

Tk

TU TU

TU

Page 284

What’s going on here? k encodes a “program” - a description of some arbitrary TM that performs a
particular computation. j encodes the input data on which to perform that computation. “interprets”
the program, emulating the steps will take to process the input and write out the answer. The notion
of interpreting a coded representation of a computation is a key idea and forms the basis for our stored
program computer.

TU

Tk

Page 285

The Universal Turing Machine is the paradigm for modern general-purpose computers. Given an ISA
we want to know if it’s equivalent to a universal Turing Machine. If so, it can emulate every other TM
and hence compute any computable function.

How do we show our computer is Turing Universal? Simply demonstrate that it can emulate some
known Universal Turing Machine. The finite memory on actual computers will mean we can only
emulate UTM operations on inputs up to a certain size, but within this limitation we can show our
computer can perform any computation that fits into memory.

As it turns out this is not a high bar: so long as the ISA has conditional branches and some simple
arithmetic, it will be Turing Universal.

Page 286

This notion of encoding a program in a way that allows it to be data to some other program is a key
idea in computer science.

We often translate a program Px written to run on some abstract high-level machine (eg, a program in
C or Java) into, say, an assembly language program Py that can be interpreted by our CPU. This
translation is called compilation.

Much of software engineering is based on the idea of taking a program and using it as as component in
some larger program.

Given a strategy for compiling programs, that opens the door to designing new programming languages
that let us express our desired computation using data structures and operations particularly suited to
the task at hand.

So what have learned from the mathematicians’ work on models of computation? Well, it’s nice to
know that the computing engine we’re planning to build will be able to perform any computation that
can be performed on any realizable machine. And the development of the universal Turing Machine
model paved the way for modern stored-program computers. The bottom line: we’re good to go with
the Beta ISA!

Page 287

We’ve discussed computable functions. Are there uncomputable functions?

Yes, there are well-defined discrete functions that cannot be computed by any TM, i.e., no algorithm
can compute f(x) for arbitrary finite x in a finite number of steps. It’s not that we don’t know the
algorithm, we can actually prove that no algorithm exists. So the finite memory limitations of FSMs
wasn’t the only barrier as to whether we can solve a problem.

The most famous uncomputable function is the so-called Halting function. When TMs undertake a
computation there two possible outcomes. Either the TM writes an answer onto the tape and halts, or
the TM loops forever. The Halting function tells which outcome we’ll get: given two integer arguments
k and j, the Halting function determines if the kth TM halts when given a tape containing j as the input.

Page 288

Let’s quickly sketch an argument as to why the Halting function is not computable. Well, suppose it
was computable, then it would be equivalent to some TM, say .

So we can use to build another TM, (the “N” stands for nasty!) that processes its single
argument and either LOOPs or HALTs. is designed to loop if TM X given input X halts. And
vice versa: halts if TM X given input X loops. The idea is that does the opposite of
whatever does. is easy to implement assuming that we have to answer the “halts or
loops” question.

Now consider what happens if we give N as the argument to . From the definition of ,
will LOOP if the halting function tells us that halts. And will HALT if the halting
function tells us that loops. Obviously can’t both LOOP and HALT at the same time!
So if the Halting function is computable and exists, we arrive at this impossible behavior for

. This tells us that cannot exist and hence that the Halting function is not computable.

TH

TH TN

TN [X]
TN [X] TN [X]

TX[X] TN TH

TN TN TN [N]
TN [N] TN [N]

TN [N] TN [N]
TH

TN [N] TH

Page 289

11: Compilers

1. Programming Languages
2. High-level Languages
3. Interpretation
4. Compilation
5. Interpretation vs. Compilation
6. Compilers
7. A Simple Compilation Strategy
8. compile_expr(expr) → Rx
9. Compiling Expressions

10. compile_statement
11. compile_statement: Conditional
12. compile_statement: Iteration
13. Putting It All Together: Factorial
14. Optimization: keep values in regs
15. Anatomy of a Modern Compiler
16. Frontend Stages: Lexical Analysis
17. Frontend Stages: Syntactic Analysis
18. Frontend Stages: Semantic Analysis
19. Intermediate Representation (IR)
20. Common IR: Control Flow Graph
21. Control Flow Graph for GCD
22. IR Optimization
23. Example IR Optimizations I
24. Example IR Optimizations II
25. Example IR Optimizations II
26. Example IR Optimizations III
27. Example IR Optimizations IV
28. Example IR Optimizations IV
29. Code Generation
30. Putting It All Together I
31. Putting It All Together II
32. Summary

Page 290

Today we’re going to talk about how to translate high-level languages into code that computers can
execute.

So far we’ve seen the Beta ISA, which includes instructions that control the datapath operations
performed on 32-bit data stored in the registers. There are also instructions for accessing main memory
and changing the program counter. The instructions are formatted as opcode, source, and destination
fields that form 32-bit values in main memory.

To make our lives easier, we developed assembly language as a way of specifying sequences of
instructions. Each assembly language statement corresponds to a single instruction. As assembly
language programmers, we’re responsible for managing which values are in registers and which are in
main memory, and we need to figure out how to break down complicated operations, e.g., accessing an
element of an array, into the right sequence of Beta operations.

We can go one step further and use high-level languages to describe the computations we want to
perform. These languages use variables and other data structures to abstract away the details of storage
allocation and the movement of data to and from main memory. We can just refer to a data object by
name and let the language processor handle the details. Similarly, we’ll write expressions and other
operators such as assignment (=) to efficiently describe what would require many statements in
assembly language.

Today we’re going to dive into how to translate high-level language programs into code that will run
on the Beta.

Page 291

Here we see Euclid’s algorithm for determining the greatest common divisor of two numbers, in this
case the algorithm is written in the C programming language. We’ll be using a simple subset of C as
our example high-level language. Please see the brief overview of C in the Handouts section if you’d
like an introduction to C syntax and semantics. C was developed by Dennis Ritchie at AT&T Bell Labs
in the late 60’s and early 70’s to use when implementing the Unix operating system. Since that time
many new high-level languages have been introduced providing modern abstractions like object-
oriented programming along with useful new data and control structures.

Using C allows us describe a computation without referring to any of the details of the Beta ISA like
registers, specific Beta instructions, and so on. The absence of such details means there is less work
required to create the program and makes it easier for others to read and understand the algorithm
implemented by the program.

There are many advantages to using a high-level language. They enable programmers to be very
productive since the programs are concise and readable. These attributes also make it easy to maintain
the code. Often it is harder to make certain types of mistakes since the language allows us to check for
silly errors like storing a string value into a numeric variable. And more complicated tasks like
dynamically allocating and deallocating storage can be completely automated. The result is that it can
take much less time to create a correct program in a high-level language than it would it when writing
in assembly language.

Since the high-level language has abstracted away the details of a particular ISA, the programs are
portable in the sense that we can expect to run the same code on different ISAs without having to
rewrite the code.

What do we lose by using a high-level language? Should we worry that we’ll pay a price in terms of
the efficiency and performance we might get by crafting each instruction by hand? The answer depends
on how we choose to run high-level language programs. The two basic execution strategies are
“interpretation” and “compilation”.

Page 292

To interpret a high-level language program, we’ll write a special program called an “interpreter” that
runs on the actual computer, M1. The interpreter mimics the behavior of some abstract easy-to-
program machine M2 and for each M2 operation executes sequences of M1 instructions to achieve the
desired result. We can think of the interpreter along with M1 as an implementation of M2, i.e., given a
program written for M2, the interpreter will, step-by-step, emulate the effect of M2 instructions.

We often use several layers of interpretation when tackling computation tasks. For example, an
engineer may use her laptop with an Intel CPU to run the Python interpreter. In Python, she loads the
SciPy toolkit, which provides a calculator-like interface for numerical analysis for matrices of data. For
each SciPy command, e.g., “find the maximum value of a dataset”, the SciPy tool kit executes many
Python statements, e.g., to loop over each element of the array, remembering the largest value. For each
Python statement, the Python interpreter executes many x86 instructions, e.g., to increment the loop
index and check for loop termination. Executing a single SciPy command may require executing of
tens of Python statements, which in turn each may require executing hundreds of x86 instructions. The
engineer is very happy she didn’t have to write each of those instructions herself!

Interpretation is an effective implementation strategy when performing a computation once, or when
exploring which computational approach is most effective before making a more substantial investment
in creating a more efficient implementation.

Page 293

We’ll use a compilation implementation strategy when we have computational tasks that we need to
execute repeatedly and hence we are willing to invest more time up-front for more efficiency in the
long-term.

In compilation, we also start with our actual computer M1. Then we’ll take our high-level language
program P2 and translate it statement-by-statement into a program for M1. Note that we’re not actually
running the P2 program. Instead we’re using it as a template to create an equivalent P1 program that
can execute directly on M1. The translation process is called “compilation” and the program that does
the translation is called a “compiler”.

We compile the P2 program once to get the translation P1, and then we’ll run P1 on M1 whenever we
want to execute P2. Running P1 avoids the overhead of having to process the P2 source and the costs
of executing any intervening layers of interpretation. Instead of dynamically figuring out the necessary
machine instructions for each P2 statement as it’s encountered, in effect we’ve arranged to capture that
stream of machine instructions and save them as a P1 program for later execution. If we’re willing to
pay the up-front costs of compilation, we’ll get more efficient execution.

And, with different compilers, we can arrange to run P2 on many different machines — M2, M3, etc.
— without having rewrite P2.

So we now have two ways to execute a high-level language program: interpretation and compilation.
Both allow us to change the original source program. Both allow us to abstract away the details of the
actual computer we’ll use to run the program. And both strategies are widely used in modern computer
systems!

Page 294

Let’s summarize the differences between interpretation and compilation.

Suppose the statement “x+2” appears in the high-level program. When the interpreter processes this
statement it immediately fetches the value of the variable x and adds 2 to it. On the other hand, the
compiler would generate Beta instructions that would LD the variable x into a register and then ADD 2
to that value.

The interpreter is executing each statement as it’s processed and, in fact, may process and execute the
same statement many times if, e.g., it was in a loop. The compiler is just generating instructions to be
executed at some later time.

Interpreters have the overhead of processing the high-level source code during execution and that
overhead may be incurred many times in loops. Compilers incur the processing overhead once, making
the eventual execution more efficient. But during development, the programmer may have to compile
and run the program many times, often incurring the cost of compilation for only a single execution of
the program. So the compile-run-debug loop can take more time.

The interpreter is making decisions about the data type of x and the type of operations necessary at run
time, i.e., while the program is running. The compiler is making those decisions during the compilation
process.

Which is the better approach? In general, executing compiled code is much faster than running the
code interpretively. But since the interpreter is making decisions at run time, it can change its behavior
depending, say, on the type of the data in the variable X, offering considerable flexibility in handling
different types of data with the same algorithm. Compilers take away that flexibility in exchange for
fast execution.

Page 295

A compiler is a program that translates a high-level language program into a functionally equivalent
sequence of machine instructions, i.e., an assembly language program.

A compiler first checks that the high-level program is correct, i.e., that the statements are well formed,
the programmer isn’t asking for nonsensical computations — e.g., adding a string value and an integer
— or attempting to use the value of a variable before it has been properly initialized. The compiler may
also provide warnings when operations may not produce the expected results, e.g., when converting
from a floating-point number to an integer, where the floating-point value may be too large to fit in the
number of bits provided by the integer.

If the program passes scrutiny, the compiler then proceeds to generate efficient sequences of
instructions, often finding ways to rearrange the computation so that the resulting sequences are shorter
and faster. It’s hard to beat a modern optimizing compiler at producing assembly language, since the
compiler will patiently explore alternatives and deduce properties of the program that may not be
apparent to even diligent assembly language programmers.

In this section, we’ll look at a simple technique for compiling C programs into assembly. Then, in the
next section, we’ll dive more deeply into how a modern compiler works.

Page 296

There are two main routines in our simple compiler: compile_statement and compile_expr. The job of
compile_statement is to compile a single statement from the source program. Since the source program
is a sequence of statements, we’ll be calling compile_statement repeatedly.

We’ll focus on the compilation technique for four types of statements. An unconditional statement is
simply an expression that’s evaluated once. A compound statement is simply a sequence of statements
to be executed in turn. Conditional statements, sometimes called “if statements”, compute the value of
an test expression, e.g., a comparison such as “A < B”. If the test is true then statement1 is executed,
otherwise statement2 is executed. Iteration statements also contain a test expression. In each iteration,
if the test true, then the statement is executed, and the process repeats. If the test is false, the iteration is
terminated.

The other main routine is compile_expr whose job it is to generate code to compute the value of an
expression, leaving the result in some register. Expressions take many forms:

simple constant values

values from scalar or array variables,

assignment expressions that compute a value and then store the result in some variable,

unary or binary operations that combine the values of their operands with the specified operator.
Complex arithmetic expressions can be decomposed into sequences of unary and binary operations.

And, finally, procedure calls, where a named sequence of statements will be executed with the values
of the supplied arguments assigned as the values for the formal parameters of the procedure. Compiling
procedures and procedure calls is a topic that we’ll tackle next lecture since there are some
complications to understand and deal with.

Happily, compiling the other types of expressions and statements is straightforward, so let’s get started.

Page 297

What code do we need to put the value of a constant into a register? If the constant will fit into the 16-
bit constant field of an instruction, we can use CMOVE to load the sign-extended constant into a
register. This approach works for constants between -32768 and +32767. If the constant is too large,
it’s stored in a main memory location and we use a LD instruction to get the value into a register.

Loading the value of a variable is much the same as loading the value of a large constant: we use a LD
instruction to access the memory location that holds the value of the variable.

Performing an array access is slightly more complicated: arrays are stored as consecutive locations in
main memory, starting with index 0. Each array element occupies some fixed number bytes. So we
need code to convert the array index into the actual main memory address for the specified array
element.

We first invoke compile_expr to generate code that evaluates the index expression and leaves the result
in Rx. That will be a value between 0 and the size of the array minus 1. We’ll use a LD instruction to
access the appropriate array entry, but that means we need to convert the index into a byte offset, which
we do by multiplying the index by bsize, the number of bytes in one element. If b was an array of
integers, bsize would be 4. Now that we have the byte offset in a register, we can use LD to add the
offset to the base address of the array computing the address of the desired array element, then load the
memory value at that address into a register.

Assignment expressions are easy: invoke compile_expr to generate code that loads the value of the
expression into a register, then generate a ST instruction to store the value into the specified variable.

Arithmetic operations are pretty easy too: use compile_expr to generate code for each of the operand
expressions, leaving the results in registers. Then generate the appropriate ALU instruction to combine
the operands and leave the answer in a register.

Page 298

Let’s look at example to see how all this works. Here have an assignment expression that requires a
subtract, a multiply, and an addition to compute the required value.

Let’s follow the compilation process from start to finish as we invoke compile_expr to generate the
necessary code.

Following the template for assignment expressions from the previous page, we recursively call
compile_expr to compute value of the right-hand-side of the assignment.

That’s a multiply operation, so, following the Operations template, we need to compile the left-hand
operand of the multiply.

That’s a subtract operation, so, we call compile_expr again to compile the left-hand operand of the
subtract.

Aha, we know how to get the value of a variable into a register. So we generate a LD instruction to
load the value of x into r1.

The process we’re following is called “recursive descent”. We’ve used recursive calls to compile_expr
to process each level of the expression tree. At each recursive call the expressions get simpler, until we
reach a variable or constant, where we can generate the appropriate instruction without descending
further. At this point we’ve reach a leaf of the expression tree and we’re done with this branch of the
recursion.

We now need to get the value of the right-hand operand of the subtract into a register. In case it’s a
small constant, so we generate a CMOVE instruction.

Now that both operand values are in registers, we return to the subtract template and generate a SUB
instruction to do the subtraction. We now have the value for the left-hand operand of the multiply in r1.

We follow the same process for the right-hand operand of the multiply, recursively calling
compile_expr to process each level of the expression until we reach a variable or constant. Then we

Page 299

return up the expression tree, generating the appropriate instructions as we go, following the dictates of
the appropriate template from the previous slide.

The generated code is shown on the left of the slide. The recursive-descent technique makes short work
of generating code for even the most complicated of expressions.

There’s even opportunity to find some simple optimizations by looking at adjacent instructions. For
example, a CMOVE followed by an arithmetic operation can often be shorted to a single arithmetic
instruction with the constant as its second operand. These local transformations are called “peephole
optimizations” since we’re only considering just one or two instructions at a time.

Page 300

Now let’s turn our attention compile_statement.

The first two statement types are pretty easy to handle. Unconditional statements are usually
assignment expressions or procedure calls. We’ll simply ask compile_expr to generate the appropriate
code.

Compound statements are equally easy. We’ll recursively call compile_statement to generate code for
each statement in turn. The code for statement_2 will immediately follow the code generated for
statement_1. Execution will proceed sequentially through the code for each statement.

Page 301

Here we see the simplest form the conditional statement, where we need to generate code to evaluate
the test expression and then, if the value in the register is FALSE, skip over the code that executes the
statement in the THEN clause. The simple assembly-language template uses recursive calls to
compile_expr and compile_statement to generate code for the various parts of the IF statement.

The full-blown conditional statement includes an ELSE clause, which should be executed if the value
of the test expression is FALSE. The template uses some branches and labels to ensure the course of
execution is as intended.

You can see that the compilation process is really just the application of many small templates that
break the code generation task down step-by-step into smaller and smaller tasks, generating the
necessary code to glue all the pieces together in the appropriate fashion.

Page 302

And here’s the template for the WHILE statement, which looks a lot like the template for the IF
statement with a branch at the end that causes the generated code to be re-executed until the value of
the test expression is FALSE.

With a bit of thought, we can improve on this template slightly. We’ve reorganized the code so that
only a single branch instruction (BT) is executed each iteration, instead of the two branches (BF, BR)
per iteration in the original template. Not a big deal, but little optimizations to code inside a loop can
add up to big savings in a long-running program.

Just a quick comment about another common iteration statement, the FOR loop. The FOR loop is a
shorthand way of expressing iterations where the loop index (“i” in the example shown) is run through
a sequence of values and the body of the FOR loop is executed once for each value of the loop index.

The FOR loop can be transformed into the WHILE statement shown here, which can then be compiled
using the templates shown above.

Page 303

In this example, we’ve applied our templates to generate code for the iterative implementation of the
factorial function that we’ve seen before. Look through the generated code and you’ll be able to match
code fragments with the templates from last couple of slides. It’s not the most efficient code, but not
bad given the simplicity of the recursive-descent approach for compiling high-level programs.

Page 304

It’s a simple matter to modify the recursive-descent process to accommodate variable values that are
stored in dedicated registers rather than in main memory. Optimizing compilers are quite good at
identifying opportunities to keep values in registers and hence avoid the LD and ST operations needed
to access values in main memory. Using this simple optimization, the number of instructions in the
loop has gone from 10 down to 4. Now the generated code is looking pretty good!

But rather than keep tweaking the recursive-descent approach, let’s stop here. In the next segment,
we’ll see how modern compilers take a more general approach to generating code. Still though, the first
time I learned about recursive descent, I ran home to write a simple implementation and marveled at
having authored my own compiler in an afternoon!

Page 305

A modern compiler starts by analyzing the source program text to produce an equivalent sequence of
operations expressed in a language — and machine-independent intermediate representation (IR). The
analysis, or frontend, phase checks that program is well-formed, i.e., that the syntax of each high-level
language statement is correct. It understands the meaning (semantics) of each statement. Many high-
level languages include declarations of the type — e.g., integer, floating point, string, etc. — of each
variable, and the frontend verifies that all operations are correctly applied, ensuring that numeric
operations have numeric-type operands, string operations have string-type operands, and so on.
Basically the analysis phase converts the text of the source program into an internal data structure that
specifies the sequence and type of operations to be performed.

Often there are families of frontend programs that translate a variety of high-level languages (e.g, C,
C++, Java) into a common IR.

The synthesis, or backend, phase then optimizes the IR to reduce the number of operations that will be
executed when the final code is run. For example, it might find operations inside of a loop that are
independent of the loop index and can moved outside the loop, where they are performed once instead
of repeatedly inside the loop. Once the IR is in its final optimized form, the backend generates code
sequences for the target ISA and looks for further optimizations that take advantage of particular
features of the ISA. For example, for the Beta ISA we saw how a CMOVE followed by an arithmetic
operation can be shorted to a single operation with a constant operand.

Page 306

The analysis phase starts by scanning the source text and generating a sequence of token objects that
identify the type of each piece of the source text. While spaces, tabs, newlines, and so on were needed
to separate tokens in the source text, they’ve all been removed during the scanning process. To enable
useful error reporting, token objects also include information about where in the source text each token
was found, e.g., the file name, line number, and column number. The scanning phase reports illegal
tokens, e.g., the token “3x” would cause an error since in C it would not be a legal number or a legal
variable name.

Page 307

The parsing phase processes the sequence of tokens to build the syntax tree, which captures the
structure of the original program in a convenient data structure. The operands have been organized for
each unary and binary operation. The components of each statement have been found and labeled. The
role of each source token has been determined and the information captured in the syntax tree.

Compare the labels of the nodes in the tree to the templates we discussed in the previous segment. We
can see that it would be easy to write a program that did a depth-first tree walk, using the label of each
tree node to select the appropriate code generation template. We won’t do that quite yet since there’s
still some work to be done analyzing and transforming the tree.

Page 308

The syntax tree makes it easy to verify that the program is semantically correct, e.g., to check that the
types of the operands are compatible with the requested operation.

For example, consider the statement x = “bananas”. The syntax of the assignment operation is correct:
there’s a variable on the left-hand side and an expression on the right-hand side. But the semantics is
not correct, at least in the C language! By looking in its symbol table to check the declared type for the
variable x (int) and comparing it to the type of the expression (string), the semantic checker for the “op
=” tree node will detect that the types are not compatible, i.e., that we can’t store a string value into an
integer variable.

When the semantic analysis is complete, we know that the syntax tree represents a syntactically correct
program with valid semantics, and we’ve finished converting the source program into an equivalent,
language-independent sequence of operations.

Page 309

The syntax tree is a useful intermediate representation (IR) that is independent of both the source
language and the target ISA. It contains information about the sequencing and grouping of operations
that isn’t apparent in individual machine language instructions. And it allows frontends for different
source languages to share a common backend targeting a specific ISA. As we’ll see, the backend
processing can be split into two sub-phases. The first performs machine-independent optimizations on
the IR. The optimized IR is then translated by the code generation phase into sequences of instructions
for the target ISA.

Page 310

A common IR is to reorganize the syntax tree into what’s called a control flow graph (CFG). Each node
in the graph is a sequence of assignment and expression evaluations that ends with a branch. The nodes
are called “basic blocks” and represent sequences of operations that are executed as a unit: once the
first operation in a basic block is performed, the remaining operations will also be performed without
any other intervening operations. This knowledge lets us consider many optimizations, e.g.,
temporarily storing variable values in registers, that would be complicated if there was the possibility
that other operations outside the block might also need to access the variable values while we were in
the middle of this block.

The edges of the graph indicate the branches that take us to another basic block.

Page 311

For example, here’s the CFG for GCD.

If a basic block ends with a conditional branch, there are two edges, labeled “T” and “F” leaving the
block that indicate the next block to execute depending on the outcome of the test. Other blocks have
only a single departing arrow, indicating that the block always transfers control to the block indicated
by the arrow.

Note that if we can arrive at a block from only a single predecessor block, then any knowledge we have
about operations and variables from the predecessor block can be carried over to the destination block.
For example, if the “if (x > y)” block has generated code to load the values of x and y into registers,
both destination blocks can use that information and use the appropriate registers without having to
generate their own LDs.

But if a block has multiple predecessors, such optimizations are more constrained: we can only use
knowledge that is common to *all* the predecessor blocks.

The CFG looks a lot like the state transition diagram for a high-level FSM!

Page 312

We’ll optimize the IR by performing multiple passes over the CFG. Each pass performs a specific,
simple optimization. We’ll repeatedly apply the simple optimizations in multiple passes, until the we
can’t find any further optimizations to perform. Collectively, the simple optimizations can combine to
achieve very complex optimizations.

Here are some example optimizations:

We can eliminate assignments to variables that are never used and basic blocks that are never reached.
This is called “dead code elimination”.

In constant propagation, we identify variables that have a constant value and substitute that constant in
place of references to the variable.

We can compute the value of expressions that have constant operands. This is called “constant
folding”.

Page 313

To illustrate how these optimizations work, consider this slightly silly source program and its CFG.
Note that we’ve broken down complicated expressions into simple binary operations, using temporary
variable names (e.g, “_t1”) to name the intermediate results.

Page 314

Let’s get started!

The dead code elimination pass can remove the assignment to Z in the first basic block since Z is
reassigned in subsequent blocks and the intervening code makes no reference to Z.

Next we look for variables with constant values. Here we find that X is assigned the value of 3 and is
never re-assigned, so we can replace all references to X with the constant 3.

Now perform constant folding, evaluating any constant expressions.

Page 315

Here’s the updated CFG, ready for another round of optimizations.

First dead code elimination.

Then constant propagation.

And, finally, constant folding.

Page 316

So after two rounds of these simple operations, we’ve thinned out a number of assignments. Onto
round three!

Dead code elimination. And here we can determine the outcome of a conditional branch, eliminating
entire basic blocks from the IR, either because they’re now empty or because they can no longer be
reached.

Page 317

Wow, the IR is now considerably smaller.

Next is another application of constant propagation.

And then constant folding.

Followed by more dead code elimination.

Page 318

The passes continue until we discover there are no further optimizations to perform, so we’re done!

Repeated applications of these simple transformations have transformed the original program into an
equivalent program that computes the same final value for Z.

We can do more optimizations by adding passes: eliminating redundant computation of common
subexpressions, moving loop-independent calculations out of loops, unrolling short loops to perform
the effect of, say, two iterations in a single loop execution, saving some of the cost of increment and
test instructions. Optimizing compilers have a sophisticated set of optimizations they employ to make
smaller and more efficient code.

Page 319

Okay, we’re done with optimizations. Now it’s time to generate instructions for the target ISA.

First the code generator assigns each variable a dedicated register. If we have more variables than
registers, some variables are stored in memory and we’ll use LD and ST to access them as needed. But
frequently-used variables will almost certainly live as much as possible in registers.

Use our templates from before to translate each assignment and operation into one or more
instructions.

The emit the code for each block, adding the appropriate labels and branches.

Reorder the basic block code to eliminate unconditional branches wherever possible.

And finally perform any target-specific peephole optimizations.

Page 320

Here’s the original CFG for the GCD code, along with the slightly optimized CFG. GCD isn’t as trivial
as the previous example, so we’ve only been able to do a bit of constant propagation and constant
folding.

Note that we can’t propagate knowledge about variable values from the top basic block to the
following “if” block since the “if” block has multiple predecessors.

Page 321

Here’s how the code generator will process the optimized CFG.

First, it dedicates registers to hold the values for x and y.

Then, it emits the code for each of the basic blocks.

Next, reorganize the order of the basic blocks to eliminate unconditional branches wherever possible.

The resulting code is pretty good. There no obvious changes that a human programmer might make to
make the code faster or smaller. Good job, compiler!

Page 322

Here are all the compilation steps shown in order, along with their input and output data structures.
Collectively they transform the original source code into high-quality assembly code. The patient
application of optimization passes often produces code that’s more efficient than writing assembly
language by hand.

Nowadays, programmers are able to focus on getting the source code to achieve the desired
functionality and leave the details of translation to instructions in the hands of the compiler.

Page 323

12: Procedures and Stacks

1. Procedures: A Software Abstraction
2. Implementing Procedures
3. Procedure Calling Convention
4. Procedure Linkage: First Try
5. Procedure Storage Needs
6. Activation Records
7. Insight: We Need a Stack!
8. Stack Implementation
9. Stack Management Macros

10. Fun With Stacks
11. Solving Procedure Linkage Problems
12. Stack Frames as Activation Records
13. Stack Frame Details
14. Argument Order & BP Usage
15. Procedure Linkage: The Contract
16. Procedure Linkage Templates
17. Putting It All Together: Factorial
18. Recursion?
19. Stack Detective
20. Summary of Dedicated Registers
21. Summary

Page 324

One of the most useful abstractions provided by high-level languages is the notion of a procedure or
subroutine, which is a sequence of instructions that perform a specific task.

A procedure has a single named entry point, which can be used to refer to the procedure in other parts
of the program. In the example here, this code is defining the GCD procedure, which is declared to
return an integer value.

Procedures have zero or more formal parameters, which are the names the code inside the procedure
will use to refer the values supplied when the procedure is invoked by a “procedure call”. A procedure
call is an expression that has the name of the procedure followed by parenthesized list of values called
“arguments” that will be matched up with the formal parameters. For example, the value of the first
argument will become the value of the first formal parameter while the procedure is executing.

The body of the procedure may define additional variables, called “local variables”, since they can only
be accessed by statements in the procedure body. Conceptually, the storage for local variables only
exists while the procedure is executing. They are allocated when the procedure is invoked and
deallocated when the procedure returns.

The procedure may return a value that’s the result of the procedure’s computation. It’s legal to have
procedures that do not return a value, in which case the procedures would only be executed for their
“side effects”, e.g., changes they make to shared data.

Here we see another procedure, COPRIMES, that invokes the GCD procedure to compute the greatest
common divisor of two numbers. To use GCD, the programmer of COPRIMES only needed to know
the input/output behavior of GCD, i.e., the number and types of the arguments and what type of value
is returned as a result. The procedural abstraction has hidden the implementation of GCD, while still
making its functionality available as a “black box”.

This is a very powerful idea: encapsulating a complex computation so that it can be used by others.
Every high-level language comes with a collection of pre-built procedures, called “libraries”, which
can be used to perform arithmetic functions (e.g., square root or cosine), manipulate collections of data

Page 325

(e.g., lists or dictionaries), read data from files, and so on — the list is nearly endless! Much of the
expressive power and ease-of-use provided by high-level languages comes from their libraries of
“black boxes”.

The procedural abstraction is at the heart of object-oriented languages, which encapsulate data and
procedures as black boxes called objects that support specific operations on their internal data. For
example, a LIST object has procedures (called “methods” in this context) for indexing into the list to
read or change a value, adding new elements to the list, inquiring about the length of the list, and so on.
The internal representation of the data and the algorithms used to implement the methods are hidden by
the object abstraction. Indeed, there may be several different LIST implementations to choose from
depending on which operations you need to be particularly efficient.

Okay, enough about the virtues of the procedural abstraction! Let’s turn our attention to how to
implement procedures using the Beta ISA.

Page 326

A possible implementation is to “inline” the procedure, where we replace the procedure call with a
copy of the statements in the procedure’s body, substituting argument values for references to the
formal parameters. In this approach we’re treating procedures very much like UASM macros, i.e., a
simple notational shorthand for making a copy of the procedure’s body.

Are there any problems with this approach? One obvious issue is the potential increase in the code size.
For example, if we had a lengthy procedure that was called many times, the final expanded code would
be huge! Enough so that inlining isn’t a practical solution except in the case of short procedures where
optimizing compilers do sometimes decide to inline the code.

A bigger difficulty is apparent when we consider a recursive procedure where there’s a nested call to
the procedure itself. During execution the recursion will terminate for some values of the arguments
and the recursive procedure will eventually return answer. But at compile time, the inlining process
would not terminate and so the inlining scheme fails if the language allows recursion.

The second option is to “link” to the procedure. In this approach there is a single copy of the procedure
code which we arrange to be run for each procedure call — all the procedure calls are said to link to the
procedure code.

Here the body of the procedure is translated once into Beta instructions and the first instruction is
identified as the procedure’s entry point. The procedure call is compiled into a set of instructions that
evaluate the argument expressions and save the values in an agreed-upon location. Then we’ll use a BR
instruction to transfer control to the entry point of the procedure. Recall that the BR instruction not
only changes the PC but saves the address of the instruction following the branch in a specified
register. This saved address is the “return address” where we want execution to resume when procedure
execution is complete.

After branching to the entry point, the procedure code runs, stores the result in an agreed-upon location
and then resumes execution of the calling program by jumping to the supplied return address.

Page 327

To complete this implementation plan we need a “calling convention” that specifies where to store the
argument values during procedure calls and where the procedure should store the return value. It’s
tempting to simply allocate specific memory locations for the job: how about using registers? We could
pass the argument value in registers starting, say, with R1. The return address could be stored in
another register, say R28. As we can see, with this convention the BR and JMP instructions are just
what we need to implement procedure call and return. It’s usual to call the register holding the return
address the “linkage pointer”. And finally the procedure can use, say, R0 to hold the return value.

Let’s see how this would work when executing the procedure call fact(3). As shown on the right,
fact(3) requires a recursive call to compute fact(2), and so on. Our goal is to have a uniform calling
convention where all procedure calls and procedure bodies use the same convention for storing
arguments, return addresses and return values. In particular, we’ll use the same convention when
compiling the recursive call fact(n-1) as we did for the initial call to fact(3).

Page 328

Okay. In the code shown on the right we’ve used our proposed convention when compiling the Beta
code for fact(). Let’s take a quick tour.

To compile the initial call fact(3) the compiler generated a CMOVE instruction to put the argument
value in R1 and then a BR instruction to transfer control to fact’s entry point while remembering the
return address in R28.

The first statement in the body of fact tests the value of the argument using CMPLEC and BT
instructions.

When n is greater than 0, the code performs a recursive call to fact, saving the value of the recursive
argument n-1 in R1 as our convention requires. Note that we had to first save the value of the original
argument n because we’ll need it for the multiplication after the recursive call returns its value in R0.

If n is not greater than 0, the value 1 is placed in R0. Then the two possible execution paths merge,
each having generated the appropriate return value in R0, and finally there’s a JMP to return control to
the caller. The JMP instruction knows to find the return address in R28, just where the BR put it as part
of the original procedure call.

Some of you may have noticed that there are some difficulties with this particular implementation. The
code is correct in the sense that it faithfully implements procedure call and return using our proposed
convention. The problem is that during recursive calls we’ll be overwriting register values we need
later.

For example, note that following our calling convention, the recursive call also uses R28 to store the
return address. When executed, the code for the original call stored the address of the HALT instruction
in R28. Inside the procedure, the recursive call will store the address of the MUL instruction in R28.
Unfortunately that overwrites the original return address.

Even the attempt to save the value of the argument N in R2 is doomed to fail since during the execution
of the recursive call R2 will be overwritten.

Page 329

The crux of the problem is that each recursive call needs to remember the value of its argument and
return address, i.e., we need two storage locations for each active call to fact(). And while executing
fact(3), when we finally get to calling fact(0) there are four nested active calls, so we’ll need 4*2 = 8
storage locations. In fact, the amount of storage needed varies with the depth of the recursion.
Obviously we can’t use just two registers (R2 and R28) to hold all the values we need to save.

One fix is to disallow recursion! And, in fact, some of the early programming languages such as
FORTRAN did just that. But let’s see if we can solve the problem another way.

Page 330

The problem we need to solve is where to store the values needed by procedure: its arguments, its
return address, its return value. The procedure may also need storage for its local variables and space to
save the values of the caller’s registers before they get overwritten by the procedure. We’d like to avoid
any limitations on the number of arguments, the number of local variables, etc.

So we’ll need a block of storage for each active procedure call, what we’ll call the “activation record”.
As we saw in the factorial example, we can’t statically allocate a single block of storage for a particular
procedure since recursive calls mean we’ll have many active calls to that procedure at points during the
execution.

What we need is a way to dynamically allocate storage for an activation record when the procedure is
called, which can then be reclaimed when the procedure returns.

Page 331

Let’s see how activation records come and go as execution proceeds.

The first activation record is for the call fact(3). It’s created at the beginning of the procedure and
holds, among other things, the value of the argument n and the return address where execution should
resume after the fact(3) computation is complete.

During the execution of fact(3), we need to make a recursive call to compute fact(2). So that procedure
call also gets an activation record with the appropriate values for the argument and return address. Note
that the original activation record is kept since it contains information needed to complete the
computation of fact(3) after the call to fact(2) returns. So now we have two active procedure calls and
hence two activation records.

fact(2) requires computing fact(1), which, in turn, requires computing fact(0). At this point there are
four active procedure calls and hence four activation records.

The recursion terminates with fact(0), which returns the value 1 to its caller. At this point we’ve
finished execution of fact(0) and so its activation record is no longer needed and can be discarded.

fact(1) now finishes its computation returning 1 to its caller. We no longer need its activation record.
Then fact(2) completes, returning 2 to its caller and its activation can be discarded. And so on...

Note that the activation record of a nested procedure call is always discarded before the activation
record of the caller. That makes sense: the execution of the caller can’t complete until the nested
procedure call returns. What we need is a storage scheme that efficiently supports the allocation and
deallocation of activation records as shown here.

Page 332

Early compiler writers recognized that activation records are allocated and deallocated in last-in first-
out (LIFO) order. So they invented the “stack”, a data structure that implements a PUSH operation to
add a record to the top of the stack and a POP operation to remove the top element. New activation
records are PUSHed onto the stack during procedure calls and the POPed from the stack when the
procedure call returns. Note that stack operations affect the top (i.e., most recent) record on the stack.

C procedures only need to access the top activation record on the stack. Other programming languages,
e.g. Java, support accesses to other active activation records. The stack supports both modes of
operation.

One final technical note: some programming languages support closures (e.g., Javascript) or
continuations (e.g., Python’s yield statement), where the activation records need to be preserved even
after the procedure returns. In these cases, the simple LIFO behavior of the stack is no longer sufficient
and we’ll need another scheme for allocating and deallocating activation records. But that’s a topic for
another course!

Page 333

Here’s how we’ll implement the stack on the Beta:

We’ll dedicate one of the Beta registers, R29, to be the “stack pointer” that will be used to manage
stack operations.

When we PUSH a word onto the stack, we’ll increment the stack pointer. So the stack grows to
successively higher addresses as words are PUSHed onto the stack.

We’ll adopt the convention that SP points to (i.e., its value is the address of) the first unused stack
location, the location that will be filled by next PUSH. So locations with addresses lower than the value
in SP correspond to words that have been previously allocated.

Words can be PUSHed to or POPed from the stack at any point in execution, but we’ll impose the rule
that code sequences that PUSH words onto the stack must POP those words at the end of execution. So
when a code sequence finishes execution, SP will have the same value as it had before the sequence
started. This is called the “stack discipline” and ensures that intervening uses of the stack don’t affect
later stack references.

We’ll allocate a large region of memory to hold the stack located so that the stack can grow without
overwriting other program storage. Most systems require that you specify a maximum stack size when
running a program and will signal an execution error if the program attempts to PUSH too many items
onto the stack.

For our Beta stack implementation, we’ll use existing instructions to implement stack operations, so for
us the stack is strictly a set of software conventions. Other ISAs provide instructions specifically for
stack operations.

There are many other sensible stack conventions, so you’ll need to read up on the conventions adopted
by the particular ISA or programming language you’ll be using.

Page 334

We’ve added some convenience macros to UASM to support stacks.

The PUSH macro expands into two instructions. The ADDC increments the stack pointer, allocating a
new word at the top of stack, and then initializes the new top-of-stack from a specified register value
with a ST instruction.

The POP macro LDs the value at the top of the stack into the specified register, then uses a SUBC
instruction to decrement the stack pointer, deallocating that word from the stack.

Note that the order of the instructions in the PUSH and POP macro is very important. As we’ll see in
the next lecture, interrupts can cause the Beta hardware to stop executing the current program between
any two instructions, so we have to be careful about the order of operations. So for PUSH, we first
allocate the word on the stack, then initialize it. If we did it the other way around and execution was
interrupted between the initialization and allocation, code run during the interrupt which uses the stack
might unintentionally overwrite the initialized value. But, assuming all code follows stack discipline,
allocation followed by initialization is always safe.

The same reasoning applies to the order of the POP instructions. We first access the top-of-stack one
last time to retrieve its value, then we deallocate that location.

We can use the ALLOCATE macro to reserve a number of stack locations for later use. Sort of like
PUSH but without the initialization.

DEALLOCATE performs the opposite operation, removing N words from the stack.

In general, if we see a PUSH or ALLOCATE in an assembly language program, we should be able to
find the corresponding POP or DEALLOCATE, which would indicate that stack discipline is
maintained.

Page 335

We’ll use stacks to save values we’ll need later. For example, if we need to use some registers for a
computation but don’t know if the register’s current values are needed later in the program, we can
PUSH their current values onto the stack and then are free to use the registers in our code. After we’re
done, we can use POP to restore the saved values.

Note that we POP data off the stack in the opposite order that the data was PUSHed, i.e., we need to
follow the last-in first-out discipline imposed by the stack operations.

Now that we have the stack data structure, we’ll use it to solve our problems with allocating and
deallocating activation records during procedure calls.

Page 336

We’ll use the stack to hold a procedure’s activation record. That includes the values of the arguments to
the procedure call. We’ll allocate words on the stack to hold the values of the procedure’s local
variables, assuming we don’t keep them in registers. And we’ll use the stack to save the return address
(passed in LP) so the procedure can make nested procedure calls without overwriting its return address.

The responsibility for allocating and deallocating the activation record will be shared between the
calling procedure (the “caller”) and the called procedure (the “callee”).

The caller is responsible for evaluating the argument expressions and saving their values in the
activation record being built on the stack. We’ll adopt the convention that argument values are pushed
in reverse order, i.e., the first argument will be the last to be pushed on the stack. We’ll explain why we
made this choice in a couple of slides...

The code compiled for a procedure involves a sequence of expression evaluations, each followed by a
PUSH to save the calculated value on the stack. So when the callee starts execution, the top of the stack
contains the value of the first argument, the next word down the value of the second argument, and so
on.

After the argument values, if any, have been pushed on the stack, there’s a BR to transfer control to the
procedure’s entry point, saving the address of the instruction following the BR in the linkage pointer,
R28, a register that we’ll dedicate to that task.

When the callee returns and execution resumes in the caller, a DEALLOCATE is used to remove all the
argument values from the stack, preserving stack discipline.

So that’s the code the compiler generates for the procedure. The rest of the work happens in the called
procedure.

Page 337

The code at the start of the called procedure completes the allocation of the activation record. Since
when we’re done the activation record will occupy a bunch of consecutive words on the stack, we’ll
sometimes refer to the activation record as a “stack frame” to remind us of where it lives.

The first action is to save the return address found in the LP register. This frees up LP to be used by any
nested procedure calls in the body of the callee.

In order to make it easy to access values stored in the activation record, we’ll dedicate another register
called the “base pointer” (BP = R27) which will point to the stack frame we’re building. So as we enter
the procedure, the code saves the pointer to the caller’s stack frame, and then uses the current value of
the stack pointer to make BP point to the current stack frame. We’ll see how we use BP in just a
moment.

Now the code will allocate words in the stack frame to hold the values for the callee’s local variables, if
any.

Finally, the callee needs to save the values of any registers it will use when executing the rest of its
code. These saved values can be used to restore the register values just before returning to the caller.
This is called the “callee saves” convention where the callee guarantees that all register values will be
preserved across the procedure call. With this convention, the code in the caller can assume any values
it placed in registers before a nested procedure call will still be there when the nested call returns.

Note that dedicating a register as the base pointer isn’t strictly necessary. All accesses to the values on
the stack can be made relative to the stack pointer, but the offsets from SP will change as values are
PUSHed and POPed from the stack, e.g., during procedure calls. It will be easier to understand the
generated code if we use BP for all stack frame references.

Page 338

Let’s return to the question about the order of argument values in the stack frame. We adopted the
convention of PUSHing the values in reverse order, i.e., where the value of the first argument is the last
one to be PUSHED.

So, why PUSH argument values in reverse order?

Page 339

With the arguments PUSHed in reverse order, the first argument (labeled “arg 0”) will be at a fixed
offset from the base pointer regardless of the number of argument values pushed on the stack. The
compiler can use a simple formula to the determine the correct BP offset value for any particular
argument. So the first argument is at offset -12, the second at -16, and so on.

Why is this important? Some languages, such as C, support procedure calls with a variable number of
arguments. Usually the procedure can determine from, say, the first argument, how many additional
arguments to expect. The canonical example is the C printf function where the first argument is a
format string that specifies how a sequence of values should be printed. So a call to printf includes the
format string argument plus a varying number of additional arguments. With our calling convention the
format string will always be in the same location relative to BP, so the printf code can find it without
knowing the number of additional arguments in the current call.

The local variables are also at fixed offsets from BP. The first local variable is at offset 0, the second at
offset 4, and so on.

So we see that having a base pointer makes it easy to access the values of the arguments and local
variables using fixed offsets that can be determined at compile time. The stack above the local
variables is available for other uses, e.g., building the activation record for a nested procedure call!

Page 340

Okay, here’s our final contract for how procedure calls will work:

The calling procedure (“caller”) will

PUSH the argument values onto the stack in reverse order

Branch to the entry point of the callee, putting the return address into the linkage pointer.

When the callee returns, remove the argument values from the stack.

The called procedure (“callee”) will

Perform the promised computation, leaving the result in R0.

Jump to the return address when the computation has finished

Remove any items it has placed on the stack, leaving the stack as it was when the procedure was
entered. Note that the arguments were PUSHed on the stack by the caller, so it will be up to the caller
to remove them.

Preserve the values in all registers except R0, which holds the return value. So the caller can assume
any values placed in registers before a nested call will be there when the nested call returns.

Page 341

We saw the code template for procedure calls on an earlier slide.

Here’s the template for the entry point to a procedure F. The code saves the caller’s LP and BP values,
initializes BP for the current stack frame and allocates words on the stack to hold any local variable
values. The final step is to PUSH the value of any registers (besides R0) that will be used by the
remainder of the procedure’s code.

The template for the exit sequence mirrors the actions of the entry sequence, restoring all the values
saved by the entry sequence, performing the POP operations in the reverse of the order of the PUSH
operations in the entry sequence. Note that in moving the BP value into SP we’ve reset the stack to its
state at the point of the MOVE(SP,BP) in the entry sequence. This implicitly undoes the effect of the
ALLOCATE statement in the entry sequence, so we don’t need a matching DEALLOCATE in the exit
sequence.

The last instruction in the exit sequence transfers control back to the calling procedure.

With practice you’ll become familiar with these code templates. Meanwhile, you can refer back to this
slide whenever you need to generate code for a procedure call.

Page 342

Here’s the code our compiler would generate for the C implementation of factorial shown on the left.

The entry sequence saves the caller’s LP and BP, then initializes BP for the current stack frame. The
value of R1 is saved so we can use R1 in code that follows.

The exit sequence restores all the saved values, including that for R1. The code for the body of the
procedure has arranged for R0 to contain the return value by the time execution reaches the exit
sequence.

The nested procedure call passes the argument value on the stack and removes it after the nested call
returns.

The remainder of the code is generated using the templates we saw in the previous lecture. Aside from
computing and pushing the values of the arguments, there are approximately 10 instructions needed to
implement the linking approach to a procedure call. That’s not much for a procedure of any size, but
might be significant for a trivial procedure. As mentioned earlier, some optimizing compilers can make
the tradeoff of inlining small non-recursive procedures saving this small amount of overhead.

Page 343

So have we solved the activation record storage issue for recursive procedures?

Yes! A new stack from is allocated for each procedure call. In each frame we see the storage for the
argument and return address [CLICK]. And as the nested calls return the stack frames will be
deallocated in inverse order.

Interestingly we can learn a lot about the current state of execution by looking at the active stack
frames. The current value of BP, along the older values saved in the activation records, allow us to
identify the active procedure calls and determine their arguments, the values of any local variables for
active calls, and so on. If we print out all this information at any given time we would have a “stack
trace” showing the progress of the computation. In fact, when an problem occurs, many language
runtimes will print out the stack trace to help the programmer determine what happened.

And, of course, if you can interpret the information in the stack frames, you can show you understand
our conventions for procedure call and return. Don’t be surprised to find such a question on a quiz :)

Page 344

Let’s practice our newfound skill and see what we can determine about a running program which
we’ve stopped somewhere in the middle of its execution. We’re told that a computation of fact() is in
progress and that the PC of the next instruction to be executed is 0x40. We’re also given the stack
dump shown on right.

Since we’re in the middle of a fact computation, we know that current stack frame (and possibly
others) is an activation record for the fact function. Using the code on the previous slide we can
determine the layout of the stack frame and generate the annotations shown on the right of the stack
dump. With the annotations, it’s easy to see that the argument to current active call is the value 3.

Now we want to know the argument to original call to fact. We’ll have to label the other stack frames
using the saved BP values. Looking at the saved LP values for each frame (always found at an offset of
-8 from the frame’s BP), we see that many of the saved values are 0x40, which must be the return
address for the recursive fact calls.

Looking through the stack frames we find the first return address that’s *not* 0x40, which must an
return address to code that’s not part of the fact procedure. This means we’ve found the stack frame
created by the original call to fact and can see that argument to the original call is 6.

What’s the location of the BR that made the original call? Well the saved LP in the stack frame of the
original call to fact is 0x80. That’s the address of the instruction following the original call, so the BR
that made the original call is one instruction earlier, at location 0x7C. To answer these questions you
have to be good at hex arithmetic!

What instruction is about to be executed? We were told its address is 0x40, which we notice is the
saved LP value for all the recursive fact calls. So 0x40 must be the address of the instruction following
the BR(fact,LP) instruction in the fact code. Looking back a few slides at the fact code, we see that’s a
DEALLOCATE(1) instruction.

What value is in BP? Hmm. We know BP is the address of the stack location containing the saved R1
value in the current stack frame. So the saved BP value in the current stack frame is the address of the

Page 345

saved R1 value in the *previous* stack frame. So the saved BP value gives us the address of a
particular stack location, from which we can derive the address of all the other locations! Counting
forward, we find that the value in BP must be 0x13C.

What value is in SP? Since we’re about to execute the DEALLOCATE to remove the argument of the
nested call from the stack, that argument must still be on the stack right after the saved R1 value. Since
the SP points to first unused stack location, it points to the location after that word, so it has the value
0x144.

Finally, what value is is R0? Since we’ve just returned from a call to fact(2) the value in R0 must the
result from that recursive call, which is 2.

Wow! You can learn a lot from the stacked activation records and a little deduction! Since the state of
the computation is represented by the values of the PC, the registers, and main memory, once we’re
given that information we can tell exactly what the program has been up to. Pretty neat...

Page 346

Wrapping up, we’ve been dedicating some registers to help with our various software conventions. To
summarize:

R31 is always zero, as defined by the ISA.

We’ll also dedicate R30 to a particular function in the ISA when we discuss the implementation of the
Beta in the next lecture. Meanwhile, don’t use R30 in your code!

The remaining dedicated registers are connected with our software conventions:

R29 (SP) is used as the stack pointer,

R28 (LP) is used as the linkage pointer, and

R27 (BP) is used as the base pointer.

As you practice reading and writing code, you’ll grow familiar with these dedicated registers.

Page 347

In thinking about how to implement procedures, we discovered the need for an activation record to
store the information needed by any active procedure call.

An activation record is created by the caller and callee at the start of a procedure call. And the record
can be discarded when the procedure is complete.

The activation records hold argument values, saved LP and BP values along with the caller’s values in
any other of the registers. Storage for the procedure’s local variables is also allocated in the activation
record.

We use BP to point to the current activation record, giving easy access the values of the arguments and
local variables.

We adopted a “callee saves” convention where the called procedure is obligated to preserve the values
in all registers except for R0.

Taken together, these conventions allow us to have procedures with arbitrary numbers of arguments
and local variables, with nested and recursive procedure calls. We’re now ready to compile and execute
any C program!

Page 348

13: Building the Beta

1. CPU Design Tradeoffs
2. Processor Performance
3. Reminder: Beta ISA
4. Approach: Incremental Featurism
5. Multi-ported Register File
6. Register File Timing
7. ALU Instructions
8. Instruction Fetch/Decode
9. ALU Op Datapath I

10. ALU Op Datapath II
11. ALU Operations (with constant) I
12. ALU Operations (with constant) II
13. Load Instruction I
14. Load Instruction II
15. Store Instruction I
16. Store Instruction II
17. JMP Instruction I
18. JMP Instruction II
19. BEQ/BNE Instructions I
20. BEQ/BNE Instructions II
21. Load Relative Instruction
22. LDR Instruction I
23. LDR Instruction II
24. Exceptions
25. Exception Processing
26. Exception Implementation
27. Exceptions I
28. Exceptions II
29. Beta: Our “Final Answer”
30. Control Logic
31. Beta Inside!

Page 349

Today we’re going to describe the datapath and control logic needed to execute Beta instructions. In an
upcoming lab assignment, we’ll ask you to build a working implementation using our standard cell
library. When you’re done, you’ll have designed and debugged a 32-bit reduced-instruction set
computer! Not bad...

Before tackling a design task, it’s useful to understand the goals for the design. Functionality, of
course; in our case the correct execution of instructions from the Beta ISA. But there are other goals we
should think about.

An obvious goal is to maximize performance, as measured by the number of instructions executed per
second. This is usually expressed in MIPS, an acronym for “Millions of Instructions Per Second”.
When the Intel 8080 was introduced in 1974, it executed instructions at 0.29 MIPS or 290,000
instructions per second as measured by the Dhrystone benchmark. Modern multi-core processors are
rated between 10,000 and 100,000 MIPS.

Another goal might be to minimize the manufacturing cost, which in integrated circuit manufacturing
is proportional to the size of the circuit.

Or we might want have the best performance for a given price. In our increasingly mobile world, the
best performance per watt might be an important goal.

One of the interesting challenges in computer engineering is deciding exactly how to balance
performance against cost and power efficiency. Clearly the designers of the Apple Watch have a
different set of design goals then the designers of high-end desktop computers.

Page 350

The performance of a processor is inversely proportional to the length of time it takes to run a program.
The shorter the execution time, the higher the performance. The execution time is determined by three
factors.

First, the number of instructions in the program.

Second, the number of clock cycles our sequential circuit requires to execute a particular instruction.
Complex instructions, e.g., adding two values from main memory, may make a program shorter, but
may also require many clock cycles to perform the necessary memory and datapath operations.

Third, the amount of time needed for each clock cycle, as determined by the propagation delay of the
digital logic in the datapath.

So to increase the performance we could reduce the number of instructions to be executed. Or we can
try to minimize the number of clock cycles needed on the average to execute our instructions. There’s
obviously a bit of a tradeoff between these first two options: more computation per instruction usually
means it will take more time to execute the instruction. Or we can try to keep our logic simple,
minimizing its propagation delay in the hopes of having a short clock period.

Today we’ll focus on an implementation for the Beta ISA that executes one instruction every clock
cycle. The combinational paths in our circuit will be fairly long, but, as we learned in Part 1 of the
course, this gives us the opportunity to use pipelining to increase our implementation’s throughput.
We’ll talk about the implementation of a pipelined processor in some upcoming lectures.

Page 351

Here’s a quick refresher on the Beta ISA. The Beta has thirty-two 32-bit registers that hold values for
use by the datapath. The first class of ALU instructions, which have 0b10 as the top 2 bits of the
opcode field, perform an operation on two register operands (Ra and Rb), storing the result back into a
specified destination register (Rc). There’s a 6-bit opcode field to specify the operation and three 5-bit
register fields to specify the registers to use as source and destination. The second class of ALU
instructions, which have 0b11 in the top 2 bits of the opcode, perform the same set of operations where
the second operand is constant in the range -32768 to +32767.

The operations include arithmetic operations, comparisons, boolean operations, and shifts. In assembly
language, we use a “C” suffix added to the mnemonics shown here to indicate that the second operand
is a constant.

This second instruction format is also used by the instructions that access memory and change the
normally sequential execution order.

The use of just two instruction formats will make it very easy to build the logic responsible for
translating the encoded instructions into the signals needed to control the operation of the datapath. In
fact, we’ll be able to use many of the instruction bits as-is!

Page 352

We’ll build our datapath incrementally, starting with the logic needed to perform the ALU instructions,
then add additional logic to execute the memory and branch instructions. Finally, we’ll need to add
logic to handle what happens when an exception occurs and execution has to be suspended because the
current instruction cannot be executed correctly.

We’ll be using the digital logic gates we learned about in Part 1 of the course. In particular, we’ll need
multi-bit registers to hold state information from one instruction to the next. Recall that these memory
elements load new values at the rising edge of the clock signal, then store that value until the next
rising clock edge.

We’ll use a lot of multiplexers in our design to select between alternative values in the datapath.

The actual computations will be performed by the arithmetic and logic unit (ALU) that we designed at
the end of Part 1. It has logic to perform the arithmetic, comparison, boolean and shift operations listed
on the previous slide. It takes in two 32-bit operands and produces a 32-bit result.

And, finally, we’ll use several different memory components to implement register storage in the
datapath and also for main memory, where instructions and data are stored.

You might find it useful to review the chapters on combinational and sequential logic in Part 1 of the
course.

Page 353

The Beta ISA specifies thirty-two 32-bit registers as part of the datapath. These are shown as the
magenta rectangles in the diagram below. These are implemented as load-enabled registers, which have
an EN signal that controls when the register is loaded with a new value. If EN is 1, the register will be
loaded from the D input at the next rising clock edge. If EN is 0, the register is reloaded with its current
value and hence its value is unchanged. It might seem easier to add enabling logic to the clock signal,
but this is almost never a good idea since any glitches in that logic might generate false edges that
would cause the register to load a new value at the wrong time. Always remember the mantra: NO
GATED CLOCKS!

There are multiplexers (shown underneath the registers) that let us select a value from any of the 32
registers. Since we need two operands for the datapath logic, there are two such multiplexers. Their
select inputs (RA1 and RA2) function as addresses, determining which register values will be selected
as operands. And, finally, there’s a decoder that determines which of the 32 register load enables will
be 1 based on the 5-bit WA input.

For convenience, we’ll package all this functionality up into a single component called a “register file”.
The register file has two read ports, which given a 5-bit address input, deliver the selected register
value on the read-data ports. The two read ports operate independently. They can read from different
registers or, if the addresses are the same, read from the same register.

The signals on the left of the register file include a 5-bit value (WA) that selects a register to be written
with the specified 32-bit write data (WD). If the write enable signal (WE) is 1 at the rising edge of the
clock (CLK) signal, the selected register will be loaded with the supplied write data. [CLICK]

Note that in the BETA ISA, reading from register address 31 should always produce a zero value. The
register file has internal logic to ensure that happens.

Page 354

Here’s a timing diagram that shows the register file in operation. To read a value from the register file,
supply a stable address input (RA) on one of read ports. After the register file’s propagation delay, the
value of the selected register will appear on the corresponding read data port (RD). [CLICK]

Not surprisingly, the register file write operation is very similar to writing an ordinary D-register. The
write address (WA), write data (WD) and write enable (WE) signals must all be valid and stable for
some specified setup time before the rising edge of the clock. And must remain stable and valid for the
specified hold time after the rising clock edge. If those timing constraints are met, the register file will
reliably update the value of the selected register. [CLICK]

When a register value is written at the rising clock edge, if that value is selected by a read address, the
new data will appear after the propagation delay on the corresponding data port. In other words, the
read data value changes if either the read address changes or the value of the selected register changes.
[CLICK]

Can we read and write the same register in a single clock cycle? Yes! If the read address becomes valid
at the beginning of the cycle, the old value of the register will be appear on the data port for the rest of
the cycle. Then, the write occurs at the *end* of the cycle and the new register value will be available
in the next clock cycle.

Okay, that’s a brief run-though of the components we’ll be using. Let’s get started on the design!

Page 355

Our first task is to work on the datapath logic needed to execute ALU instructions with two register
operands. Each instruction requires the same processing steps:

Fetch, where the 32-bit encoded instruction is read from main memory from the location specified by
the program counter (PC).

Decode, where the opcode field (instruction bits [31:26]) is used to determine the values for the
datapath control signals.

Read, where the contents of the registers specified by the RA and RB fields (instruction bits [20:16]
and [15:11]) are read from the register file.

Execute, where the requested operation is performed on the two operand values. We’ll also need to
compute the next value for the PC.

And Write-back, where the result of the operation is written to the register file in the register specified
by the RC field (instruction bits [25:21]).

The system’s clock signal is connected to the register file and the PC register. At the rising edge of the
clock, the new values computed during the Execute phase are written to these registers. The rising
clock edge thus marks the end of execution for the current instruction and the beginning of execution
for the next instruction. The period of the clock, i.e., the time between rising clock edges, needs to be
long enough to accommodate the cumulative propagation delay of the logic that implements the 5 steps
described here. Since one instruction is executed each clock cycle, the frequency of the clock tells us
the rate at which instructions are executed. If the clock period was 10ns, the clock frequency would be
100 MHz and our Beta would be executing instructions at 100 MIPS!

Page 356

Here’s a sketch showing the hardware needed for the Fetch and Decode steps.

The current value of the PC register is routed to main memory as the address of the instruction to be
fetched.

For ALU instructions, the address of the next instruction is simply the address of the current instruction
plus 4. There’s an adder dedicated to performing the “PC+4” computation and that value is routed back
to be used as the next value of the PC. We’ve also included a MUX used to select the initial value for
the PC when the RESET signal is 1.

After the memory propagation delay, the instruction bits (ID[31:0]) are available and the processing
steps can begin. Some of the instruction fields can be used directly as-is. To determine the values for
other control signals, we’ll need some logic that computes their values from the bits of the opcode
field. [CLICK]

Page 357

Now let’s fill in the datapath logic needed to execute ALU instructions with two register operands. The
instruction bits for the 5-bit RA, RB and RC fields can be connected directly to the appropriate address
inputs of the register file. The RA and RB fields supply the addresses for the two read ports and the RC
field supplies the address for the write port.

The outputs of the read data ports are routed to the inputs of the ALU to serve as the two operands. The
ALUFN control signals tell the ALU what operation to perform. These control signals are determined
by control logic from the 6-bit opcode field. For specificity, let’s assume that the control logic is
implemented using a read-only memory (ROM), where the opcode bits are used as the ROM’s address
and the ROM’s outputs are the control signals. Since there are 6 opcode bits, we’ll need
locations in the ROM. We’ll program the contents of the ROM to supply the correct control signal
values for each of the 64 possible opcodes.

The output of the ALU is routed back to the write data port of the register file, to be written into the RC
register at the end of the cycle. We’ll need another control signal, WERF (“write-enable register file”),
that should have the value 1 when we want to write into the RC register. Let me introduce you to Werf,
the 6.004 mascot, who, of course, is named after her favorite control signal, which she’s constantly
mentioning.

2
6
= 64

Page 358

Let’s follow the flow of data as we execute the ALU instruction. After the instruction has been fetched,
supplying the RA and RB instruction fields, the RA and RB register values appear on the read data
ports of the register file.

The control logic has decoded the opcode bits and supplied the appropriate ALU function code. You
can find a listing of the possible function codes in the upper right-hand corner of the Beta Diagram
handout.

The result of the ALU’s computation is sent back to the register file to be written into the RC register.
Of course, we’ll need to set WERF to 1 to enable the write.

Here we see one of the major advantages of a reduced-instruction set computer architecture: the
datapath logic required for execution is very straightforward!

Page 359

The other form of ALU instructions uses a constant as the second ALU operand. The 32-bit operand is
formed by sign-extending the 16-bit two’s complement constant stored in the literal field (bits [15:0])
of the instruction. In order to select the sign-extended constant as the second operand, we added a
MUX to the datapath. When its BSEL control signal is 0, the output of the register file is selected as the
operand. When BSEL is 1, the sign-extended constant is selected as the operand. The rest of the
datapath logic is the same as before.

Note that no logic gates are needed to perform sign-extension — it’s all done with wiring! To sign-
extend a two’s complement number, we just need to replicate the high-order, or sign, bit as many times
as necessary. You might find it useful to review the discussion of two’s complement in Lecture 1 of
Part 1 of the course. So to form a 32-bit operand from a 16-bit constant, we just replicate it’s high-order
bit (ID[15]) sixteen times as we make the connection to the BSEL MUX.

Page 360

During execution of ALU-with-constant instructions, the flow of data is much as it was before. The one
difference is that the control logic sets the BSEL control signal to 1, selecting the sign-extended
constant as the second ALU operand.

As before, the control logic generates the appropriate ALU function code and the output of the ALU is
routed to the register file to be written back to the RC register.

Amazingly, this datapath is sufficient to execute most of the instructions in the Beta ISA! We just have
the memory and branch instruction left to implement. That’s our next task.

Page 361

The LD and ST instructions access main memory. Note that its the same main memory that holds the
instructions, even though for drafting convenience we show it has two separate boxes in our datapath
diagram. In the form we show it here, main memory has three ports: two read ports for fetching
instructions and reading load data, and one write port used by the ST instruction to write data into main
memory.

The address calculation is exactly the same computation as performed by the ADDC instruction: the
contents of the RA register are added to the sign-extended 16-bit literal from the low-order 16 bits of
the instruction. So we’ll simply reuse the existing datapath hardware to compute the address.

For the LD instruction the output of the ALU is routed to main memory as the address of the location
we wish to access. After the memory’s propagation delay, the contents of the addressed location is
returned by the memory and we need to route that back to the register file to be written into the RC
register.

The memory has two control signals: MOE (memory output enable), which we set to 1 when we want
to read a value from the memory. And MWE (memory write enable) which is set to 1 when we want
main memory to store the value on its write data (WD) port into the addressed memory location.

We need to add another MUX to select which value to write back to the register file: the output of the
ALU or the data returning from main memory. We’ve used a 3-to-1 MUX and we’ll see the use for the
other MUX input when we get to the implementation of branches and jumps. The two-bit WDSEL
signal is used to select the source of the write-back value.

Page 362

Let’s follow the flow of data when executing the LD instruction. The ALU operands are chosen just as
they are for the ADDC instruction and the ALU is requested to perform an ADD operation.

The ALU result is connected to the address port of main memory, who’s control signals are set for a
read operation. The WDSEL control signals are set to 2 to route the returning data to the register file.

Page 363

Execution of the ST instruction is very similar to the execution of the LD instruction, with one extra
complication. The value to be written to memory comes from the RC register, but the RC instruction
field is not connected a register file read address.

Happily, the RB register address isn’t being used by the ST instruction since the second ALU operand
comes from the literal field. So we’ll use a MUX to enable the RC field to be selected as the address for
the register file’s second read port. When the RA2SEL control signal is 0, the RB field is selected as the
address. When RA2SEL is 1, the RC field is selected.

The output from the second read data port is connected to the write data port of main memory.

The ST instruction is the only instruction that does not write a result into the register file. So the WERF
control signal will be 0 when executing ST.

Page 364

Here’s the flow of data when executing ST. The operands are selected as for LD and the ALU performs
the address computation with the result sent to main memory as the address.

Meanwhile the RC field is selected as the address for the second register file read port and the value
from the RC register becomes the write data for main memory. By setting the MWR control signal to 1,
the main memory will write the WD data into the selected memory location at the end of the cycle.

The WERF control signal is set to zero since we won’t be writing a value into the register file. And,
since we’re not writing to the register file, we don’t care about the value for the WDSEL signal.

Of course, the logic will need to supply some value for WDSEL. The “don’t care” annotation is telling
the logic designer that she’s welcome to supply whatever value is most convenient. This is particularly
useful when using Karnaugh maps to optimize the control logic, where the value can be chosen as
either 0 or 1, whichever results in the best minimization of the logic equations.

Page 365

We’re on the home stretch now. For all the instructions up until now, the next instruction has come
from the location following the current instruction — hence the “PC+4” logic. Branches and JMPs
change that by altering the value in the PC.

The JMP instruction simply takes the value in the RA register and makes it the next PC value. The
PCSEL MUX in the upper left-hand corner lets the control logic select the source of the next PC value.
When PCSEL is 0, the incremented PC value is chosen. When PCSEL is 2, the value of the RA register
is chosen. We’ll see how the other inputs to the PCSEL MUX are used in just a moment.

The JMP and branch instructions also cause the address of the following instruction, i.e., the PC+4
value, to be written to the RC register. When WDSEL is 0, the “0” input of the WDSEL MUX is used
to select the PC+4 value as the write-back data.

Page 366

Here’s how the data flow works. The output of the PC+4 adder is is routed to the register file and
WERF is set to 1 to enable that value to be written at the end of the cycle.

Meanwhile, the value of RA register coming out of the register file is connected to the “2” input of the
PCSEL MUX. So setting PCSEL to 2 will select the value in the RA register as the next value for the
PC.

The rest of the control signals are “don’t cares”, except, of course for the memory write enable
(MWR), which can never be “don’t care” lest we cause an accidental write to some memory location.

Page 367

The branch instruction requires an additional adder to compute the target address by adding the scaled
offset from the instruction’s literal field to the current PC+4 value. Remember that we scale the offset
by a factor of 4 to convert it from the word offset stored in the literal to the byte offset required for the
PC. The output of the offset adder becomes the “1” input to the PCSEL MUX, where, if the branch is
taken, it will become the next value of the PC.

Note that multiplying by 4 is easily accomplished by shifting the literal two bits to the left, which
inserts two 0-bits at the low-order end of the value. And, like before, the sign-extension just requires
replicating bit ID[15], in this case fourteen times. So implementing this complicated-looking
expression requires care in wiring up the input to the offset adder, but no additional logic!

We do need some logic to determine if we should branch or not. The 32-bit NOR gate connected to the
first read port of the register file tests the value of the RA register. The NOR’s output Z will be 1 if all
the bits of the RA register value are 0, and 0 otherwise.

The Z value can be used by the control logic to determine the correct value for PCSEL. If Z indicates
the branch is taken, PCSEL will be 1 and the output of the offset adder becomes the next value of the
PC. If the branch is not taken, PCSEL will be 0 and execution will continue with the next instruction at
PC+4.

Page 368

As in the JMP instruction, the PC+4 value is routed to the register file to be written into the RC register
at end of the cycle.

Meanwhile, the value of Z is computed from the value of the RA register while the branch offset adder
computes the address of the branch target.

The output of the offset adder is routed to the PCSEL MUX where the value of the 3-bit PCSEL
control signal, computed by the control logic based on Z, determines whether the next PC value is the
branch target or the PC+4 value.

The remaining control signals are unused and set to their default “don’t care” values.

Page 369

We have one last instruction to introduce: the LDR or load-relative instruction. LDR behaves like a
normal LD instruction except that the memory address is taken from the branch offset adder.

Why would it be useful to load a value from a location near the LDR instruction? Normally such
addresses would refer to the neighboring instructions, so why would we want to load the binary
encoding of an instruction into a register to be used as data?

The use case for LDR is accessing large constants that have to be stored in main memory because they
are too large to fit into the 16-bit literal field of an instruction. In the example shown here, the compiled
code needs to load the constant 123456. So it uses an LDR instruction that refers to a nearby location
C1: that has been initialized with the required value. Since this read-only constant is part of the
program, it makes sense to store it with the instructions for the program, usually just after the code for
a procedure. Note that we have to be careful to place the storage location so that it won’t be executed
as an instruction!

Page 370

To route the output of the offset adder to the main memory address port, we’ll add ASEL MUX so we
can select either the RA register value (when ASEL=0) or the output of the offset adder (when
ASEL=1) as the first ALU operand.

For LDR, ASEL will be 1, and we’ll then ask the ALU compute the Boolean operation “A”, i.e., the
boolean function whose output is just the value of the first operand. This value then appears on the
ALU output, which is connected to the main memory address port and the remainder of the execution
proceeds just like it did for LD.

This seems a bit complicated! Mr. Blue has a good question: why not just put the ASEL MUX on the
wire leading to the main memory address port and bypass the ALU altogether?

The answer has to do with the amount of time needed to compute the memory address. If we moved
the ASEL MUX here, the data flow for LD and ST addresses would then pass through two MUXes: the
BSEL MUX and the ASEL MUX, slowing down the arrival of the address by a small amount. This
may not seem like a big deal, but the additional time would have to be added the clock period, thus
slowing down every instruction by a little bit. When executing billions of instructions, a little extra
time on each instruction really impacts the overall performance of the processor.

By placing the ASEL MUX where we did, its propagation delay overlaps that of the BSEL MUX, so
the increased functionality it provides comes with no cost in performance.

Page 371

Here’s the data flow for the LDR instruction. The output of the offset adder is routed through the ASEL
MUX to the ALU. The ALU performs the Boolean computation “A” and the result becomes the
address for main memory.

The returning data is routed through the WDSEL MUX so it can be written into the RC register at the
end of the cycle.

The remaining control signals are given their usual default values.

Page 372

One last bit of housekeeping, then we’re done! What should our hardware do if for some reason an
instruction can’t be executed? For example, if a programming error has led to trying to execute some
piece of data as an instruction and the opcode field doesn’t correspond to a Beta instruction (a so-called
“illop” or illegal operation). Or maybe the memory address is larger than the actual amount main
memory. Or maybe one of the operand values is not acceptable, e.g., if the B operand for a DIV
instruction is 0.

In modern computers, the accepted strategy is cease execution of the running program and transfer
control to some error handler code. The error handler might store the program state onto disk for later
debugging. Or, for an unimplemented but legal opcode, it might emulate the missing instruction in
software and resume execution as if the instruction had been implemented in hardware!

There’s also the need to deal with external events, like those associated with input and output. Here
we’d like to interrupt the execution of the current program, run some code to deal with the external
event, then resume execution as if the interrupt had never happened.

To deal with these cases, we’ll add hardware to treat exceptions like forced procedure calls to special
code to handle the situation, arranging to save the PC+4 value of the interrupted program so that the
handler can resume execution if it wishes.

This is a very powerful feature since it allows us to transfer control to software to handle most any
circumstance beyond the capability of our modest hardware. As we’ll see in Part 3 of the course, the
exception hardware will be our key to interfacing running programs to the operating system (OS) and
to allow the OS to deal with external events without any awareness on the part of the running program.

Page 373

So our plan is to interrupt the running program, acting like the current instruction was actually a
procedure call to the handler code. When it finishes execution, the handler can, if appropriate, use the
normal procedure return sequence to resume execution of the user program.

We’ll use the term “exception” to refer to exceptions caused by executing the current program. Such
exceptions are “synchronous” in the sense that they are triggered by executing a particular instruction.
In other words, if the program was re-run with the same data, the same exception would occur.

We’ll use the term “interrupt” to refer to asynchronous exceptions resulting from external events whose
timing is unrelated to the currently running program.

Page 374

The implementation for both types of exceptions is the same. When an exception is detected, the Beta
hardware will behave as if the current instruction was a taken BR to either location 0x4 (for
synchronous exceptions) or location 0x8 (for asynchronous interrupts). Presumably the instructions in
those locations will jump to the entry points of the appropriate handler routines.

We’ll save the PC+4 value of the interrupted program into R30, a register dedicated to that purpose.
We’ll call that register XP (“exception pointer”) to remind ourselves of how we’re using it. Since
interrupts in particular can happen at any point during a program’s execution, thus overwriting the
contents of XP at any time, user programs can’t use the XP register to hold values since those values
might disappear at any moment!

Here’s how this scheme works: suppose we don’t include hardware to implement the DIV instruction,
so it’s treated as an illegal opcode. The exception hardware forces a procedure call to location 0x4,
which then branches to the Illop handler shown here. The PC+4 value of the DIV instruction has been
saved in the XP register, so the handler can fetch the illegal instruction and, if it can, emulate its
operation in software. When handler is complete, it can resume execution of the original program at the
instruction following DIV by performing a JMP(XP).

Pretty neat!

Page 375

To handle exceptions, we only need a few simple changes to the datapath.

We’ve added a MUX controlled by the WASEL signal to choose the write-back address for the register
file. When WASEL is 1, write-back will occur to the XP register, i.e., register 30. When WASEL is 0,
write-back will occur normally, i.e., to the register specified by the RC field of the current instruction.

The remaining two inputs of the PCSEL MUX are set to the constant addresses for the exception
handlers. In our case, 0x4 for illegal operations, and 0x8 for interrupts.

Page 376

Here’s the flow of control during an exception. The PC+4 value for the interrupted instruction is routed
through the WDSEL MUX to be written into the XP register. Meanwhile the control logic chooses
either 3 or 4 as the value of PCSEL to select the appropriate next instruction that will initiate the
handling the exception.

The remaining control signals are forced to their “don’t care” values, since we no longer care about
completing execution of the instruction we had fetched from main memory at the beginning of the
cycle.

Note that the interrupted instruction has not been executed. So if the exception handler wishes to
execute the interrupted instruction, it will have to subtract 4 from the value in the XP register before
performing a JMP(XP) to resume execution of the interrupted program.

Page 377

Okay, we’re done! Here’s the final datapath for executing instructions and handling exceptions. Please
take a moment to remind yourself of what each datapath component does, i.e., why it was added to the
datapath. Similarly, you should understand how the control signals affect the operation of the datapath.

At least to my eye, this seems like a very modest amount of hardware to achieve all this functionality!
It’s so modest in fact, that will ask you to actually complete the logic design for the Beta in an
upcoming lab assignment :)

How does our design compare to the processor you’re using to view this course online? Modern
processors have many additional complexities to increase performance: pipelined execution, the ability
to execute more than instruction per cycle, fancier memory systems to reduce average memory access
time, etc. We’ll cover some of these enhancements in upcoming lectures. The bottom line: the Beta
hardware might occupy 1 or 2 sq mm on a modern integrated circuit, while a modern Intel processor
occupies 300 to 600 sq mm. Clearly all that extra circuitry is there for a reason! If you’re curious, I’d
recommend taking a course on advanced processor architecture.

Page 378

Here we’ve gathered up all the control signal settings for each class of instructions, including the
settings needed for exceptions and during reset. Wherever possible, we’ve specified “don’t care” for
control signals whose value does not affect the actions of the datapath needed for a particular
instruction.

Note that the memory write enable signal always has a defined value, ensuring that we only write to the
memory during ST instructions. Similarly, the write enable for the register file is well-defined, except
during RESET when presumably we’re restarting the processor and don’t care about preserving any
register values.

As mentioned previously, a read-only memory (ROM) indexed by the 6-bit opcode field is the easiest
way to generate the appropriate control signals for the current instruction. The Z and IRQ inputs to the
control logic will affect the control signals and this can be accomplished with a small amount of logic
to process the ROM outputs.

One can always have fun with Karnuagh maps to generate a minimal implementation using ordinary
logic gates. The result will be much smaller, both in terms of size and propagation delay, but requires a
lot more design work! My recommendation: start with the ROM implementation and get everything
else working. Then come back later when you feel like hacking logic gates :)

Page 379

So that’s what it takes to design the hardware for a simple 32-bit computer. Of course, we made the job
easy for ourselves by choosing a simple binary encoding for our instructions and limiting the hardware
functionality to efficiently executing the most common operations. Less common and more complex
functionality can be left to software. The exception mechanism gave us a powerful tool for transferring
control to software when the hardware couldn’t handle the task.

Have fun completing the hardware design of your Beta. Thousands of MIT students have enjoyed that
“Yes!” moment when their design works for the first time. For their efforts we reward them with the
“Beta Inside” sticker you see here, which you can see on laptops as you walk around the Institute.

Good luck!

Page 380

14: The Memory Hierarchy

1. Our Memory Machine
2. Memory Technologies
3. Static RAM (SRAM)
4. SRAM Cell
5. SRAM Read
6. SRAM Write
7. Multiported SRAMs
8. Summary: SRAM
9. 1T Dynamic RAM (DRAM) Cell

10. 1T DRAM Writes and Reads
11. Summary: DRAM
12. Non-Volatile Storage: Flash
13. Non-Volatile Storage: Hard Disk
14. Summary: Memory Technologies
15. Memory Hierarchy Interface
16. Memory Hierarchy Interface
17. The Locality Principle
18. Memory Reference Patterns
19. Caches
20. A Typical Memory Hierarchy
21. Cache Access
22. Cache Metrics
23. Example: How High of a Hit Ratio?
24. Basic Cache Algorithm
25. Direct-Mappped Caches
26. Example: Direct-Mappped Caches
27. Block Size
28. Block Size Trandeoffs
29. Direct-Mapped Cache Problem: Conflict Misses
30. Fully-Associative Cache
31. N-way Set-Associative Cache I
32. N-way Set-Associative Cache II
33. “Let me count the ways.”
34. Associativity Tradeoffs
35. Associativity Implies Choices
36. Replacement Policies
37. Write Policy
38. Write-back
39. Write-back with “Dirty” Bits
40. Summary: Cache Tradeoffs

Page 381

In the last lecture we completed the design of the Beta, our reduced-instruction-set computer. The
simple organization of the Beta ISA meant that there was a lot commonality in the circuity needed to
implement the instructions. The final design has a few main building blocks with MUX steering logic
to select input values as appropriate.

If we were to count MOSFETs and think about propagation delays, we’d quickly determine that our 3-
port main memory (shown here as the two yellow components) was the most costly component both in
terms of space and percentage of the cycle time required by the memory accesses. So in many ways,
we really have a “memory machine” instead of a “computing machine”.

The execution of every instruction starts by fetching the instruction from main memory. And ultimately
all the data processed by the CPU is loaded from or stored to main memory. A very few frequently-
used variable values can be kept in the CPU’s register file, but most interesting programs manipulate
much more data than can be accommodated by the storage available as part of the CPU datapath.

In fact, the performance of most modern computers is limited by the bandwidth, i.e., bytes/second, of
the connection between the CPU and main memory, the so-called memory bottleneck. The goal of this
lecture is to understand the nature of the bottleneck and to see if there architectural improvements we
might make to minimize the problem as much as possible.

Page 382

We have a number of memory technologies at our disposal, varying widely in their capacity, latency,
bandwidth, energy efficiency and their cost. Not surprisingly, we find that each is useful for different
applications in our overall system architecture.

Our registers are built from sequential logic and provide very low latency access (20ps or so) to at most
a few thousands of bits of data. Static and dynamic memories, which we’ll discuss further in the
coming slides, offer larger capacities at the cost of longer access latencies. Static random-access
memories (SRAMs) are designed to provide low latencies (a few nanoseconds at most) to many
thousands of locations. Already we see that more locations means longer access latencies — this is a
fundamental size vs. performance tradeoff of our current memory architectures. The tradeoff comes
about because increasing the number of bits will increase the area needed for the memory circuitry,
which will in turn lead to longer signal lines and slower circuit performance due to increased capacitive
loads.

Dynamic random-access memories (DRAMs) are optimized for capacity and low cost, sacrificing
access latency. As we’ll see in this lecture, we’ll use both SRAMs and DRAMs to build a hybrid
memory hierarchy that provides low average latency and high capacity — an attempt to get the best of
both worlds!

Notice that the word “average” has snuck into the performance claims. This means that we’ll be relying
on statistical properties of memory accesses to achieve our goals of low latency and high capacity. In
the worst case, we’ll still be stuck with the capacity limitations of SRAMs and the long latencies of
DRAMs, but we’ll work hard to ensure that the worst case occurs infrequently!

Flash memory and hard-disk drives provide non-volatile storage. Non-volatile means that the memory
contents are preserved even when the power is turned off. Hard disks are at the bottom of the memory
hierarchy, providing massive amounts of long-term storage for very little cost. Flash memories, with a
100-fold improvement in access latency, are often used in concert with hard-disk drives in the same
way that SRAMs are used in concert with DRAMs, i.e., to provide a hybrid system for non-volatile
storage that has improved latency *and* high capacity.

Page 383

Let’s learn a bit more about each of these four memory technologies, then we’ll return to the job of
building our memory system.

Page 384

SRAMs are organized as an array of memory locations, where a memory access is either reading or
writing all the bits in a single location. Here we see the component layout for a 8-location SRAM array
where each location hold 6 bits of data. You can see that the individual bit cells are organized as 8 rows
(one row per location) by 6 columns (one column per bit in each memory word). The circuitry around
the periphery is used to decode addresses and support read and write operations.

To access the SRAM, we need provide enough address bits to uniquely specify the location. In this
case we need 3 address bits to select one of the 8 memory locations. The address decoder logic sets one
of the 8 wordlines (the horizontal wires in the array) high to enable a particular row (location) for the
upcoming access. The remaining wordlines are set low, disabling the cells they control. The active
wordline enables each of the SRAM bit cells on the selected row, connecting each cell to a pair of bit
lines (the vertical wires in the array). During read operations the bit lines carry the analog signals from
the enabled bit cells to the sense amplifiers, which convert the analog signals to digital data. During
write operations incoming data is driven onto the bit lines to be stored into the enabled bit cells.

Larger SRAMs will have a more complex organization in order to minimize the length, and hence the
capacitance, of the bit lines.

Page 385

The heart of the SRAM are the bit cells. The typical cell has two CMOS inverters wired in a positive
feedback loop to create a bistable storage element. The diagram on the right shows the two stable
configurations. In the top configuration, the cell is storing a 1 bit. In the bottom configuration, it’s
storing a 0 bit. The cell provides stable storage in the sense that as long as there’s power, the noise
immunity of the inverters will ensure that the logic values will be maintained even if there’s electrical
noise on either inverter input.

Both sides of the feedback loop are connected via access FETs to the two vertical bit lines. When the
wordline connected to the gates of the access FETs is high, the FETs are on, i.e., they will make an
electrical connection between the cell’s internal circuity and the bitlines. When the wordline is low, the
access FETs are off and the bistable feedback loop is isolated from the bitlines and will happily
maintain the stored value as long as there’s power.

Page 386

During a read operation, the drivers first recharge all the bitlines to Vdd (i.e., a logical 1 value) and
then disconnect, leaving the bitlines floating at 1. Then the address decoder sets one of the wordlines
high, connecting a row of bit cells to their bitlines. Each cell in the selected row then pulls one of its
two bitlines to GND. In this example, it’s the right bitline that’s pulled low. Transitions on the bitlines
are slow since the bitline has a large total capacitance and the MOSFETs in the two inverters are small
to keep the cell has small as possible. The large capacitance comes partly from the bitline’s length and
partly from the diffusion capacitance of the access FETs in other cells in the same column.

Rather than wait for the bitline to reach a valid logic level, sense amplifiers are used to quickly detect
the small voltage difference developing between the two bitlines and generate the appropriate digital
output. Since detecting small changes in a voltage is very sensitive to electrical noise, the SRAM uses a
pair of bitlines for each bit and a differential sense amplifier to provide greater noise immunity.

As you can see, designing a low-latency SRAM involves a lot of expertise with the analog behavior of
MOSFETs and some cleverness to ensure electrical noise will not interfere with the correct operation
of the circuitry.

Page 387

Write operations start by driving the bitlines to the appropriate values. In the example shown here, we
want to write a 0-bit into the cell, so the left bitline is set to GND and the right bitline is set to VDD.
As before, the address decoder then sets one of the wordlines high, selecting all the cells in a particular
row for the write operation.

The drivers have much larger MOSFETs than those in the cell’s inverters, so the internal signals in the
enabled cells are forced to the values on the bitlines and the bistable circuits “flip” into the new stable
configuration. We’re basically shorting together the outputs of the driver and the internal inverter, so
this is another analog operation! This would be a no-no in a strictly digital circuit.

Since n-fets usually carry much higher source-drain currents than p-fets of the same width and given
the threshold-drop of the n-fet access transistor, almost all the work of the write is performed by the
large n-fet pulldown transistor connected to the bitline with the 0 value, which easily overpowers the
small p-fet pullup of the inverters in the cell. Again, SRAM designers need a lot of expertise to
correctly balance the sizes of MOSFETs to ensure fast and reliable write operations.

Page 388

It’s not hard to augment the SRAM to support multiple read/write ports, a handy addition for register
file circuits. We’ll do this by adding additional sets of wordlines, bitlines, drivers, and sense amps. This
will give us multiple paths to independently access the bistable storage elements in the various rows of
the memory array.

With an N-port SRAM, for each bit we’ll need N wordlines, 2N bitlines and 2N access FETs. The
additional wordlines increase the effective height of the cell and the additional bitlines increase the
effective width of the cell and so the area required by all these wires quickly dominates the size of the
SRAM. Since both the height and width of a cell increase when adding ports, the overall area grows as
the square of the number of read/write ports. So one has to take care not to gratuitously add ports lest
the cost of the SRAM get out of hand.

Page 389

In summary, the circuitry for the SRAM is organized as an array of bit cells, with one row for each
memory location and one column for each bit in a location. Each bit is stored by two inverters
connected to form a bistable storage element. Reads and writes are essentially analog operations
performed via the bitlines and access FETs.

The SRAM uses 6 MOSFETs for each bit cell. Can we do better? What’s the minimum number of
MOSFETs needed to store a single bit of information?

Page 390

Well, we’ll need at least one MOSFET to serve as the access FET so we can select which bits will be
affected by read and write operations. We can use a simple capacitor for storage, where the value of a
stored bit is represented by voltage across the plates of the capacitor. The resulting circuit is termed a
dynamic random-access memory (DRAM) cell.

If the capacitor voltage exceeds a certain threshold, we’re storing a 1 bit, otherwise we’re storing a 0.
The amount of charge on the capacitor, which determines the speed and reliability of reading the stored
value, is proportional to the capacitance. We can increase the capacitance by increasing the dielectric
constant of the insulating layer between the two plates of the capacitor, increasing the area of the
plates, or by decreasing the the distance between the plates. All of these are constantly being improved.

A cross section of a modern DRAM cell is shown here. The capacitor is formed in a large trench dug
into the substrate material of the integrated circuit. Increasing the depth of the trench will increase the
area of the capacitor plates without increasing the cell’s area. The wordline forms the gate of the N-
FET access transistor connecting the outer plate of the capacitor to the bitline. A very thin insulating
layer separates the outer plate from the inner plate, which is connected to some reference voltage
(shown as GND in this diagram). You can Google trench capacitor to get the latest information on the
dimensions and materials used in the construction of the capacitor.

The resulting circuit is quite compact: about 20-times less area/bit than an SRAM bit cell. There are
some challenges however. There’s no circuitry to main the static charge on the capacitor, so stored
charge will leak from the outer plate of the capacitor, hence the name dynamic memory. The leakage is
caused by small picoamp currents through the PN junction with the surrounding substrate, or
subthreshold conduction of the access FET even when it’s turned off. This limits the amount of time we
can leave the capacitor unattended and still expect to read the stored value. This means we’ll have to
arrange to read then re-write each bit cell (called a refresh cycle) every 10ms or so, adding to the
complexity of the DRAM interface circuitry.

Page 391

DRAM write operations are straightforward: simply turn on the access FET with the wordline and
charge or discharge the storage capacitor through the bitline.

Reads are bit more complicated. First the bitline is precharged to some intermediate voltage, e.g.,
VDD/2, and then the precharge circuitry is disconnected. The wordline is activated, connecting the
storage capacitor of the selected cell to the bitline causing the charge on the capacitor to be shared with
the charge stored by the capacitance of the bitline. If the value stored by the cell capacitor is a 1, the
bitline voltage will increase very slightly (e.g., a few tens of millivolts). If the stored value is a 0, the
bitline voltage will decrease slightly. Sense amplifiers are used to detect this small voltage change to
produce a digital output value.

This means that read operations wipe out the information stored in the bit cell, which must then be
rewritten with the detected value at the end of the read operation.

DRAM circuitry is usually organized to have wide rows, i.e., multiple consecutive locations are read in
a single access. This particular block of locations is selected by the DRAM row address. Then the
DRAM column address is used to select a particular location from the block to be returned. If we want
to read multiple locations in a single row, then we only need to send a new column address and the
DRAM will respond with that location without having to access the bit cells again. The first access to a
row has a long latency, but subsequent accesses to the same row have very low latency. As we’ll see,
we’ll be able to use fast column accesses to our advantage.

Page 392

In summary, DRAM bit cells consist of a single access FET connected to a storage capacitor that’s
cleverly constructed to take up as little area as possible. DRAMs must rewrite the contents of bit cells
after they are read and every cell must be read and written periodically to ensure that the stored charge
is refreshed before it’s corrupted by leakage currents.

DRAMs have much higher capacities than SRAMs because of the small size of the DRAM bit cells,
but the complexity of the DRAM interface circuitry means that the initial access to a row of locations
is quite a bit slower than an SRAM access. However subsequent accesses to the same row happen at
speeds close to that of SRAM accesses.

Both SRAMs and DRAMs will store values as long as their circuitry has power. But if the circuitry is
powered down, the stored bits will be lost. For long-term storage we will need to use non-volatile
memory technologies, the topic of the next lecture segment.

Page 393

Non-volatile memories are used to maintain system state even when the system is powered down. In
flash memories, long-term storage is achieved by storing charge on an well-insulated conductor called
a floating gate, where it will remain stable for years. The floating gate is incorporated in a standard
MOSFET, placed between the MOSFET’s gate and the MOSFET’s channel. If there is no charge stored
on the floating gate, the MOSFET can be turned on, i.e., be made to conduct, by placing a voltage
on the gate terminal, creating an inversion layer that connects the MOSFET’s source and drain
terminals. If there is a charge stored on the floating gate, a higher voltage is required to turn on the
MOSFET. By setting the gate terminal to a voltage between and , we can determine if the floating
gate is charged by testing to see if the MOSFET is conducting.

In fact, if we can measure the current flowing through the MOSFET, we can determine how much
charge is stored on the floating gate, making it possible to store multiple bits of information in one flash
cell by varying the amount of charge on its floating gate. Flash cells can be connected in parallel or
series to form circuits resembling CMOS NOR or NAND gates, allowing for a variety of access
architectures suitable for either random or sequential access.

Flash memories are very dense, approaching the areal density of DRAMs, particularly when each cell
holds multiple bits of information.

Read access times for NOR flash memories are similar to that of DRAMs, several tens of nanoseconds.
Read times for NAND flash memories are much longer, on the order of 10 microseconds. Write times
for all types of flash memories are quite long since high voltages have to be used to force electrons to
cross the insulating barrier surrounding the floating gate.

Flash memories can only be written some number of times before the insulating layer is damaged to the
point that the floating gate will no longer reliably store charge. Currently the number of guaranteed
writes varies between 100,000 and 1,000,000. To work around this limitation, flash chips contain clever
address mapping algorithms so that writes to the same address actually are mapped to different flash
cells on each successive write.

V1

V2

V1 V2

Page 394

The bottom line is that flash memories are a higher-performance but higher-cost replacement for the
hard-disk drive, the long-time technology of choice for non-volatile storage.

Page 395

A hard-disk drive (HDD) contains one or more rotating platters coated with a magnetic material. The
platters rotate at speeds ranging from 5400 to 15000 RPM. A read/write head positioned above the
surface of a platter can detect or change the orientation of the magnetization of the magnetic material
below. The read/write head is mounted an actuator that allows it to be positioned over different circular
tracks.

To read a particular sector of data, the head must be positioned radially over the correct track, then wait
for the platter to rotate until it’s over the desired sector. The average total time required to correctly
position the head is on the order of 10 milliseconds, so hard disk access times are quite long.

However, once the read/write head is in the correct position, data can be transferred at the respectable
rate of 100 megabytes/second. If the head has to be repositioned between each access, the effective
transfer rate drops 1000-fold, limited by the time it takes to reposition the head.

Hard disk drives provide cost-effective non-volatile storage for terabytes of data, albeit at the cost of
slow access times.

Page 396

This completes our whirlwind tour of memory technologies. If you’d like to learn a bit more,
Wikipedia has useful articles on each type of device. SRAM sizes and access times have kept pace with
the improvements in the size and speed of integrated circuits. Interestingly, although capacities and
transfer rates for DRAMs and HDDs have improved, their initial access times have not improved
nearly as rapidly. Thankfully over the past decade flash memories have helped to fill the performance
gap between processor speeds and HDDs. But the gap between processor cycle times and DRAM
access times has continued to widen, increasing the challenge of designing low-latency high-capacity
memory systems.

The capacity of the available memory technologies varies over 10 orders of magnitude, and the
variation in latencies varies over 8 orders of magnitude. This creates a considerable challenge in
figuring out how to navigate the speed vs size tradeoffs.

Each transition in memory hierarchy shows the same fundamental design choice: we can pick smaller-
and-faster or larger-and-slower. This is a bit awkward actually — can we figure how to get the best of
both worlds?

Page 397

We want our system to behave as if it had a large, fast, and cheap main memory. Clearly we can’t
achieve this goal using any single memory technology.

Here’s an idea: can we use a hierarchical system of memories with different tradeoffs to achieve close
to the same results as a large, fast, cheap memory? Could we arrange for memory locations we’re using
often to be stored, say, in SRAM and have those accesses be low latency? Could the rest of the data
could be stored in the larger and slower memory components, moving the between the levels when
necessary? Let’s follow this train of thought and see where it leads us.

Page 398

There are two approaches we might take. The first is to expose the hierarchy, providing some amount
of each type of storage and let the programmer decide how best to allocate the various memory
resources for each particular computation. The programmer would write code that moved data into fast
storage when appropriate, then back to the larger and slower memories when low-latency access was
no longer required. There would only be a small amount of the fastest memory, so data would be
constantly in motion as the focus of the computation changed.

This approach has had notable advocates. Perhaps the most influential was Seymour Cray, the “Steve
Jobs” of supercomputers. Cray was the architect of the world’s fastest computers in each of three
decades, inventing many of the technologies that form the foundation of high-performance computing.
His insight to managing the memory hierarchy was to organize data as vectors and move vectors in and
out of fast memory under program control. This was actually a good data abstraction for certain types
of scientific computing and his vector machines had the top computing benchmarks for many years.

The second alternative is to hide the hierarchy and simply tell the programmer they have a large,
uniform address space to use as they wish. The memory system would, behind the scenes, move data
between the various levels of the memory hierarchy, depending on the usage patterns it detected. This
would require circuitry to examine each memory access issued by the CPU to determine where in the
hierarchy to find the requested location. And then, if a particular region of addresses was frequently
accessed — say, when fetching instructions in a loop — the memory system would arrange for those
accesses to be mapped to the fastest memory component and automatically move the loop instructions
there. All of this machinery would be transparent to the programmer: the program would simply fetch
instructions and access data and the memory system would handle the rest.

Could the memory system automatically arrange for the right data to be in the right place at the right
time? Cray was deeply skeptical of this approach. He famously quipped “that you can’t fake what you
haven’t got”. Wouldn’t the programmer, with her knowledge of how data was going to be used by a
particular program, be able to do a better job by explicitly managing the memory hierarchy?

It turns out that when running general-purpose programs, it is possible to build an automatically
managed, low-latency, high-capacity hierarchical memory system that appears as one large, uniform

Page 399

memory. What’s the insight that makes this possible? That’s the topic of the next section.

Page 400

So, how can the memory system arrange for the right data to be in the right place at the right time? Our
goal is to have the frequently-used data in some fast SRAM. That means the memory system will have
to be able to predict which memory locations will be accessed. And to keep the overhead of moving
data into and out of SRAM manageable, we’d like to amortize the cost of the move over many
accesses. In other words we want any block of data we move into SRAM to be accessed many times.

When not in SRAM, data would live in the larger, slower DRAM that serves as main memory. If the
system is working as planned, DRAM accesses would happen infrequently, e.g., only when it’s time to
bring another block of data into SRAM.

If we look at how programs access memory, it turns out we *can* make accurate predictions about
which memory locations will be accessed. The guiding principle is locality of reference which tells us
that if there’s an access to address X at time t, it’s very probable that the program will access a nearby
location in the near future.

Page 401

To understand why programs exhibit locality of reference, let’s look at how a running program accesses
memory.

Instruction fetches are quite predictable. Execution usually proceeds sequentially since most of the
time the next instruction is fetched from the location after that of the current instruction. Code that
loops will repeatedly fetch the same sequence of instructions, as shown here on the left of the time line.
There will of course be branches and subroutine calls that interrupt sequential execution, but then
we’re back to fetching instructions from consecutive locations. Some programming constructs, e.g.,
method dispatch in object-oriented languages, can produce scattered references to very short code
sequences (as shown on the right of the time line) but order is quickly restored.

This agrees with our intuition about program execution. For example, once we execute the first
instruction of a procedure, we’ll almost certainly execute the remaining instructions in the procedure.
So if we arranged for all the code of a procedure to moved to SRAM when the procedure’s first
instruction was fetched, we’d expect that many subsequent instruction fetches could be satisfied by the
SRAM. And although fetching the first word of a block from DRAM has relatively long latency, the
DRAM’s fast column accesses will quickly stream the remaining words from sequential addresses.
This will amortize the cost of the initial access over the whole sequence of transfers.

The story is similar for accesses by a procedure to its arguments and local variables in the current stack
frame. Again there will be many accesses to a small region of memory during the span of time we’re
executing the procedure’s code.

Data accesses generated by LD and ST instructions also exhibit locality. The program may be
accessing the components of an object or struct. Or it may be stepping through the elements of an
array. Sometimes information is moved from one array or data object to another, as shown by the data
accesses on the right of the timeline.

Using simulations we can estimate the number of different locations that will be accessed over a
particular span of time. What we discover when we do this is the notion of a working set of locations
that are accessed repeatedly. If we plot the size of the working set as a function of the size of the time

Page 402

interval, we see that the size of the working set levels off. In other words once the time interval reaches
a certain size the number of locations accessed is approximately the same independent of when in time
the interval occurs.

As we see in our plot to the left, the actual addresses accessed will change, but the number of
different addresses during the time interval will, on the average, remain relatively constant and,
surprisingly, not all that large!

This means that if we can arrange for our SRAM to be large enough to hold the working set of the
program, most accesses will be able to be satisfied by the SRAM. We’ll occasionally have to move new
data into the SRAM and old data back to DRAM, but the DRAM access will occur less frequently than
SRAM accesses. We’ll work out the mathematics in a slide or two, but you can see that thanks to
locality of reference we’re on track to build a memory out of a combination of SRAM and DRAM that
performs like an SRAM but has the capacity of the DRAM.

Page 403

The SRAM component of our hierarchical memory system is called a cache. It provides low-latency
access to recently-accessed blocks of data. If the requested data is in the cache, we have a cache hit and
the data is supplied by the SRAM.

If the requested data is not in the cache, we have a cache miss and a block of data containing the
requested location will have to be moved from DRAM into the cache. The locality principle tells us
that we should expect cache hits to occur much more frequently than cache misses.

Modern computer systems often use multiple levels of SRAM caches. The levels closest to the CPU
are smaller but very fast, while the levels further away from the CPU are larger and hence slower. A
miss at one level of the cache generates an access to the next level, and so on until a DRAM access is
needed to satisfy the initial request.

Caching is used in many applications to speed up access to frequently-accessed data. For example,
your browser maintains a cache of frequently-accessed web pages and uses its local copy of the web
page if it determines the data is still valid, avoiding the delay of transferring the data over the Internet.

Page 404

Here’s an example memory hierarchy that might be found on a modern computer. There are three
levels on-chip SRAM caches, followed by DRAM main memory and a flash-memory cache for the
hard disk drive. The compiler is responsible for deciding which data values are kept in the CPU
registers and which values require the use of LDs and STs. The 3-level cache and accesses to DRAM
are managed by circuity in the memory system. After that the access times are long enough (many
hundreds of instruction times) that the job of managing the movement of data between the lower levels
of the hierarchy is turned over to software.

Today we’re discussing how the on-chip caches work. In a later lecture, we’ll discuss how the software
manages main memory and non-volatile storage devices. Whether managed by hardware or software,
each layer of the memory system is designed to provide lower-latency access to frequently-accessed
locations in the next, slower layer. But, as we’ll see, the implementation strategies will be quite
different in the slower layers of the hierarchy.

Page 405

Okay, let’s review our plan. The processor starts an access by sending an address to the cache. If data
for the requested address is held in the cache, it’s quickly returned to the CPU.

If the data we request is not in the cache, we have a cache miss, so the cache has to make a request to
main memory to get the data, which it then returns to processor. Typically the cache will remember the
newly fetched data, possibly replacing some older data in the cache.

Suppose a cache access takes 4 ns and a main memory access takes 40 ns. Then an access that hits in
the cache has a latency of 4 ns, but an access that misses in the cache has a latency of 44 ns. The
processor has to deal with the variable memory access time, perhaps by simply waiting for the access
to complete, or, in modern hyper-threaded processors, it might execute an instruction or two from
another programming thread.

Page 406

The hit and miss ratios tell us the fraction of accesses which are cache hits and the fraction of accesses
which are cache misses. Of course, the ratios will sum to 1.

Using these metrics we can compute the average memory access time (AMAT). Since we always check
in the cache first, every access includes the cache access time (called the hit time). If we miss in the
cache, we have to take the additional time needed to access main memory (called the miss penalty).
But the main memory access only happens on some fraction of the accesses: the miss ratio tells us how
often that occurs.

So the AMAT can be computed using the formula shown here. The lower the miss ratio (or,
equivalently, the higher the hit ratio), the smaller the average access time. Our design goal for the cache
is to achieve a high hit ratio.

If we have multiple levels of cache, we can apply the formula recursively to calculate the AMAT at
each level of the memory. Each successive level of the cache is slower, i.e., has a longer hit time, which
is offset by lower miss ratio because of its increased size.

Page 407

Let’s try out some numbers. Suppose the cache takes 4 processor cycles to respond, and main memory
takes 100 cycles. Without the cache, each memory access would take 100 cycles. With the cache, a
cache hit takes 4 cycles, and a cache miss takes 104 cycles.

What hit ratio is needed to so that the AMAT with the cache is 100 cycles, the break-even point? Using
the AMAT formula from the previously slide, we see that we only need a hit ratio of 4% in order for
memory system of the Cache + Main Memory to perform as well as Main Memory alone. The idea, of
course, is that we’ll be able to do much better than that.

Suppose we wanted an AMAT of 5 cycles. Clearly most of the accesses would have to be cache hits.
We can use the AMAT formula to compute the necessary hit ratio. Working through the arithmetic we
see that 99% of the accesses must be cache hits in order to achieve an average access time of 5 cycles.

Could we expect to do that well when running actual programs? Happily, we can come close. In a
simulation of the Spec CPU2000 Benchmark, the hit ratio for a standard-size level 1 cache was
measured to be 97.5% over some ~10 trillion accesses.

[See the “All benchmarks” arithmetic-mean table at
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/]

Page 408

Here’s a start at building a cache. The cache will hold many different blocks of data; for now let’s
assume each block is an individual memory location. Each data block is tagged with its address. A
combination of a data block and its associated address tag is called a cache line.

When an address is received from the CPU, we’ll search the cache looking for a block with a matching
address tag. If we find a matching address tag, we have a cache hit. On a read access, we’ll return the
data from the matching cache line. On a write access, we’ll update the data stored in the cache line and,
at some point, update the corresponding location in main memory.

If no matching tag is found, we have a cache miss. So we’ll have to choose a cache line to use to hold
the requested data, which means that some previously cached location will no longer be found in the
cache. For a read operation, we’ll fetch the requested data from main memory, add it to the cache
(updating the tag and data fields of the cache line) and, of course, return the data to the CPU. On a
write, we’ll update the tag and data in the selected cache line and, at some point, update the
corresponding location in main memory.

So the contents of the cache is determined by the memory requests made by the CPU. If the CPU
requests a recently-used address, chances are good the data will still be in the cache from the previous
access to the same location. As the working set slowly changes, the cache contents will be updated as
needed. If the entire working set can fit into the cache, most of the requests will be hits and the AMAT
will be close to the cache access time. So far, so good!

Of course, we’ll need to figure how to quickly search the cache, i.e., we’ll a need fast way to answer
the question of whether a particular address tag can be found in some cache line. That’s our next topic.

Page 409

The simplest cache hardware consists of an SRAM with a few additional pieces of logic. The cache
hardware is designed so that each memory location in the CPU’s address space maps to a particular
cache line, hence the name direct-mapped (DM) cache. There are, of course, many more memory
locations then there are cache lines, so many addresses are mapped to the same cache line and the
cache will only be able to hold the data for one of those addresses at a time.

The operation of a DM cache is straightforward. We’ll use part of the incoming address as an index to
select a single cache line to be searched. The search consists of comparing the rest of the incoming
address with the address tag of the selected cache line. If the tag matches the address, there’s a cache
hit and we can immediately use the data in the cache to satisfy the request.

In this design, we’ve included an additional valid bit which is 1 when the tag and data fields hold valid
information. The valid bit for each cache line is initialized to 0 when the cache is powered on,
indicating that all cache lines are empty. As data is brought into the cache, the valid bit is set to 1 when
the cache line’s tag and data fields are filled. The CPU can request that the valid bit be cleared for a
particular cache line — this is called flushing the cache;. If, for example, the CPU initiates a read from
disk, the disk hardware will read its data into a block of main memory, so any cached values for that
block will out-of-date. So the CPU will flush those locations from the cache by marking any matching
cache lines as invalid.

Let’s see how this works using a small DM cache with 8 lines where each cache line contains a single
word (4 bytes) of data. Here’s a CPU request for the location at byte address 0xE8. Since there 4 bytes
of data in each cache line, the bottom 2 address bits indicate the appropriate byte offset into the cached
word. Since the cache deals only with word accesses, the byte offset bits aren’t used.

Next, we’ll need to use 3 address bits to select which of the 8 cache lines to search. We choose these
cache index bits from the low-order bits of the address. Why? Well, it’s because of locality. The
principle of locality tells us that it’s likely that the CPU will be requesting nearby addresses and for the
cache to perform well, we’d like to arrange for nearby locations to be able to be held in the cache at the
same time. This means that nearby locations will have to be mapped to different cache lines. The

Page 410

addresses of nearby locations differ in their low-order address bits, so we’ll use those bits as the cache
index bits — that way nearby locations will map to different cache lines.

The data, tag and valid bits selected by the cache line index are read from the SRAM. To complete the
search, we check the remaining address against the tag field of the cache. If they’re equal and the valid
bit is 1, we have a cache hit, and the data field can be used to satisfy the request.

How come the tag field isn’t 32 bits, since we have a 32-bit address? We could have done that, but
since all values stored in cache line 2 will have the same index bits (0b010), we saved a few bits of
SRAM and chose not save those bits in the tag. In other words, there’s no point in using SRAM to save
bits we can generate from the incoming address.

So the cache hardware in this example is an 8-location by 60 bit SRAM plus a 27-bit comparator and a
single AND gate. The cache access time is the access time of the SRAM plus the propagation delays of
the comparator and AND gate. About as simple and fast as we could hope for.

The downside of the simplicity is that for each CPU request, we’re only looking in a single cache
location to see if the cache holds the desired data. Not much of search is it? But the mapping of
addresses to cache lines helps us out here. Using the low-order address bit as the cache index, we’ve
arranged for nearby locations to be mapped to different cache lines. So, for example, if the CPU were
executing an 8-instruction loop, all 8 instructions can be held in the cache at the same time. A more
complicated search mechanism couldn’t improve on that. The bottom line: this extremely simple search
is sufficient to get good cache hit ratios for the cases we care about.

Page 411

Let’s try a few more examples, in this case using a DM cache with 64 lines.

Suppose the cache gets a read request for location 0x400C. To see how the request is processed, we
first write the address in binary so we can easily divide it into the offset, index and tag fields. For this
address the offset bits have the value 0, the cache line index bits have the value 3, and the tag bits have
the value 0x40. So the tag field of cache line 3 is compared with the tag field of the address. Since
there’s a match, we have a cache hit and the value in the data field of cache line can be used to satisfy
the request.

Would an access to location 0x4008 be a cache hit? This address is similar to that in our first example,
except the cache line index is now 2 instead of 3. Looking in cache line 2, we that its tag field (0x58)
doesn’t match the tag field in the address (0x40), so this access would be a cache miss.

What are the addresses of the words held by cache lines 0, 1, and 2, all of which have the same tag
field? Well, we can run the address matching process backwards! For an address to match these three
cache lines it would have look like the binary shown here, where we’ve used the information in the
cache tag field to fill in the high-order address bits and low-order address bits will come from the index
value. If we fill in the indices 0, 1, and 2, then convert the resulting binary to hex we get 0x5800,
0x5804, and 0x5808 as the addresses for the data held in cache lines 0, 1, and 2.

Note that the complete address of the cached locations is formed by combining the tag field of the
cache line with the index of the cache line. We of course need to be able to recover the complete
address from the information held in the cache so it can be correctly compared against address requests
from the CPU.

Page 412

We can tweak the design of the DM cache a little to take advantage of locality and save some of the
overhead of tag fields and valid bits.

We can increase the size of the data field in a cache from 1 word to 2 words, or 4 words, etc. The
number of data words in each cache line is called the block size and is always a power of two. Using a
larger block size makes sense. If there’s a high probability of accessing nearby words, why not fetch a
larger block of words on a cache miss, trading the increased cost of the miss against the increased
probability of future hits.

Compare the 16-word DM cache shown here with a block size of 4 with a different 16-word DM cache
with a block size of 1. In this cache for every 128 bits of data there are 27 bits of tags and valid bit, so
~17% of the SRAM bits are overhead in the sense that they’re not being used to store data. In the cache
with block size 1, for every 32 bits of data there are 27 bits of tag and valid bit, so ~46% of the SRAM
bits are overhead. So a larger block size means we’ll be using the SRAM more efficiently.

Since there are 16 bytes of data in each cache line, there are now 4 offset bits. The cache uses the high-
order two bits of the offset to select which of the 4 words to return to the CPU on a cache hit.

There are 4 cache lines, so we’ll need two cache line index bits from the incoming address.

And, finally, the remaining 26 address bits are used as the tag field.

Note that there’s only a single valid bit for each cache line, so either the entire 4-word block is present
in the cache or it’s not. Would it be worth the extra complication to support caching partial blocks?
Probably not. Locality tells us that we’ll probably want those other words in the near future, so having
them in the cache will likely improve the hit ratio.

Page 413

What’s the tradeoff between block size and performance? We’ve argued that increasing the block size
from 1 was a good idea. Is there a limit to how large blocks should be? Let’s look at the costs and
benefits of an increased block size.

With a larger block size we have to fetch more words on a cache miss and the miss penalty grows
linearly with increasing block size. Note that since the access time for the first word from DRAM is
quite high, the increased miss penalty isn’t as painful as it might be.

Increasing the block size past 1 reduces the miss ratio since we’re bringing words into the cache that
will then be cache hits on subsequent accesses. Assuming we don’t increase the overall cache capacity,
increasing the block size means we’ll make a corresponding reduction in the number of cache lines.
Reducing the number of lines impacts the number of separate address blocks that can be
accommodated in the cache. As we saw in the discussion on the size of the working set of a running
program, there are a certain number of separate regions we need to accommodate to achieve a high hit
ratio: program, stack, data, etc. So we need to ensure there are a sufficient number of blocks to hold the
different addresses in the working set. The bottom line is that there is an optimum block size that
minimizes the miss ratio and increasing the block size past that point will be counterproductive.

Combining the information in these two graphs, we can use the formula for AMAT to choose the block
size the gives us the best possible AMAT. In modern processors, a common block size is 64 bytes (16
words).

Page 414

DM caches do have an Achilles heel. Consider running the 3-instruction LOOPA code with the
instructions located starting at word address 1024 and the data starting at word address 37 where the
program is making alternating accesses to instruction and data, e.g., a loop of LD instructions.

Assuming a 1024-line DM cache with a block size of 1, the steady state hit ratio will be 100% once all
six locations have been loaded into the cache since each location is mapped to a different cache line.

Now consider the execution of the same program, but this time the data has been relocated to start at
word address 2048. Now the instructions and data are competing for use of the same cache lines. For
example, the first instruction (at address 1024) and the first data word (at address 2048) both map to
cache line 0, so only one them can be in the cache at a time. So fetching the first instruction fills cache
line 0 with the contents of location 1024, but then the first data access misses and then refills cache line
0 with the contents of location 2048. The data address is said to conflict with the instruction address.
The next time through the loop, the first instruction will no longer be in the cache and it’s fetch will
cause a cache miss, called a conflict miss. So in the steady state, the cache will never contain the word
requested by the CPU.

This is very unfortunate! We were hoping to design a memory system that offered the simple
abstraction of a flat, uniform address space. But in this example we see that simply changing a few
addresses results in the cache hit ratio dropping from 100% to 0%. The programmer will certainly
notice her program running 10 times slower!

So while we like the simplicity of DM caches, we’ll need to make some architectural changes to avoid
the performance problems caused by conflict misses.

Page 415

A fully-associative (FA) cache has a tag comparator for each cache line. So the tag field of *every*
cache line in a FA cache is compared with the tag field of the incoming address. Since all cache lines
are searched, a particular memory location can be held in any cache line, which eliminates the
problems of address conflicts causing conflict misses. The cache shown here can hold 4 different 4-
word blocks, regardless of their address. The example from the end of the previous segment required a
cache that could hold two 3-word blocks, one for the instructions in the loop, and one for the data
words. This FA cache would use two of its cache lines to perform that task and achieve a 100% hit
ratio regardless of the addresses of the instruction and data blocks.

FA caches are very flexible and have high hit ratios for most applications. Their only downside is cost:
the inclusion of a tag comparator for each cache line to implement the parallel search for a tag match
adds substantially the amount of circuitry required when there are many cache lines. Even the use of
hybrid storage/comparison circuitry, called a content-addressable memory, doesn’t make a big dent in
the overall cost of a FA cache.

DM caches searched only a single cache line. FA caches search all cache lines. Is there a happy middle
ground where some small number of cache lines are searched in parallel?

Yes! If you look closely at the diagram of the FA cache shown here, you’ll see it looks like four 1-line
DM caches operating in parallel. What would happen if we designed a cache with four multi-line DM
caches operating in parallel?

Page 416

The result would be what we call an 4-way set-associative (SA) cache. An N-way SA cache is really
just N DM caches (let’s call them sub-caches) operating in parallel. Each of the N sub-caches compares
the tag field of the incoming address with the tag field of the cache line selected by the index bits of the
incoming address. The N cache lines searched on a particular request form a search set and the desired
location might be held in any member of the set.

The 4-way SA cache shown here has 8 cache lines in each sub-cache, so each set contains 4 cache lines
(one from each sub-cache) and there are a total of 8 sets (one for each line of the sub-caches).

An N-way SA cache can accommodate up to N blocks whose addresses map to the same cache index.
So access to up to N blocks with conflicting addresses can still be accommodated in this cache without
misses. This a big improvement over a DM cache where an address conflict will cause the current
resident of a cache line to be evicted in favor of the new request.

And an N-way SA cache can have a very large number of cache lines but still only have to pay the cost
of N tag comparators. This is a big improvement over a FA cache where a large number of cache lines
would require a large number of comparators.

So N-way SA caches are a good compromise between a conflict-prone DM cache and the flexible but
very expensive FA cache.

Page 417

Here’s a slightly more detailed diagram, in this case of a 3-way 8-set cache. Note that there’s no
constraint that the number of ways be a power of two since we aren’t using any address bits to select a
particular way. This means the cache designer can fine tune the cache capacity to fit her space budget.

Just to review the terminology: the N cache lines that will be searched for a particular cache index are
called a set. And each of N sub-caches is called a way.

The hit logic in each way operates in parallel with the logic in other ways. Is it possible for a particular
address to be matched by more than one way? That possibility isn’t ruled out by the hardware, but the
SA cache is managed so that doesn’t happen. Assuming we write the data fetched from DRAM during
a cache miss into a single sub-cache - we’ll talk about how to choose that way in a minute — there’s no
possibility that more than one sub-cache will ever match an incoming address.

Page 418

How many ways to do we need? We’d like enough ways to avoid the cache line conflicts we
experienced with the DM cache. Looking at the graph we saw earlier of memory accesses vs. time, we
see that in any time interval there are only so many potential address conflicts that we need to worry
about.

The mapping from addresses to cache lines is designed to avoid conflicts between neighboring
locations. So we only need to worry about conflicts between the different regions: code, stack and data.
In the examples shown here there are three such regions, maybe 4 if you need two data regions to
support copying from one data region to another. If the time interval is particularly large, we might
need double that number to avoid conflicts between accesses early in the time interval and accesses late
in the time interval.

The point is that a small number of ways should be sufficient to avoid most cache line conflicts in the
cache.

Page 419

As with block size, it’s possible to have too much of a good thing: there’s an optimum number of ways
that minimizes the AMAT. Beyond that point, the additional circuity needed to combine the hit signals
from a large number of ways will start have a significant propagation delay of its own, adding directly
to the cache hit time and the AMAT.

More to the point, the chart on the left shows that there’s little additional impact on the miss ratio
beyond 4 to 8 ways. For most programs, an 8-way set-associative cache with a large number of sets
will perform on a par with the much more-expensive FA cache of equivalent capacity.

Page 420

There’s one final issue to resolve with SA and FA caches. When there’s a cache miss, which cache line
should be chosen to hold the data that will be fetched from main memory? That’s not an issue with DM
caches, since each data block can only be held in one particular cache line, determined by its address.
But in N-way SA caches, there are N possible cache lines to choose from, one in each of the ways. And
in a FA cache, any of the cache lines can be chosen.

So, how to choose? Our goal is to choose to replace the contents of the cache line which will minimize
the impact on the hit ratio in the future.

Page 421

The optimal choice is to replace the block that is accessed furthest in the future (or perhaps is never
accessed again). But that requires knowing the future...

Here’s an idea: let’s predict future accesses by looking a recent accesses and applying the principle of
locality. If a block has not been recently accessed, it’s less likely to be accessed in the near future.

That suggests the least-recently-used replacement strategy, usually referred to as LRU: replace the
block that was accessed furthest in the past. LRU works well in practice, but requires us to keep a list
ordered by last use for each set of cache lines, which would need to be updated on each cache access.
When we needed to choose which member of a set to replace, we’d choose the last cache line on this
list. For an 8-way SA cache there are 8! possible orderings, so we’d need log2(8!) = 16 state bits to
encode the current ordering. The logic to update these state bits on each access isn’t cheap; basically
you need a lookup table to map the current 16-bit value to the next 16-bit value. So most caches
implement an approximation to LRU where the update function is much simpler to compute.

There are other possible replacement policies: First-in, first-out, where the oldest cache line is replaced
regardless of when it was last accessed. And Random, where some sort of pseudo-random number
generator is used to select the replacement.

All replacement strategies except for random can be defeated. If you know a cache’s replacement
strategy you can design a program that will have an abysmal hit rate by accessing addresses you know
the cache just replaced. I’m not sure I care about how well a program designed to get bad performance
runs on my system, but the point is that most replacement strategies will occasionally cause a particular
program to execute much more slowly than expected.

When all is said and done, an LRU replacement strategy or a close approximation is a reasonable
choice.

Page 422

Okay, one more cache design decision to make, then we’re done!

How should we handle memory writes in the cache? Ultimately we’ll need update main memory with
the new data, but when should that happen?

The most obvious choice is to perform the write immediately. In other words, whenever the CPU sends
a write request to the cache, the cache then performs the same write to main memory. This is called
write-through. That way main memory always has the most up-to-date value for all locations. But this
can be slow if the CPU has to wait for a DRAM write access — writes could become a real bottleneck!
And what if the program is constantly writing a particular memory location, e.g., updating the value of
a local variable in the current stack frame? In the end we only need to write the last value to main
memory. Writing all the earlier values is waste of memory bandwidth.

Suppose we let the CPU continue execution while the cache waits for the write to main memory to
complete — this is called write-behind. This will overlap execution of the program with the slow
writes to main memory. Of course, if there’s another cache miss while the write is still pending,
everything will have to wait at that point until both the write and subsequent refill read finish, since the
CPU can’t proceed until the cache miss is resolved.

The best strategy is called write-back where the contents of the cache are updated and the CPU
continues execution immediately. The updated cache value is only written to main memory when the
cache line is chosen as the replacement line for a cache miss. This strategy minimizes the number of
accesses to main memory, preserving the memory bandwidth for other operations. This is the strategy
used by most modern processors.

Page 423

Write-back is easy to implement. Returning to our original cache recipe, we simply eliminate the start
of the write to main memory when there’s a write request to the cache. We just update the cache
contents and leave it at that.

However, replacing a cache line becomes a more complex operation, since we can’t reuse the cache
line without first writing its contents back to main memory in case they had been modified by an earlier
write access.

Hmm. Seems like this does a write-back of all replaced cache lines whether or not they’ve been written
to.

Page 424

We can avoid unnecessary write-backs by adding another state bit to each cache line: the dirty bit. The
dirty bit is set to 0 when a cache line is filled during a cache miss. If a subsequent write operation
changes the data in a cache line, the dirty bit is set to 1, indicating that value in the cache now differs
from the value in main memory.

When a cache line is selected for replacement, we only need to write its data back to main memory if
its dirty bit is 1.

So a write-back strategy with a dirty bit gives an elegant solution that minimizes the number of writes
to main memory and only delays the CPU on a cache miss if a dirty cache line needs to be written back
to memory.

Page 425

That concludes our discussion of caches, which was motivated by our desire to minimize the average
memory access time by building a hierarchical memory system that had both low latency and high
capacity.

There were a number of strategies we employed to achieve our goal.

Increasing the number of cache lines decreases AMAT by decreasing the miss ratio.

Increasing the block size of the cache let us take advantage of the fast column accesses in a DRAM to
efficiently load a whole block of data on a cache miss. The expectation was that this would improve
AMAT by increasing the number of hits in the future as accesses were made to nearby locations.

Increasing the number of ways in the cache reduced the possibility of cache line conflicts, lowering the
miss ratio.

Choosing the least-recently used cache line for replacement minimized the impact of replacement on
the hit ratio.

And, finally, we chose to handle writes using a write-back strategy with dirty bits.

How do we make the tradeoffs among all these architectural choices? As usual, we’ll simulate different
cache organizations and chose the architectural mix that provides the best performance on our
benchmark programs.

Page 426

15: Pipelining the Beta

1. Reminder: Single-Cycle Beta
2. Single-Cycle Beta Performance
3. Pipelined Implementation
4. Why Isn’t This a 20-minute Lecture?
5. Pipeline Hazards
6. Simplified Unpipelined Beta Datapath
7. 5-Stage Pipelined Datapath
8. Pipelined Control
9. Pipelined Execution Example

10. Example: Cycle 1
11. Example: Cycle 2
12. Example: Cycle 3
13. Example: Cycle 4
14. Example: Cycle 5
15. Pipeline Diagrams
16. Data Hazards
17. Resolving Hazards I
18. Resolving Data Hazards I
19. Stall Logic
20. Resolving Data Hazards II
21. Bypass Logic
22. Fully Bypassed Pipeline
23. Load-to-Use Stalls
24. Summary: Pipelining with Data Hazards
25. Compilers Can Help
26. Or take the lazy route...
27. Control Hazards I
28. Control Hazards II
29. Resolving Control Hazards
30. Resolving Control Hazards With Stalls
31. Stall Logic For Control Hazards
32. ISA Issues: Simple vs. Complex Branches
33. Resolving Hazards II
34. Resolving Hazards with Speculation I
35. Resolving Hazards with Speculation II
36. Speculation Logic For Control Hazards
37. Branch Prediction
38. Branch Delay Slots I
39. Branch Delay Slots II
40. Exceptions
41. When Can Exceptions Happen?
42. Resolving Exceptions
43. Exception Handling Logic
44. Multiple Exceptions?
45. Asynchronous Interrupts
46. Exception + Interrupt Logic
47. 5-stage Beta: Final Version

Page 427

48. Reminder: Resolving Hazards

Page 428

In this lecture, we’re going to use the circuit pipelining techniques we learned earlier in the course to
improve the performance of the 32-bit Beta CPU design we developed earlier in the course. This CPU
design executes one Beta instruction per clock cycle. Hopefully you remember the design! If not, you
might find it worthwhile to review “Building the Beta”.

At the beginning of the clock cycle, this circuit loads a new value into the program counter, which is
then sent to main memory as the address of the instruction to be executed this cycle. When the 32-bit
word containing the binary encoding of the instruction is returned by the memory, the opcode field is
decoded by the control logic to determine the control signals for the rest of the data path. The operands
are read from the register file and routed to the ALU to perform the desired operation. For memory
operations, the output of the ALU serves as the memory address and, in the case of load instructions,
the main memory supplies the data to be written into the register file at the end of the cycle. PC+4 and
ALU values can also be written to the register file.

The clock period of the Beta is determined by the cumulative delay through all the components
involved in instruction execution. Today’s question is: how can we make this faster?

Page 429

We can characterize the time spent executing a program as the product of three terms. The first term is
the total number of instructions executed. Since the program usually contains loops and procedure
calls, many of the encoded instructions will be executed many times. We want the total count of
instructions executed, not the static size of the program as measured by the number of encoded
instructions in memory. The second term is the average number of clock cycles it takes to execute a
single instruction. And the third term is the duration of a single clock cycle.

As CPU designers it’s the last two terms which are under our control: the cycles per instruction (CPI)
and the clock period (). To affect the first term, we would need to change the ISA or write a better
compiler!

Our design for the Beta was able to execute every instruction in a single clock cycle, so our CPI is 1.
As we discussed in the previous slide, is determined by the longest path through the Beta
circuitry. For example, consider the execution of an OP-class instruction, which involves two register
operands and an ALU operation. The arrow shows all the components that are involved in the
execution of the instruction. Aside from a few MUXes, the main memory, register file, and ALU must
all have time to do their thing.

The worst-case execution time is for the LD instruction. In one clock cycle we need to fetch the
instruction from main memory (), read the operands from the register file (), perform the
address addition in the ALU (), read the requested location from main memory (), and
finally write the memory data to the destination register ().

The component delays add up and the result is a fairly long clock period and hence it will take a long
time to run the program. And our two example execution paths illustrate another issue: we’re forced to
choose the clock period to accommodate the worst-case execution time, even though we may be able to
execute some instructions faster since their execution path through the circuitry is shorter. We’re
making all the instructions slower just because there’s one instruction that has a long critical path.

So why not have simple instructions execute in one clock cycle and more complex instructions take
multiple cycles instead of forcing all instructions to execute in a single, long clock cycle? As we’ll see

tCLK

tCLK

tIFETCH tRF

tALU tMEM

tWB

Page 430

in the next few slides, we have a good answer to this question, one that will allow us to execute *all*
instructions with a short clock period.

Page 431

We’re going to use pipelining to address these issues. We’re going to divide the execution of an
instruction into a sequence of steps, where each step is performed in successive stages of the pipeline.
So it will take multiple clock cycles to execute an instruction as it travels through the stages of the
execution pipeline. But since there are only one or two components in each stage of the pipeline, the
clock period can be much shorter and the throughput of the CPU can be much higher.

The increased throughput is the result of overlapping the execution of consecutive instructions. At any
given time, there will be multiple instructions in the CPU, each at a different stage of its execution. The
time to execute all the steps for a particular instruction (i.e., the instruction latency) may be somewhat
higher than in our unpipelined implementation. But we will finish the last step of executing some
instruction in each clock cycle, so the instruction throughput is 1 per clock cycle. And since the clock
cycle of our pipelined CPU is quite a bit shorter, the instruction throughput is quite a bit higher.

All this sounds great, but, not surprisingly, there are few issues we’ll have to deal with.

There are many ways to pipeline the execution of an instruction. We’re going to look at the design of
the classic 5-stage instruction execution pipeline, which was widely used in the integrated circuit CPU
designs of the 1980’s.

The 5 pipeline stages correspond to the steps of executing an instruction in a von-Neumann stored-
program architecture. The first stage (IF) is responsible for fetching the binary-encoded instruction
from the main memory location indicated by the program counter.

The 32-bit instruction is passed to the register file stage (RF) where the required register operands are
read from the register file.

The operand values are passed to the ALU stage (ALU), which performs the requested operation.

The memory stage (MEM) performs the second access to main memory to read or write the data for
LD, LDR, or ST instructions, using the value from the ALU stage as the memory address. For load

Page 432

instructions, the output of the MEM stage is the read data from main memory. For all other
instructions, the output of the MEM stage is simply the value from the ALU stage.

In the final write-back stage (WB), the result from the earlier stages is written to the destination register
in the register file.

Looking at the execution path from the previous slide, we see that each of the main components of the
unpipelined design is now in its own pipeline stage. So the clock period will now be determined by the
slowest of these components.

Having divided instruction execution into five stages, would we expect the clock period to be one fifth
of its original value? Well, that would only happen if we were able to divide the execution so that each
stage performed exactly one fifth of the total work. In real life, the major components have somewhat
different latencies, so the improvement in instruction throughput will be a little less than the factor of 5
a perfect 5-stage pipeline could achieve. If we have a slow component, e.g., the ALU, we might choose
to pipeline that component into further stages, or, interleave multiple ALUs to achieve the same effect.
But for this lecture, we’ll go with the 5-stage pipeline described above.

Page 433

So why isn’t this a 20-minute lecture? After all we know how pipeline combinational circuits: we can
build a valid k-stage pipeline by drawing k contours across the circuit diagram and adding a pipeline
register wherever a contour crosses a signal. What’s the big deal here?

Well, is this circuit combinational? No! There’s state in the registers and memories. This means that the
result of executing a given instruction may depend on the results from earlier instructions. There are
loops in the circuit where data from later pipeline stages affects the execution of earlier pipeline stages.
For example, the write to the register file at the end of the WB stage will change values read from the
register file in the RF stage. In other words, there are execution dependencies between instructions and
these dependencies will need to be taken into account when we’re trying to pipeline instruction
execution. We’ll be addressing these issues as we examine the operation of our execution pipeline.

Page 434

Sometimes execution of a given instruction will depend on the results of executing a previous
instruction. Two are two types of problematic dependencies.

The first, termed a data hazard, occurs when the execution of the current instruction depends on data
produced by an earlier instruction. For example, an instruction that reads R0 will depend on the
execution of an earlier instruction that wrote R0.

The second, termed a control hazard, occurs when a branch, jump, or exception changes the order of
execution. For example, the choice of which instruction to execute after a BNE depends on whether the
branch is taken or not.

Instruction execution triggers a hazard when the instruction on which it depends is also in the pipeline,
i.e., the earlier instruction hasn’t finished execution! We’ll need to adjust execution in our pipeline to
avoid these hazards.

Here’s our plan of attack:

We’ll start by designing a 5-stage pipeline that works with sequences of instructions that don’t trigger
hazards, i.e., where instruction execution doesn’t depend on earlier instructions still in the pipeline.

Then we’ll fix our pipeline to deal correctly with data hazards.

And finally, we’ll address control hazards.

Page 435

Let’s start by redrawing and simplifying the Beta data path so that it will be easier to reason about
when we add pipelining.

The first simplification is to focus on sequential execution and so leave out the branch addressing and
PC MUX logic. Our simplified Beta always executes the next instruction from PC+4. We’ll add back
the branch and jump logic when we discuss control hazards.

The second simplification is to have the register file appear twice in the diagram so that we can tease
apart the read and write operations that occur at different stages of instruction execution. The top
Register File shows the combinational read ports, used to when reading the register operands in the RF
stage. The bottom Register File shows the clocked write port, used to write the result into the
destination register at the end of the WB stage. Physically, there’s only one set of 32 registers, we’ve
just drawn the read and write circuity as separate components in the diagram.

Page 436

If we add pipeline registers to the simplified diagram, we see that execution proceeds through the five
stages from top to bottom. If we consider execution of instruction sequences with no data hazards,
information is flowing down the pipeline and the pipeline will correctly overlap the execution of all the
instructions in the pipeline.

The diagram shows the components needed to implement each of the five stages. The IF stage contains
the program counter and the main memory interface for fetching instructions. The RF stage has the
register file and operand multiplexers. The ALU stage uses the operands and computes the result. The
MEM stage handles the memory access for load and store operations. And the WB stage writes the
result into the destination register.

In each clock cycle, each stage does its part in the execution of a particular instruction. In a given clock
cycle, there are 5 instructions in the pipeline.

Note that data accesses to main memory span almost two clock cycles. Data accesses are initiated at
the beginning of the MEM stage and returning data is only needed just before the end of the WB stage.
The memory is itself pipelined and can simultaneously finish the access from an earlier instruction
while starting an access for the next instruction.

This simplified diagram isn’t showing how the control logic is split across the pipeline stages. How
does that work?

Page 437

Note that we’ve included instruction registers as part of each pipeline stage, so that each stage can
compute the control signals it needs from its instruction register. The encoded instruction is simply
passed from one stage to the next as the instruction flows through the pipeline.

Each stage computes its control signals from the opcode field of its instruction register. The RF stage
needs the RA, RB, and literal fields from its instruction register. And the WB stage needs the RC field
from its instruction register. The required logic is very similar to the unpipelined implementation, it’s
just been split up and moved to the appropriate pipeline stage.

We’ll see that we will have to add some additional control logic to deal correctly with pipeline hazards.

Page 438

Our simplified diagram isn’t so simple anymore! To see how the pipeline works, let’s follow along as it
executes this sequence of six instructions. Note that the instructions are reading and writing from
different registers, so there are no potential data hazards. And there are no branches and jumps, so there
are no potential control hazards. Since there are no potential hazards, the instruction executions can be
overlapped and their overlapped execution in the pipeline will work correctly.

Okay, here we go!

Page 439

During cycle 1, the IF stage sends the value from the program counter to main memory to fetch the first
instruction (the green LD instruction), which will be stored in the RF-stage instruction register at the
end of the cycle. Meanwhile, it’s also computing PC+4, which will be the next value of the program
counter. We’ve colored the next value blue to indicate that it’s the address of the blue instruction in the
sequence.

We’ll add the appropriately colored label on the right of each pipeline stage to indicate which
instruction the stage is processing.

Page 440

At the start of cycle 2, we see that values in the PC and instruction registers for the RF stage now
correspond to the green instruction. During the cycle the register file will be reading the register
operands, in this case R1, which is needed for the green instruction. Since the green instruction is a LD,
ASEL is 0 and BSEL is 1, selecting the appropriate values to be written into the A and B operand
registers at the end of the cycle.

Concurrently, the IF stage is fetching the blue instruction from main memory and computing an
updated PC value for the next cycle.

Page 441

In cycle 3, the green instruction is now in the ALU stage, where the ALU is adding the values in its
operand registers (in this case the value of R1 and the constant 4) and the result will be stored in
Y_MEM register at the end of the cycle.

Page 442

In cycle 4, we’re overlapping the execution of four instructions. The MEM stage initiates a memory
read for the green LD instruction. Note that the read data will first become available in the WB stage -
it’s not available to CPU in the current clock cycle.

Page 443

In cycle 5, the results of the main memory read initiated in cycle 4 are available for writing to the
register file in the WB stage. So execution of the green LD instruction will be complete when the
memory data is written to R2 at the end of cycle 5.

Meanwhile, the MEM stage is initiating a memory read for the blue LD instruction.

The pipeline continues to complete successive instructions in successive clock cycles. The latency for a
particular instruction is 5 clock cycles. The throughput of the pipelined CPU is 1 instruction/cycle. This
is the same as the unpipelined implementation, except that the clock period is shorter because each
pipeline stage has fewer components.

Note that the effects of the green LD, i.e., filling R2 with a new value, don’t happen until the rising
edge of the clock at the end of cycle 5. In other words, the results of the green LD aren’t available to
other instructions until cycle 6. If there were instructions in the pipeline that read R2 before cycle 6,
they would have gotten an old value! This is an example of a data hazard. Not a problem for us, since
our instruction sequence didn’t trigger this data hazard.

Tackling data hazards is our next task.

Page 444

The data path diagram isn’t all that useful in diagramming the pipelined execution of an instruction
sequence since we need a new copy of the diagram for each clock cycle. A more compact and easier-
to-read diagram of pipelined execution is provided by the pipeline diagrams we met back in Part 1 of
the course.

There’s one row in the diagram for each pipeline stage and one column for each cycle of execution.
Entries in the table show which instruction is in each pipeline stage at each cycle. In normal operation,
a particular instruction moves diagonally through the diagram as it proceeds through the five pipeline
stages.

To understand data hazards, let’s first remind ourselves of when the register file is read and written for
a particular instruction. Register reads happen when the instruction is in the RF stage, i.e., when we’re
reading the instruction’s register operands. Register writes happen at the end of the cycle when the
instruction is in the WB stage. For example, for the first LD instruction, we read R1 during cycle 2 and
write R2 at the end of cycle 5. Or consider the register file operations in cycle 6: we’re reading R12 and
R13 for the MUL instruction in the RF stage, and writing R4 at the end of the cycle for the LD
instruction in the WB stage.

Page 445

Okay, now let’s see what happens when there are data hazards. In this instruction sequence, the ADDC
instruction writes its result in R2, which is immediately read by the following SUBC instruction.
Correct execution of the SUBC instruction clearly depends on the results of the ADDC instruction.
This what we’d call a read-after-write dependency.

This pipeline diagram shows the cycle-by-cycle execution where we’ve circled the cycles during which
ADDC writes R2 and SUBC reads R2.

Oops! ADDC doesn’t write R2 until the end of cycle 5, but SUBC is trying to read the R2 value in
cycle 3. The value in R2 in the register file in cycle 3 doesn’t yet reflect the execution of the ADDC
instruction. So as things stand the pipeline would *not* correctly execute this instruction sequence.
This instruction sequence has triggered a data hazard.

We want the pipelined CPU to generate the same program results as the unpipelined CPU, so we’ll
need to figure out a fix.

Page 446

There are three general strategies we can pursue to fix pipeline hazards. Any of the techniques will
work, but as we’ll see they have different tradeoffs for instruction throughput and circuit complexity.

The first strategy is to stall instructions in the RF stage until the result they need has been written to the
register file. “Stall” means that we don’t reload the instruction register at the end of the cycle, so we’ll
try to execute the same instruction in the next cycle. If we stall one pipeline stage, all earlier stages
must also be stalled since they are blocked by the stalled instruction. If an instruction is stalled in the
RF stage, the IF stage is also stalled. Stalling will always work, but has a negative impact on
instruction throughput. Stall for too many cycles and you’ll loose the performance advantages of
pipelined execution!

The second strategy is to route the needed value to earlier pipeline stages as soon as its computed. This
called bypassing or forwarding. As it turns out, the value we need often exists somewhere in the
pipelined data path, it just hasn’t been written yet to the register file. If the value exists and can be
forwarded to where it’s needed, we won’t need to stall. We’ll be able to use this strategy to avoid
stalling on most types of data hazards.

The third strategy is called speculation. We’ll make an intelligent guess for the needed value and
continue execution. Once the actual value is determined, if we guessed correctly, we’re all set. If we
guessed incorrectly, we have to back up execution and restart with the correct value. Obviously
speculation only makes sense if it’s possible to make accurate guesses. We’ll be able to use this
strategy to avoid stalling on control hazards.

Let’s see how the first two strategies work when dealing with our data hazard.

Page 447

Applying the stall strategy to our data hazard, we need to stall the SUBC instruction in the RF stage
until the ADDC instruction writes its result in R2. So in the pipeline diagram, SUBC is stalled three
times in the RF stage until it can finally access the R2 value from the register file in cycle 6.

Whenever the RF stage is stalled, the IF stage is also stalled. You can see that in the diagram too. But
when RF is stalled, what should the ALU stage do in the next cycle? The RF stage hasn’t finished its
job and so can’t pass along its instruction! The solution is for the RF stage to make-up an innocuous
instruction for the ALU stage, what’s called a NOP instruction, short for “no operation”. A NOP
instruction has no effect on the CPU state, i.e., it doesn’t change the contents of the register file or main
memory. For example any OP-class or OPC-class instruction that has R31 as its destination register is a
NOP.

The NOPs introduced into the pipeline by the stalled RF stage are shown in red. Since the SUBC is
stalled in the RF stage for three cycles, three NOPs are introduced into the pipeline. We sometimes
refer to these NOPs as “bubbles” in the pipeline.

How does the pipeline know when to stall? It can compare the register numbers in the RA and RB
fields of the instruction in the RF stage with the register numbers in the RC field of instructions in the
ALU, MEM, and WB stage. If there’s a match, there’s a data hazard and the RF stage should be stalled.
The stall will continue until there’s no hazard detected. There are a few details to take care of: some
instructions don’t read both registers, the ST instruction doesn’t use its RC field, and we don’t want
R31 to match since it’s always okay to read R31 from the register file.

Stalling will ensure correct pipelined execution, but it does increase the effective CPI. This will lead to
longer execution times if the increase in CPI is larger than the decrease in cycle time afforded by
pipelining.

Page 448

To implement stalling, we only need to make two simple changes to our pipelined data path. We
generate a new control signal, STALL, which, when asserted, disables the loading of the three pipeline
registers at the input of the IF and RF stages, which means they’ll have the same value next cycle as
they do this cycle. We also introduce a mux to choose the instruction to be sent along to the ALU stage.
If STALL is 1, we choose a NOP instruction, e.g., an ADD with R31 as its destination. If STALL is 0,
the RF stage is not stalled, so we pass its current instruction to the ALU.

And here we see how to compute STALL as described in the previous slide.

The additional logic needed to implement stalling is pretty modest, so the real design tradeoff is about
increased CPI due to stalling vs. decreased cycle time due to pipelining.

So we have a solution, although it carries some potential performance costs.

Page 449

Now let’s consider our second strategy: bypassing, which is applicable if the data we need in the RF
stage is somewhere in the pipelined data path.

In our example, even though ADDC doesn’t write R2 until the end of cycle 5, the value that will be
written is computed during cycle 3 when the ADDC is in the ALU stage. In cycle 3, the output of the
ALU is the value needed by the SUBC that’s in the RF stage in the same cycle.

So, if we detect that the RA field of the instruction in the RF stage is the same as the RC field of the
instruction in the ALU stage, we can use the output of the ALU in place of the (stale) RA value being
read from the register file. No stalling necessary!

In our example, in cycle 3 we want to route the output of the ALU to the RF stage to be used as the
value for R2. We show this with a red “bypass arrow” showing data being routed from the ALU stage
to the RF stage.

Page 450

To implement bypassing, we’ll add a many-input multiplexer to the read ports of the register file so we
can select the appropriate value from other pipeline stages. Here we show the combinational bypass
paths from the ALU, MEM, and WB stages. For the bypassing example of previous slides, we use the
blue bypass path during cycle 3 to get the correct value for R2.

The bypass MUXes are controlled by logic that’s matching the number of the source register to the
number of the destination registers in the ALU, MEM, and WB stages, with the usual complications of
dealing with R31.

What if there are multiple matches, i.e., if the RF stage is trying to read a register that’s the destination
for, say, the instructions in both the ALU and MEM stages? No problem! We want to select the result
from the most recent instruction, so we’d chose the ALU match if there is one, then the MEM match,
then the WB match, then, finally, the output of the register file.

Page 451

Here’s a diagram showing all the bypass paths we’ll need. Note that branches and jumps write their
PC+4 value into the register file, so we’ll need to bypass from the PC+4 values in the various stages as
well as the ALU values.

Note that the bypassing is happening at the end of the cycle, e.g., after the ALU has computed its
answer. To accommodate the extra t_PD of the bypass MUX, we’ll have to extend the clock period by
a small amount. So once again there’s a design tradeoff - the increased CPI of stalling vs the slightly
increased cycle time of bypassing. And, of course, in the case of bypassing there’s the extra area
needed for the necessary wiring and MUXes.

We can cut back on the costs by reducing the amount of bypassing, say, to only bypassing ALU results
from the ALU stage and use stalling to deal with all the other data hazards.

If we implement full bypassing, do we still need the STALL logic?

Page 452

As it turns out, we do! There’s one data hazard that bypassing doesn’t completely address. Consider
trying to immediately the use the result of a LD instruction. In the example shown here, the SUBC is
trying to use the value the immediately preceding LD is writing to R2. This is called a load-to-use
hazard.

Recalling that LD data isn’t available in the data path until the cycle when LD reaches the WB stage,
even with full bypassing we’ll need to stall SUBC in the RF stage until cycle 5, introducing two NOPs
into the pipeline. Without bypassing from the WB stage, we need to stall until cycle 6.

Page 453

In summary, we have two strategies for dealing with data hazards.

We can stall the IF and RF stages until the register values needed by the instruction in the RF stage are
available in the register file. The required hardware is simple, but the NOPs introduced into the
pipeline waste CPU cycles and result in an higher effective CPI.

Or we can use bypass paths to route the required values to the RF stage assuming they exist somewhere
in the pipelined data path. This approach requires more hardware than stalling, but doesn’t reduce the
effective CPI. Even if we implement bypassing, we’ll need still need stalls to deal with load-to-use
hazards.

Can we keep adding pipeline stages in the hopes of further reducing the clock period? More pipeline
stages mean more instructions in the pipeline at the same time, which in turn increases the chance of a
data hazard and the necessity of stalling, thus increasing CPI.

Page 454

Compilers can help reduce dependencies by reorganizing the assembly language code they produce.
Here’s the load-to-use hazard example we saw earlier. Even with full bypassing, we’d need to stall for
2 cycles.

But if the compiler (or assembly language programmer!) notices that the MUL and XOR instructions
are independent of the SUBC instruction and hence can be moved before the SUBC, the dependency is
now such that the LD is naturally in the WB stage when the ST is in the RF stage, so no stalls are
needed.

This optimization only works when the compiler can find independent instructions to move around.
Unfortunately there are plenty of programs where such instructions are hard to find.

Page 455

Then there’s one final approach we could take - change the ISA so that data hazards are part of the ISA,
i.e., just explain that writes to the destination register happen with a 3-instruction delay! If NOPs are
needed, make the programmer add them to the program. Simplify the hardware at the “small” cost of
making the compilers work harder.

You can imagine exactly how much the compiler writers will like this suggestion. Not to mention
assembly language programmers! And you can change the ISA again when you add more pipeline
stages!

This is how a compiler writer views CPU architects who unilaterally change the ISA to save a few
logic gates :)

The bottom line is that successful ISAs have very long lifetimes and so shouldn’t include tradeoffs
driven by short-term implementation considerations. Best not to go there.

Page 456

Now let’s turn our attention to control hazards, illustrated by the code fragment shown here. Which
instruction should be executed after the BNE? If the value in R3 is non-zero, ADDC should be
executed. If the value in R3 is zero, the next instruction should be SUB. If the current instruction is an
explicit transfer of control (i.e., JMPs or branches), the choice of the next instruction depends on the
execution of the current instruction.

What are the implications of this dependency on our execution pipeline?

Page 457

How does the unpipelined implementation determine the next instruction?

For branches (BEQ or BNE), the value to be loaded into the program counter depends on (1) the
opcode, i.e., whether the instruction is a BEQ or a BNE, (2) the current value of the program counter
since that’s used in the offset calculation, and (3) the value stored in the register specified by the RA
field of the instruction since that’s the value tested by the branch.

For JMP instructions, the next value of the program counter depends once again on the opcode field
and the value of the RA register.

For all other instructions, the next PC value depends only the opcode of the instruction and the value
PC+4.

Exceptions also change the program counter. We’ll deal with them later in the lecture.

The control hazard is triggered by JMP and branches since their execution depends on the value in the
RA register, i.e., they need to read from the register file, which happens in the RF pipeline stage. Our
bypass mechanisms ensure that we’ll use the correct value for the RA register even if it’s not yet been
written into the register file. What we’re concerned about here is that the address of the instruction
following the JMP or branch will be loaded into program counter at the end of the cycle when the JMP
or branch is in the RF stage. But what should the IF stage be doing while all this is going on in RF
stage?

Page 458

The answer is that in the case of JMPs and taken branches, we don’t know what the IF stage should be
doing until those instructions are able to access the value of the RA register in the RF stage.

One solution is to stall the IF stage until the RF stage can compute the necessary result. This was the
first of our general strategies for dealing with hazards. How would this work?

Page 459

If the opcode in the RF stage is JMP, BEQ, or BNE, stall the IF stage for one cycle. In the example
code shown here, assume that the value in R3 is non-zero when the BNE is executed, i.e., that the
instruction following BNE should be the ADDC at the top of the loop.

The pipeline diagram shows the effect we’re trying to achieve: a NOP is inserted into the pipeline in
cycles 4 and 8. Then execution resumes in the next cycle after the RF stage determines what instruction
comes next. Note, by the way, that we’re relying on our bypass logic to deliver the correct value for R3
from the MEM stage since the ADDC instruction that wrote into R3 is still in the pipeline, i.e., we have
a data hazard to deal with too!

Looking at, say, the WB stage in the pipeline diagram, we see it takes 4 cycles to execute one iteration
of our 3-instruction loop. So the effective CPI is 4/3, an increase of 33%. Using stall to deal with
control hazards has had an impact on the instruction throughput of our execution pipeline.

Page 460

We’ve already seen the logic needed to introduce NOPs into the pipeline. In this case, we add a mux to
the instruction path in the IF stage, controlled by the IRSrc_IF select signal. We use the superscript on
the control signals to indicate which pipeline stage holds the logic they control.

If the opcode in the RF stage is JMP, BEQ, or BNE we set IRSrc_IF to 1, which causes a NOP to
replace the instruction that was being read from main memory. And, of course, we’ll be setting the
PCSEL control signals to select the correct next PC value, so the IF stage will fetch the desired follow-
on instruction in the next cycle.

If we replace an instruction with NOP, we say we “annulled” the instruction.

Page 461

The branch instructions in the Beta ISA make their branch decision in the RF stage since they only
need the value in register RA.

But suppose the ISA had a branch where the branch decision was made in ALU stage.

When the branch decision is made in the ALU stage, we need to introduce two NOPs into the pipeline,
replacing the now unwanted instructions in the RF and IF stages. This would increase the effective CPI
even further. But the tradeoff is that the more complex branches may reduce the number of instructions
in the program.

If we annul instructions in all the earlier pipeline stages, this is called “flushing the pipeline”. Since
flushing the pipeline has a big impact on the effective CPI, we do it when it’s the only way to ensure
the correct behavior of the execution pipeline.

Page 462

We can be smarter about when we choose to flush the pipeline when executing branches. If the branch
is not taken, it turns out that the pipeline has been doing the right thing by fetching the instruction
following the branch. Starting execution of an instruction even when we’re unsure whether we really
want it executed is called “speculation”.

Speculative execution is okay if we’re able to annul the instruction before it has an effect on the CPU
state, e.g., by writing into the register file or main memory. Since these state changes (called “side
effects”) happen in the later pipeline stages, an instruction can progress through the IF, RF, and ALU
stages before we have to make a final decision about whether it should be annulled.

Page 463

How does speculation help with control hazards? Guessing that the next value of the program counter
is PC+4 is correct for all but JMPs and taken branches.

Here’s our example again, but this time let’s assume that the BNE is not taken, i.e., that the value in R3
is zero. The SUB instruction enters the pipeline at the start of cycle 4. At the end of cycle 4, we know
whether or not to annul the SUB. If the branch is not taken, we want to execute the SUB instruction, so
we just let it continue down the pipeline.

In other words, instead of always annulling the instruction following branch, we only annul it if the
branch was taken. If the branch is not taken, the pipeline has speculated correctly and no instructions
need to be annulled.

Page 464

However if the BNE is taken, the SUB is annulled at the end of cycle 4 and a NOP is executed in cycle
5. So we only introduce a bubble in the pipeline when there’s a taken branch. Fewer bubbles will
decrease the impact of annulment on the effective CPI.

Page 465

We’ll be using the same data path circuitry as before, we’ll just be a bit more clever about when the
value of the IRSrc_IF control signal is set to 1. Instead of setting it to 1 for all branches, we only set it
to 1 when the branch is taken.

Page 466

Our naive strategy of always speculating that the next instruction comes from PC+4 is wrong for JMPs
and taken branches. Looking at simulated execution traces, we’ll see that this error in speculation leads
to about 10% higher effective CPI. Can we do better?

This is an important question for CPUs with deep pipelines. For example, Intel’s Nehalem processor
from 2009 resolves the more complex x86 branch instructions quite late in the pipeline. Since Nehalem
is capable of executing multiple instructions each cycle, flushing the pipeline in Nehalem actually
annuls the execution of many instructions, resulting in a considerable hit on the CPI.

Like many modern processor implementations, Nehalem has a much more sophisticated speculation
mechanism. Rather than always guessing the next instruction is at PC+4, it only does that for non-
branch instructions. For branches, it predicts the behavior of each individual branch based on what the
branch did last time it was executed and some knowledge of how the branch is being used. For
example, backward branches at the end of loops, which are taken for all but the final iteration of the
loop, can be identified by their negative branch offset values. Nehalem can even determine if there’s
correlation between branch instructions, using the results of an another, earlier branch to speculate on
the branch decision of the current branch. With these sophisticated strategies, Nehalem’s speculation is
correct 95% to 99% of the time, greatly reducing the impact of branches on the effective CPI.

Page 467

There’s also the lazy option of changing the ISA to deal with control hazards. For example, we could
change the ISA to specify that the instruction following a jump or branch is always executed. In other
words the transfer of control happens *after* the next instruction. This change ensures that the guess of
PC+4 as the address of the next instruction is always correct!

In the example shown here, assuming we changed the ISA, we can reorganize the execution order of
the loop to place the MUL instruction after the BNE instruction, in the so-called “branch delay slot”.
Since the instruction in the branch delay slot is always executed, the MUL instruction will be executed
during each iteration of the loop.

The resulting execution is shown in this pipeline diagram. Assuming we can find an appropriate
instruction to place in the branch delay slot, the branch will have zero impact on the effective CPI.

Page 468

Are branch delay slots a good idea? Seems like they reduce the negative impact that branches might
have on instruction throughput.

The downside is that only half the time can we find instructions to move to the branch delay slot. The
other half of the time we have to fill it with an explicit NOP instruction, increasing the size of the code.
And if we make the branch decision later in the pipeline, there are more branch delay slots, which
would be even harder to fill. In practice, it turns out that branch prediction works better than delay slots
in reducing the impact of branches.

So, once again we see that it’s problematic to alter the ISA to improve the throughput of pipelined
execution. ISAs outlive implementations, so it’s best not to change the execution semantics to deal with
performance issues created by a particular implementation.

Page 469

Now let’s figure out how exceptions impact pipelined execution. When an exception occurs because of
an illegal instruction or an external interrupt, we need to store the current PC+4 value in the XP register
and load the program counter with the address of the appropriate exception handler.

Exceptions cause control flow hazards since they are effectively implicit branches.

In an unpipelined implementation, exceptions affect the execution of the current instruction. We want
to achieve exactly the same effect in our pipelined implementation. So first we have to identify which
one of the instructions in our pipeline is affected, then ensure that instructions that came earlier in the
code complete correctly and that we annul the affected instruction and any following instructions that
are in the pipeline.

Since there are multiple instructions in the pipeline, we have a bit of sorting out to do.

Page 470

When, during pipelined execution, do we determine that an instruction will cause an exception? An
obvious example is detecting an illegal opcode when we decode the instruction in the RF stage. But we
can also generate exceptions in other pipeline stages. For example, the ALU stage can generate an
exception if the second operand of a DIV instruction is 0. Or the MEM stage may detect that the
instruction is attempting to access memory with an illegal address. Similarly the IF stage can generate a
memory exception when fetching the next instruction.

In each case, instructions that follow the one that caused the exception may already be in the pipeline
and will need to be annulled. The good news is that since register values are only updated in the WB
stage, annulling an instruction only requires replacing it with a NOP. We won’t have to restore any
changed values in the register file or main memory.

Page 471

Here’s our plan. If an instruction causes an exception in stage i, replace that instruction with this BNE
instruction, whose only side effect is writing the PC+4 value into the XP register. Then flush the
pipeline by annulling instructions in earlier pipeline stages. And, finally, load the program counter with
the address of the exception handler.

In this example, assume that LD will generate a memory exception in the MEM stage, which occurs in
cycle 4. The arrows show how the instructions in the pipeline are rewritten for cycle 5, at which point
the IF stage is working on fetching the first instruction in the exception handler.

Page 472

Here are the changes required to the execution pipeline. We modify the muxes in the instruction path so
that they can replace an actual instruction with either NOP if the instruction is to be annulled, or BNE
if the instruction caused the exception.

Page 473

Since the pipeline is executing multiple instructions at the same time, we have to worry about what
happens if multiple exceptions are detected during execution. In this example assume that LD will
cause a memory exception in the MEM stage and note that it is followed by an instruction with an
illegal opcode.

Looking at the pipeline diagram, the invalid opcode is detected in the RF stage during cycle 3, causing
the illegal instruction exception process to begin in cycle 4. But during that cycle, the MEM stage
detects the illegal memory access from the LD instruction and so causes the memory exception process
to begin in cycle 5. Note that the exception caused by the earlier instruction (LD) overrides the
exception caused by the later illegal opcode even thought the illegal opcode exception was detected
first. That’s the correct behavior since once the execution of LD is abandoned, the pipeline should
behave as if none of the instructions that come after the LD were executed.

If multiple exceptions are detected in the *same* cycle, the exception from the instruction furthest
down the pipeline should be given precedence.

Page 474

External interrupts also behave as implicit branches, but it turns out they are a bit easier to handle in
our pipeline. We’ll treat external interrupts as if they were an exception that affected the IF stage. Let’s
assume the external interrupt occurs in cycle 2. This means that the SUB instruction will be replaced
by our magic BNE to capture the PC+4 value and we’ll force the next PC to be the address of the
interrupt handler. After the interrupt handler completes, we’ll want to resume execution of the
interrupted program at the SUB instruction, so we’ll code the handler to correct the value saved in the
XP register so that it points to the SUB instruction.

This is all shown in the pipeline diagram. Note that the ADD, LD, and other instructions that came
before SUB in the program are unaffected by the interrupt.

Page 475

We can use the existing instruction-path muxes to deal with interrupts, since we’re treating them as IF-
stage exceptions. We simply have to adjust the logic for IRSrc_IF to also make it 1 when an interrupt is
requested.

Page 476

So here’s the final version of our 5-stage pipelined data path.

To deal with data hazards we’ve added stall logic to the IF and RF input registers. We’ve also added
bypass muxes on the output of the register file read ports so we can route values from later in the data
path if we need to access a register value that’s been computed but not yet written to the register file.
We also made a provision to insert NOPs into the pipeline after the RF stage if the IF and RF stages are
stalled.

To deal with control hazards, we speculate that the next instruction is at PC+4. But for JMPs and taken
branches, that guess is wrong so we added a provision for annulling the instruction in the IF stage.

To deal with exceptions and interrupts we added instruction muxes in all but the final pipeline stage.
An instruction that causes an exception is replaced by our magic BNE instruction to capture its PC+4
value. And instructions in earlier stages are annulled.

All this extra circuitry has been added to ensure that pipelined execution gives the same result as
unpipelined execution. The use of bypassing and branch prediction ensures that data and control
hazards have only a small negative impact on the effective CPI. This means that the much shorter clock
period translates to a large increase in instruction throughput.

Page 477

It’s worth remembering the strategies we used to deal with hazards: stalling, bypassing and speculation.
Most execution issues can be dealt with using one of these strategies, so keep these in mind if you ever
need to design a high-performance pipelined system.

This completes our discussion of pipelining. We’ll explore other avenues to higher processor
performance in a a later lecture discussing parallel processing.

Page 478

16: Virtual Memory

1. Reminder: A Typical Memory Hierarchy
2. Reminder: Hardware Caches
3. Reminder: A Typical Memory Hierarchy
4. Extending the Memory Hierarchy
5. Impact of Enormous Miss Penalty
6. Virtual Memory
7. Virtual Memory Implementation: Paging
8. Demand Paging
9. Simple Page Map Design

10. Example: Virtual → Physical Translation
11. Page Faults
12. Example: Page Fault
13. Virtual Memory: the CS View
14. The HW/SW Balance
15. Page Map Arithmetic
16. Example: Page Map Arithmetic
17. RAM-Resident Page Maps
18. Translation Look-aside Buffer (TLB)
19. MMU Address Translation
20. Putting it All Together: MMU with TLB
21. Contexts
22. Contexts: A Sneak Preview
23. Memory Management & Protection
24. Multi-level Page Maps
25. Rapid Context Switching
26. Using Caches with Virtual Memory
27. Best of Both Worlds: Overlapped Operation
28. Summary: Virtual Memory

Page 479

In this lecture we return to the memory system that we last discussed in “The Memory Hierarchy”.
There we learned about the fundamental tradeoff in current memory technologies: as the memory’s
capacity increases, so does it access time. It takes some architectural cleverness to build a memory
system that has a large capacity and a small average access time. The cleverness is embodied in the
cache, a hardware subsystem that lives between the CPU and main memory. Modern CPUs have
several levels of cache, where where the modest-capacity first level has an access time close to that of
the CPU, and higher levels of cache have slower access times but larger capacities.

Page 480

Caches give fast access to a small number of memory locations, using associative addressing so that
the cache has the ability to hold the contents of the memory locations the CPU is accessing most
frequently. The current contents of the cache are managed automatically by the hardware. Caches work
well because of the principle of locality: if the CPU accesses location X at time T, it’s likely to access
nearby locations in the not-too-distant future. The cache is organized so that nearby locations can all
reside in the cache simultaneously, using a simple indexing scheme to choose which cache location
should be checked for a matching address. If the address requested by the CPU resides in the cache,
access time is quite fast.

In order to increase the probability that requested addresses reside in the cache, we introduced the
notion of “associativity”, which increased the number of cache locations checked on each access and
solved the problem of having, say, instructions and data compete for the same cache locations.

We also discussed appropriate choices for block size (the number of words in a cache line),
replacement policy (how to choose which cache line to reuse on a cache miss), and write policy
(deciding when to write changed data back to main memory). We’ll see these same choices again in
this lecture as we work to expand the memory hierarchy beyond main memory.

Page 481

We never discussed where the data in main memory comes from and how the process of filling main
memory is managed. That’s the topic of today’s lecture.

Flash drives and hard disks provide storage options that have more capacity than main memory, with
the added benefit of being non-volatile, i.e., they continue to store data even when turned off. The
generic name for these new devices is “secondary storage”, where data will reside until it’s moved to
“primary storage”, i.e., main memory, for use. So when we first turn on a computer system, all of it s
data will be found in secondary storage, which we’ll think of as the final level of our memory
hierarchy.

As we think about the right memory architecture, we’ll build on the ideas from our previous discussion
of caches, and, indeed, think of main memory as another level of cache for the permanent, high-
capacity secondary storage. We’ll be building what we call a virtual memory system, which, like
caches, will automatically move data from secondary storage into main memory as needed. The virtual
memory system will also let us control what data can be accessed by the program, serving as a stepping
stone to building a system that can securely run many programs on a single CPU.

Let’s get started!

Page 482

Here we see the cache and main memory, the two components of our memory system as developed in
Lecture 14. And here’s our new secondary storage layer. The good news: the capacity of secondary
storage is huge! Even the most modest modern computer system will have 100’s of gigabytes of
secondary storage and having a terabyte or two is not uncommon on medium-size desktop computers.
Secondary storage for the cloud can grow to many petabytes (a petabyte is bytes or a million
gigabytes).

The bad news: disk access times are 100,000 times longer that those of DRAM. So the change in
access time from DRAM to disk is much, much larger than the change from caches to DRAM.

When looking at DRAM timing, we discovered that the additional access time for retrieving a
contiguous block of words was small compared to the access time for the first word, so fetching a block
was the right plan assuming we’d eventually access the additional words. For disks, the access time
difference between the first word and successive words is even more dramatic. So, not surprisingly,
we’ll be reading fairly large blocks of data from disk.

The consequence of the much, much larger secondary-storage access time is that it will be very time
consuming to access disk if the data we need is not in main memory. So we need to design our virtual
memory system to minimize misses when accessing main memory. A miss, and the subsequent disk
access, will have a huge impact on the average memory access time, so the miss rate will need to be
very, very, small compared to, say, the rate of executing instructions.

1015

Page 483

Given the enormous miss penalties of secondary storage, what does that tell us about how it should be
used as part of our memory hierarchy?

We will need high associativity, i.e., we need a great deal of flexibility on how data from disk can be
located in main memory. In other words, if our working set of memory accesses fit in main memory,
our virtual memory system should make that possible, avoiding unnecessary collisions between
accesses to one block of data and another.

We’ll want to use a large block size to take advantage of the low incremental cost of reading successive
words from disk. And, given the principle of locality, we’d expect to be accessing other words of the
block, thus amortizing the cost of the miss over many future hits.

Finally, we’ll want to use a write-back strategy where we’ll only update the contents of disk when data
that’s changed in main memory needs to be replaced by data from other blocks of secondary storage.

There is upside to misses having such long latencies. We can manage the organization of main memory
and the accesses to secondary storage in software. Even it takes 1000’s of instructions to deal with the
consequences of a miss, executing those instructions is quick compared to the access time of a disk. So
our strategy will be to handle hits in hardware and misses in software. This will lead to simple memory
management hardware and the possibility of using very clever strategies implemented in software to
figure out what to do on misses.

Page 484

Here’s how our virtual memory system will work. The memory addresses generated by the CPU are
called virtual addresses to distinguish them from the physical addresses used by main memory. In
between the CPU and main memory there’s a new piece of hardware called the memory management
unit (MMU). The MMU’s job is to translate virtual addresses to physical addresses.

“But wait!” you say. “Doesn’t the cache go between the CPU and main memory?” You’re right and at
the end of this lecture we’ll talk about how to use both an MMU and a cache. But for now, let’s assume
there’s only an MMU and no cache.

The MMU hardware translates virtual addresses to physical addresses using a simple table lookup. This
table is called the page map or page table. Conceptually, the MMU uses the virtual address as index to
select an entry in the table, which tells us the corresponding physical address. The table allows a
particular virtual address to be found anywhere in main memory. In normal operation we’d want to
ensure that two virtual addresses don’t map to the same physical address. But it would be okay if some
of the virtual addresses did not have a translation to a physical address. This would indicate that the
contents of the requested virtual address haven’t yet been loaded into main memory, so the MMU
would signal a memory-management exception to the CPU, which could assign a location in physical
memory and perform the required I/O operation to initialize that location from secondary storage.

The MMU table gives the system a lot of control over how physical memory is accessed by the
program running on the CPU. For example, we could arrange to run multiple programs in quick
succession (a technique called time sharing) by changing the page map when we change programs.
Main memory locations accessible to one program could be made inaccessible to another program by
proper management of their respective page maps. And we could use memory-management exceptions
to load program contents into main memory on demand instead of having to load the entire program
before execution starts. In fact, we only need to ensure the current working set of a program is actually
resident in main memory. Locations not currently being used could live in secondary storage until
needed. In this lecture and next, we’ll see how the MMU plays a central role in the design of a modern
timesharing computer system.

Page 485

Of course, we’d need an impossibly large table to separately map each virtual address to a physical
address. So instead we divide both the virtual and physical address spaces into fixed-sized blocks,
called pages. Page sizes are always a power-of-2 bytes, say bytes, so p is the number address bits
needed to select a particular location on the page. We’ll the use low-order p bits of the virtual or
physical address as the page offset. The remaining address bits tell us which page is being accessed and
are called the page number.

A typical page size is 4KB to 16KB, which correspond to p=12 and p=14 respectively. Suppose p=12.
So if the CPU produces a 32-bit virtual address, the low-order 12 bits of the virtual address are the
page offset and the high-order 20 bits are the virtual page number. Similarly, the low-order p bits of the
physical address are the page offset and the remaining physical address bits are the physical page
number.

The key idea is that the MMU will manage pages, not individual locations. We’ll move entire pages
from secondary storage into main memory. By the principal of locality, if a program access one
location on a page, we expect it will soon access other nearby locations. By choosing the page offset
from the low-order address bits, we’ll ensure that nearby locations live on the same page (unless of
course we’re near one end of the page or the other). So pages naturally capture the notion of locality.
And since pages are large, by dealing with pages when accessing secondary storage, we’ll take
advantage that reading or writing many locations is only slightly more time consuming than accessing
the first location.

The MMU will map virtual page numbers to physical page numbers. It does this by using the virtual
page number (VPN) as an index into the page table. Each entry in the page table indicates if the page is
resident in main memory and, if it is, provides the appropriate physical page number (PPN). The PPN
is combined with the page offset to form the physical address for main memory.

If the requested virtual page is NOT resident in main memory, the MMU signals a memory-
management exception, called a page fault, to the CPU so it can load the appropriate page from
secondary storage and set up the appropriate mapping in the MMU.

2p

Page 486

Our plan to use main memory as page cache is called “paging” or sometimes “demand paging” since
movements of pages to and from secondary storage is determined by the demands of the program.

Page 487

So here’s the plan. Initially all the virtual pages for a program reside in secondary storage and the
MMU is empty, i.e., there are no pages resident in physical memory.

The CPU starts running the program and each virtual address it generates, either for an instruction fetch
or data access, is passed to the MMU to be mapped to a physical address in main memory.

If the virtual address is resident in physical memory, the main memory hardware can complete the
access.

If the virtual address in NOT resident in physical memory, the MMU signals a page fault exception,
forcing the CPU to switch execution to special code called the page fault handler. The handler allocates
a physical page to hold the requested virtual page and loads the virtual page from secondary storage
into main memory. It then adjusts the page map entry for the requested virtual page to show that it is
now resident and to indicate the physical page number for the newly allocated and initialized physical
page.

When trying to allocate a physical page, the handler may discover that all physical pages are currently
in use. In this case it chooses an existing page to replace, e.g., a resident virtual page that hasn’t been
recently accessed. It swaps the contents of the chosen virtual page out to secondary storage and updates
the page map entry for the replaced virtual page to indicate it is no longer resident. Now there’s a free
physical page to re-use to hold the contents of the virtual page that was missing.

The working set of the program, i.e., the set of pages the program is currently accessing, is loaded into
main memory through a series of page faults. After a flurry of page faults when the program starts
running, the working set changes slowly, so the frequency of page faults drops dramatically, perhaps
close to zero if the program is small and well-behaved. It is possible to write programs that constantly
generate page faults, a phenomenon called thrashing. Given the long access times of secondary storage,
a program that’s thrashing runs *very* slowly, usually so slowly that user’s give up and rewrite the
program to behave more sensibly.

Page 488

The design of the page map is straightforward. There’s one entry in the page map for each virtual page.
For example, if the CPU generates a 32-bit virtual address and the page size is bytes, the virtual
page number has bits and the page table will have entries.

Each entry in the page table contains a “resident bit” (R) which is set to 1 when the virtual page is
resident in physical memory. If R is 0, an access to that virtual page will cause a page fault. If R is 1,
the entry also contains the PPN, indicating where to find the virtual page in main memory.

There’s one additional state bit called the “dirty bit” (D). When a page has just been loaded from
secondary storage, it’s “clean”, i.e, the contents of physical memory match the contents of the page in
secondary storage. So the D bit is set to 0. If subsequently the CPU stores into a location on the page,
the D bit for the page is set to 1, indicating the page is “dirty”, i.e., the contents of memory now differ
from the contents of secondary storage. If a dirty page is ever chosen for replacement, its contents must
be written to secondary storage in order to save the changes before the page gets reused.

Some MMUs have additional state bits in each page table entry. For example, there could be a “read-
only” bit which, when set, would generate an exception if the program attempts to store into the page.
This would be useful for protecting code pages from accidentally being corrupted by errant data
accesses, a very handy debugging feature.

212

32 − 12 = 20 220

Page 489

Here’s an example of the MMU in action. To make things simple, assume that the virtual address is 12
bits, consisting of an 8-bit page offset and a 4-bit virtual page number. So there are virtual
pages. The physical address is 11 bits, divided into the same 8-bit page offset and a 3-bit physical page
number. So there are physical pages.

On the left we see a diagram showing the contents of the 16-entry page map, i.e., an entry for each
virtual page. Each page table entry includes a dirty bit (D), a resident bit (R) and a 3-bit physical page
number, for a total of 5 bits. So the page map has 16 entries, each with 5-bits, for a total of 16*5 = 80
bits. The first entry in the table is for virtual page 0, the second entry for virtual page 1, and so on.

In the middle of the slide there’s a diagram of physical memory showing the 8 physical pages. The
annotation for each physical page shows the virtual page number of its contents. Note that there’s no
particular order to how virtual pages are stored in physical memory — which page holds what is
determined by which pages are free at the time of a page fault. In general, after the program has run for
a while, we’d expected to find the sort of jumbled ordering we see here.

Let’s follow along as the MMU handles the request for virtual address 0x2C8, generated by the
execution of the LD instruction shown here. Splitting the virtual address into page number and offset,
we see that the VPN is 2 and the offset is 0xC8. Looking at the page map entry with index 2, we see
that the R bit is 1, indicating that virtual page 2 is resident in physical memory. The PPN field of entry
tells us that virtual page 2 can be found in physical page 4.

Combining the PPN with the 8-bit offset, we find that the contents of virtual address 0x2C8 can be
found in main memory location 0x4C8. Note that the offset is unchanged by the translation process —
the offset into the physical page is always the same as the offset into the virtual page.

24 = 16

23 = 8

Page 490

Let’s review what happens when the CPU accesses a non-resident virtual page, i.e., a page with its
resident bit set to 0. In the example shown here, the CPU is trying to access virtual page 5.

In this case, the MMU signals a page fault exception, causing the CPU to suspend execution of the
program and switch to the page fault handler, which is code that deals with the page fault. The handler
starts by either finding an unused physical page or, if necessary, creating an unused page by selecting
an in-use page and making it available. In our example, the handler has chosen virtual page 1 for reuse.
If the selected page is dirty, i.e., its D bit is 1 indicating that its contents have changed since being read
from secondary storage, write it back to secondary storage. Finally, mark the selected virtual page as no
longer resident. In the “after” figure, we see that the R bit for virtual page 1 has been set to 0. Now
physical page 4 is available for re-use.

Are there any restrictions on which page we can select? Obviously, we can’t select the page that holds
the code for the page fault handler. Pages immune from selection are called “wired” pages. And it
would very inefficient to choose the page that holds the code that made the initial memory access, since
we expect to start executing that code as soon as we finish handling the page fault.

The optimal strategy would be to choose the page whose next use will occur farthest in the future. But,
of course, this involves knowledge of future execution paths and so isn’t a realizable strategy.
Wikipedia provides a nice description of the many strategies for choosing a replacement page, with
their various tradeoffs between ease of implementation and impact on the rate of page faults — see the
URL given at the bottom of the slide. The aging algorithm they describe is frequently used since it
offers near optimal performance at a moderate implementation cost.

Next, the desired virtual page is read from secondary storage into the selected physical page. In our
example, virtual page 5 is now loaded into physical page 4.

Then the R bit and PPN fields in the page table entry for virtual page 5 are updated to indicate that the
contents of that virtual page now reside in physical page 4.

Page 491

Finally the handler is finished and execution of the original program is resumed, re-executing the
instruction that caused the page fault. Since the page map has been updated, this time the access
succeeds and execution continues.

Page 492

To double-check our understanding of page faults, let’s run through an example. Here’s the same setup
as in our previous example, but this time consider a store instruction that’s making an access to virtual
address 0x600, which is located on virtual page 6.

Checking the page table entry for VPN 6, we see that its R bit 0 indicating that it is NOT resident in
main memory, which causes a page fault exception.

The page fault handler selects VPN 0xE for replacement since we’ve been told in the setup that it’s the
least-recently-used page.

The page table entry for VPN 0xE has D=1 so the handler writes the contents of VPN 0xE, which is
found in PPN 0x5, to secondary storage. Then it updates the page table to indicate that VPN 0xE is no
longer resident.

Next, the contents of VPN 0x6 are read from secondary storage into the now available PPN 0x5.

Now the handler updates the page table entry for VPN 0x6 to indicate that it’s resident in PPN 0x5.

The page fault handler has completed its work, so program execution resumes and the ST instruction is
re-executed. This time the MMU is able to translate virtual address 0x600 to physical address 0x500.
And since the ST instruction modifies the contents of VPN 0x6, it’s D bit is set to 1.

Whew! We’re done :)

Page 493

We can think of the work of the MMU as being divided into two tasks, which as computer scientists,
we would think of as two procedures. In this formulation the information in the page map is held in
several arrays: the R array holds the resident bits, the D array holds the dirty bits, the PPN array holds
the physical page numbers, and the DiskAdr array holds the location in secondary storage for each
virtual page.

The VtoP procedure is invoked on each memory access to translate the virtual address into a physical
address. If the requested virtual page is not resident, the PageFault procedure is invoked to make the
page resident. Once the requested page is resident, the VPN is used as an index to lookup the
corresponding PPN, which is then concatenated with the page offset to form the physical address.

The PageFault routine starts by selecting a virtual page to be replaced, writing out its contents if it’s
dirty. The selected page is then marked as not resident.

Finally the desired virtual page is read from secondary storage and the page map information updated
to reflect that it’s now resident in the newly filled physical page.

Page 494

We’ll use hardware to implement the VtoP functionality since it’s needed for every memory access.
The call to the PageFault procedure is accomplished via a page fault exception, which directs the CPU
to execute the appropriate handler software that contains the PageFault procedure.

This is a good strategy to pursue in all our implementation choices: use hardware for the operations
that need to be fast, but use exceptions to handle the (hopefully infrequent) exceptional cases in
software. Since the software is executed by the CPU, which is itself a piece of hardware, what we’re
really doing is making the tradeoff between using special-purpose hardware (e.g., the MMU) or using
general-purpose hardware (e.g., the CPU). In general, one should be skeptical of proposals to use
special-purpose hardware, reserving that choice for operations that truly are commonplace and whose
performance is critical to the overall performance of the system.

Page 495

There are three architectural parameters that characterize a virtual memory system and hence the
architecture of the MMU.

P is the number of address bits used for the page offset in both virtual and physical addresses. V is the
number of address bits used for the virtual page number. And M is the number of address bits used for
the physical page number. All the other parameters, listed on the right, are derived from these three
parameters.

As mentioned earlier, the typical page size is between 4KB and 16KB, the sweet spot in the tradeoff
between the downside of using physical memory to hold unwanted locations and the upside of reading
as much as possible from secondary storage so as to amortize the high cost of accessing the initial word
over as many words as possible.

The size of the virtual address is determined by the ISA. We’re now making the transition from 32-bit
architectures, which support a 4 gigabyte virtual address space, to 64-bit architectures, which support a
16 exabyte virtual address space. “Exa” is the SI prefix for - a 64-bit address can access a lot of
memory!

The limitations of a small virtual address have been the main cause for the extinction of many ISAs. Of
course, each generation of engineers thinks that the transition they make will be the final one! I can
remember when we all thought that 32 bits was an unimaginably large address. Back then we’re buying
memory by the megabyte and only in our fantasies did we think one could have a system with several
thousand megabytes. Today’s CPU architects are feeling pretty smug about 64 bits — we’ll see how
they feel in a couple of decades!

The size of physical addresses is currently between 30 bits (for embedded processors with modest
memory needs) and 40+ bits (for servers that handle large data sets). Since CPU implementations are
expected to change every couple of years, the choice of physical memory size can be adjusted to match
current technologies. Since programmers use virtual addresses, they’re insulated from this
implementation choice. The MMU ensures that existing software will continue to function correctly

1018

Page 496

with different sizes of physical memory. The programmer may notice differences in performance, but
not in basic functionality.

Page 497

For example, suppose our system supported a 32-bit virtual address, a 30-bit physical address and a
4KB page size. So , , and .

There are physical pages, which is in our example.

There are virtual pages, which is in our example.

And since there is one entry in the page map for each virtual page, there are (approximately one
million) page map entries.

Each page map entry contains a PPN, an R bit and a D bit, for a total of m+2 bits, which is 20 bits in
our example. So there are approximately 20 million bits in the page map.

If we were thinking of using a large special-purpose static RAM to hold the page map, this would get
pretty expensive!

p = 12 v = 32 − 12 = 20 m = 30— 12 = 18

2m 218

2v 220

220

Page 498

But why use a special-purpose memory for the page map? Why not use a portion of main memory,
which we have a lot of and have already bought and paid for!

We could use a register, called the page map pointer, to hold the address of the page map array in main
memory. In other words, the page map would occupy some number of dedicated physical pages. Using
the desired virtual page number as an index, the hardware could perform the usual array access
calculation to fetch the needed page map entry from main memory.

The downside of this proposed implementation is that it now takes two accesses to physical memory to
perform one virtual access: the first to retrieve the page table entry needed for the virtual-to-physical
address translation, and the second to actually access the requested location.

Page 499

Once again, caches to the rescue. Most systems incorporate a special-purpose cache, called a
translation look-aside buffer (TLB), that maps virtual page numbers to physical page numbers. The
TLB is usually small and quite fast. It’s usually fully-associative to ensure the best possible hit ratio by
avoiding collisions. If the PPN is found by using the TLB, the access to main memory for the page
table entry can be avoided, and we’re back to a single physical access for each virtual access.

The hit ratio of a TLB is quite high, usually better than 99%. This isn’t too surprising since locality and
the notion of a working set suggest that only a small number of pages are in active use over short
periods of time.

As we’ll see in a few slides, there are interesting variations to this simple TLB page-map-in-main-
memory architecture. But the basic strategy will remain the same.

Page 500

Putting it all together: the virtual address generated by the CPU is first processed by the TLB to see if
the appropriate translation from VPN to PPN has been cached. If so, the main memory access can
proceed directly.

If the desired mapping is not in the TLB, the appropriate entry in the page map is accessed in main
memory. If the page is resident, the PPN field of the page map entry is used to complete the address
translation. And, of course, the translation is cached in the TLB so that subsequent accesses to this
page can avoid the access to the page map.

If the desired page is not resident, the MMU triggers a page fault exception and the page fault handler
code will deal with the problem.

Page 501

Here’s a final example showing all the pieces in action. In this example, , , and
.

How many pages can reside in physical memory at one time? There are physical pages, so .

How many entries are there in the page table? There’s one entry for each virtual page and there are
virtual pages, so there are entries in the page table.

How many bits per entry in the page table? Assume each entry holds the PPN, the resident bit, and the
dirty bit. Since the PPN is m bits, there are bits in each entry, so 16 bits.

How many pages does the page table occupy? There are page table entries, each occupying
 bytes, so the total size of the page table in this example is bytes. Each page holds

 bytes, so the page table occupies pages.

What fraction of virtual memory can be resident at any given time? There are virtual pages, of
which can be resident. So the fraction of resident pages is .

What is the physical address for virtual address 0x1804? Which MMU components are involved in the
translation? First we have have decompose the virtual address into VPN and offset. The offset is the
low-order 10 bits, so is 0x004 in this example. The VPN is the remaining address bits, so the VPN is
0x6. Looking first in the TLB, we that the VPN-to-PPN mapping for VPN 0x6 is cached, so we can
construct the physical address by concatenating the PPN (0x2) with the 10-bit offset (0x4) to get a
physical address of 0x804. You’re right! It’s a bit of pain to do all the bit manipulations when p is not a
multiple of 4.

How about virtual address 0x1080? For this address the VPN is 0x4 and the offset is 0x80. The
translation for VPN 0x4 is not cached in the TLB, so we have to check the page map, which tells us
that the page is resident in physical page 5. Concatenating the PPN and offset, we get 0x1480 as the
physical address.

p = 10 v = 22 m = 14

2m 214

2v

222

m + 2

2v

(m + 2)/8 223

2p = 210 223/210 = 213

2v

2m 2m/2v = 214/222 = 1/28

Page 502

Finally, how about virtual address 0x0FC? Here the VPN is 0 and the offset 0xFC. The mapping for
VPN 0 is not found in the TLB and checking the page map reveals that VPN 0 is not resident in main
memory, so a page fault exception is triggered.

There are a few things to note about the example TLB and page map contents. Note that a TLB entry
can be invalid (it’s R bit is 0). This can happen when a virtual page is replaced, so when we change the
R bit to 0 in the page map, we have to do the same in the TLB. And should we be concerned that PPN
0x5 appears twice in the page table? Note that the entry for VPN 0x3 doesn’t matter since it’s R bit is
0. Typically when marking a page not resident, we don’t bother to clear out the other fields in the entry
since they won’t be used when R=0. So there’s only one *valid* mapping to PPN 5.

Page 503

The page map provides the context for interpreting virtual addresses, i.e., it provides the information
needed to correctly determine where to find a virtual address in main memory or secondary storage.

Several programs may be simultaneously loaded into main memory, each with its own context. Note
that the separate contexts ensure that the programs don’t interfere which each other. For example, the
physical location for virtual address 0 in one program will be different than the physical location for
virtual address 0 in another program. Each program operates independently in its own virtual address
space. It’s the context provided by the page map that allows them to coexist and share a common
physical memory. So we need to switch contexts when switching programs. This is accomplished by
reloading the page map.

Page 504

In a timesharing system, the CPU will periodically switch from running one program to another, giving
the illusion that multiple programs are each running on their own virtual machine. This is
accomplished by switching contexts when switching the CPU state to the next program.

There’s a privileged set of code called the operating system (OS) that manages the sharing of one
physical processor and main memory amongst many programs, each with its own CPU state and virtual
address space. The OS is effectively creating many virtual machines and choreographing their
execution using a single set of shared physical resources.

The OS runs in a special OS context, which we call the kernel. The OS contains the necessary
exception handlers and timesharing support. Since it has to manage physical memory, it’s allowed to
access any physical location as it deals with page faults, etc. Exceptions in running programs cause the
hardware to switch to the kernel context, which we call entering “kernel mode”. After the exception
handling is complete, execution of the program resumes in what we call “user mode”.

Since the OS runs in kernel mode it has privileged access to many hardware registers that are
inaccessible in user mode. These include the MMU state, I/O devices, and so on. User-mode programs
that need to access, say, the disk, need to make a request to the OS kernel to perform the operation,
giving the OS the chance to vet the request for appropriate permissions, etc. We’ll see how all of this
works in an upcoming lecture.

Page 505

User-mode programs (aka applications) are written as if they have access to the entire virtual address
space. They often obey the same conventions such as the address of the first instruction in the program,
the initial value for the stack pointer, etc. Since all these virtual addresses are interpreted using the
current context, by controlling the contexts the OS can ensure that the programs can coexist without
conflict.

The diagram on the right shows a standard plan for organizing the virtual address space of an
application. Typically the first virtual page is made inaccessible, which helps catch errors involving
references to initialized (i.e., zero-valued) pointers. Then come some number of read-only pages that
hold the application’s code and perhaps the code from any shared libraries it uses. Marking code pages
as read-only avoids hard-to-find bugs where errant data accesses inadvertently change the program!

Then there are read-write pages holding the application’s statically allocated data structures. The rest of
the virtual address space is divided between two data regions that can grow over time. The first is the
application’s stack, used to hold procedure activation records. Here we show it located at the lower end
of the virtual address space since our convention is that the stack grows towards higher addresses.

The other growable region is the heap, used when dynamically allocating storage for long-lived data
structures. “Dynamically” means that the allocation and deallocation of objects is done by explicit
procedure calls while the application is running. In other words, we don’t know which objects will be
created until the program actually executes. As shown here, as the heap expands it grows towards
lower addresses.

The page fault handler knows to allocate new pages when these regions grow. Of course, if they ever
meet somewhere in the middle and more space is needed, the application is out of luck — it’s run out
of virtual memory!

Page 506

There are a few MMU implementation details we can tweak for more efficiency or functionality.

In our simple page-map implementation, the full page map occupies some number of physical pages.
Using the numbers shown here, if each page map occupies one word of main memory, we’d need
words (or pages) to hold the page table. If we have multiple contexts, we would need multiple page
tables, and the demands on our physical memory resources would start to get large.

The MMU implementation shown here uses a hierarchical page map. The top 10 bits of virtual address
are used to access a “page directory”, which indicates the physical page that holds the page map for
that segment of the virtual address space. The key idea is that the page map segments are in virtual
memory, i.e., they don’t all have to be resident at any given time. If the running application is only
actively using a small portion of its virtual address space, we may only need a handful of pages to hold
the page directory and the necessary page map segments. The resultant savings really add up when
there are many applications, each with their own context.

In this example, note that the middle entries in the page directory, i.e., the entries corresponding to the
as-yet unallocated virtual memory between the stack and heap, are all marked as not resident. So no
page map resources need be devoted to holding a zillion page map entries all marked “not resident”.

Accessing the page map now requires two access to main memory (first to the page directory, then to
the appropriate segment of the page map), but the TLB makes the impact of that additional access
negligible.

220

212

Page 507

Normally when changing contexts, the OS would reload the page-table pointer to point to the
appropriate page table (or page table directory if we adopt the scheme from the previous slide). Since
this context switch in effect changes all the entries in the page table, the OS would also have to
invalidate all the entries in the TLB cache. This naturally has a huge impact on the TLB hit ratio and
the average memory access time takes a huge hit because of the all page map accesses that are now
necessary until the TLB is refilled.

To reduce the impact of context switches, some MMUs include a context-number register whose
contents are concatenated with the virtual page number to form the query to the TLB. Essentially this
means that the tag field in the TLB cache entries will expand to include the context number provided at
the time the TLB entry was filled.

To switch contexts, the OS would now reload both the context-number register and the page-table
pointer. With a new context number, entries in the TLB for other contexts would no longer match, so
no need to flush the TLB on a context switch. If the TLB has sufficient capacity to cache the VPN-to-
PPN mappings for several contexts, context switches would no longer have a substantial impact on
average memory access time.

Page 508

Finally, let’s return to the question about how to incorporate both a cache and an MMU into our
memory system.

The first choice is to place the cache between the CPU and the MMU, i.e., the cache would work on
virtual addresses. This seems good: the cost of the VPN-to-PPN translation is only incurred on a cache
miss. The difficulty comes when there’s a context switch, which changes the effective contents of
virtual memory. After all that was the point of the context switch, since we want to switch execution to
another program. But that means the OS would have to invalidate all the entries in the cache when
performing a context switch, which makes the cache miss ratio quite large until the cache is refilled. So
once again the performance impact of a context switch would be quite high.

We can solve this problem by caching physical addresses, i.e., placing the cache between the MMU
and main memory. Thus the contents of the cache are unaffected by context switches — the requested
physical addresses will be different, but the cache handles that in due course. The downside of this
approach is that we have to incur the cost of the MMU translation before we can start the cache access,
slightly increasing the average memory access time.

Page 509

But if we’re clever we don’t have to wait for the MMU to finish before starting the access to the cache.
To get started, the cache needs the line number from the virtual address in order to fetch the appropriate
cache line. If the address bits used for the line number are completely contained in the page offset of
the virtual address, those bits are unaffected by the MMU translation, and so the cache lookup can
happen in parallel with the MMU operation.

Once the cache lookup is complete, the tag field of the cache line can be compared with the appropriate
bits of the physical address produced by the MMU. If there was a TLB hit in the MMU, the physical
address should be available at about the same time as the tag field produced by the cache lookup.

By performing the MMU translation and cache lookup in parallel, there’s usually no impact on the
average memory access time! Voila, the best of both worlds: a physically addressed cache that incurs
no time penalty for MMU translation.

One final detail: one way to increase the capacity of the cache is to increase the number of cache lines
and hence the number of bits of address used as the line number. Since we want the line number to fit
into the page offset field of the virtual address, we’re limited in how many cache lines we can have.
The same argument applies to increasing the block size. So to increase the capacity of the cache our
only option is to increase the cache associativity, which adds capacity without affecting the address bits
used for the line number.

Page 510

That’s it for our discussion of virtual memory. We use the MMU to provide the context for mapping
virtual addresses to physical addresses. By switching contexts we can create the illusion of many
virtual address spaces, so many programs can share a single CPU and physical memory without
interfering with each other.

We discussed using a page map to translate virtual page numbers to physical page numbers. To save
costs, we located the page map in physical memory and used a TLB to eliminate the cost of accessing
the page map for most virtual memory accesses. Access to a non-resident page causes a page fault
exception, allowing the OS to manage the complexities of equitably sharing physical memory across
many applications.

We saw that providing contexts was the first step towards creating virtual machines, which is the topic
of our next lecture.

Page 511

17: Virtualizing the Processor

1. Review: Virtual Memory
2. MMU Address Translation
3. Contexts
4. Building a Virtual Machine (VM)
5. One VM For Each Process
6. Processes: Multiplexing the CPU
7. Key Technology: Timer Interrupts
8. Beta Interrupt Handling
9. Example: Timer Interrupt Handler

10. Interrupt Handler Coding
11. Simple Timesharing Scheduler
12. OS Organization: Processes
13. One Interrupt at a Time
14. Exception Hardware
15. Exception Handling
16. Useful Macros
17. Illop Handler
18. Accessing User Locations
19. Handler for Actual Illops
20. Emulated Instruction: swapreg(Ra,Rc)
21. Communicationg with the OS
22. OS Organization: Supervisor Calls
23. Handler for SVCs
24. Returning to User-mode
25. Adding New SVCs
26. New SVC Handlers

Page 512

In the last lecture we introduced the notion of virtual memory and added a Memory Management Unit
(MMU) to translate the virtual addresses generated by the CPU to the physical addresses sent to main
memory. This gave us the ability to share physical memory between many running programs while still
giving each program the illusion of having its own large address space.

Both the virtual and physical address spaces are divided into a sequence of pages, each holding some
fixed number of locations. For example if each page holds bytes, a 32-bit address space would
have pages. In this example the 32-bit address can be thought of as having two fields:
a 20-bit page number formed from the high-order address bits and a 12-bit page offset formed from the
low-order address bits. This arrangement ensures that nearby data will be located on the same page.

The MMU translates virtual page numbers into physical page numbers using a page map. Conceptually
the page map is an array where each entry in the array contains a physical page number along with a
couple of bits indicating the page status. The translation process is simple: the virtual page number is
used as an index into the array to fetch the corresponding physical page number. The physical page
number is then combined with the page offset to form the complete physical address.

In the actual implementation the page map is usually organized into multiple levels, which permits us
to have resident only the portion of the page map we’re actively using. And to avoid the costs of
accessing the page map on each address translation, we use a cache (called the translation look-aside
buffer) to remember the results of recent VPN-to-PPN translations.

All allocated locations of each virtual address space can be found on secondary storage. Note that they
may not necessarily be resident in main memory. If the CPU attempts to access a virtual address that’s
not resident in main memory, a page fault is signaled and the operating system will arrange to move the
desired page from second storage into main memory. In practice, only the active pages for each
program are resident in main memory at any given time.

212
232/212 = 220

Page 513

Here’s a diagram showing the translation process. First we check to see if the required VPN-to-PPN
mapping is cached in the TLB. If not, we have to access the hierarchical page map to see if the page is
resident and, if so, lookup its physical page number. If we discover that the page is not resident, a page
fault exception is signaled to the CPU so that it can run a handler to load the page from secondary
storage.

Note that access to a particular mapping context is controlled by two registers. The context-number
register controls which mappings are accessible in the TLB. And the page-directory register indicates
which physical page holds the top tier of the hierarchical page map. We can switch to another context
by simply reloading these two registers.

To effectively accommodate multiple contexts we’ll need to have sufficient TLB capacity to
simultaneously cache the most frequent mappings for all the processes. And we’ll need some number
of physical pages to hold the required page directories and segments of the page tables. For example,
for a particular process, three pages will suffice hold the resident two-level page map for 1024 pages at
each end of the virtual address space, providing access to up to 8MB of code, stack, and heap, more
than enough for many simple programs.

Page 514

The page map creates the context needed to translate virtual addresses to physical addresses. In a
computer system that’s working on multiple tasks at the same time, we would like to support multiple
contexts and be able to quickly switch from one context to another.

Multiple contexts would allow us to share physical memory between multiple programs. Each program
would have an independent virtual address space, e.g., two programs could both access virtual address
0 as the address of their first instruction and would end up accessing different physical locations in
main memory. When switching between programs, we’d perform a “context switch” to move to the
appropriate MMU context.

The ability to share the CPU between many programs seems like a great idea! Let’s figure out the
details of how that might work...

Page 515

Let’s create a new abstraction called a “process” to capture the notion of a running program. A process
encompasses all the resources that would be used when running a program including those of the CPU,
the MMU, input/output devices, etc. Each process has a “state” that captures everything we know
about its execution.

The process state includes

the hardware state of the CPU, i.e., the values in the registers and program counter.

the contents of the process’ virtual address space, including code, data values, the stack, and
data objects dynamically allocated from the heap. Under the management of the MMU, this
portion of the state can be resident in main memory or can reside in secondary storage.

the hardware state of the MMU, which, as we saw earlier, depends on the context-number and
page-directory registers. Also included are the pages allocated for the hierarchical page map.

additional information about the process’ input and output activities, such as where it has
reached in reading or writing files in the file system, the status and buffers associated with open
network connections, pending events from the user interface (e.g., keyboard characters and
mouse clicks), and so on.

As we’ll see, there is a special, privileged process, called the operating system (OS), running in its own
kernel-mode context. The OS manages all the bookkeeping for each process, arranging for the process
run periodically. The OS will provide various services to the processes, such as accessing data in files,
establishing network connections, managing the window system and user interface, and so on.

To switch from running one user-mode process to another, the OS will need to capture and save the
entire state of the current user-mode process. Some of it already lives in main memory, so we’re all
set there. Some of it will be found in various kernel data structures. And some of it we’ll need to be
able to save and restore from the various hardware resources in the CPU and MMU. In order to
successfully implement processes, the OS must be able to make it seem as if each process was running

Page 516

on its own “virtual machine” that works independently of other virtual machines for other processes.
Our goal is to efficiently share one physical machine between all the virtual machines.

Page 517

Here’s a sketch of the organization we’re proposing. The resources provided by a physical machine are
shown at the bottom of the slide. The CPU and main memory form the computation engine at heart of
the system. Connected to the CPU are various peripherals, a collective noun coined from the English
word “periphery” that indicates the resources surrounding the CPU.

A timer generates periodic CPU interrupts that can be used to trigger periodic actions.

Secondary storage provides high-capacity non-volatile memories for the system.

Connections to the outside world are important too. Many computers include USB connections for
removable devices. And most provide wired or wireless network connections.

And finally there are usually video monitors, keyboards and mice that serve as the user interface.
Cameras and microphones are becoming increasing important as the next generation of user interface.

The physical machine is managed by the OS running in the privileged kernel context. The OS handles
the low-level interfaces to the peripherals, initializes and manages the MMU contexts, and so on. It’s
the OS that creates the virtual machine seen by each process.

User-mode programs run directly on the physical processor, but their execution can be interrupted by
the timer, giving the OS the opportunity to save away the current process state and move to running the
next process. Via the MMU, the OS provides each process with an independent virtual address space
that’s isolated from the actions of other processes.

The virtual peripherals provided by the OS isolate the process from all the details of sharing resources
with other processes. The notion of a window allows the process to access a rectangular array of pixels
without having to worry if some pixels in the window are hidden by other windows. Or worrying about
how to ensure the mouse cursor always appears on top of whatever is being displayed, and so on.
Instead of accessing I/O devices directly, each process has access to a stream of I/O events that are
generated when a character is typed, the mouse is clicked, etc. For example, the OS deals with how to
determine which typed characters belong to which process. In most window systems, the user clicks on

Page 518

a window to indicate that the process that owns the window now has the keyboard focus and should
receive any subsequent typed characters. And the position of the mouse when clicked might determine
which process receives the click. All of which is to say that the details of sharing have been abstracted
out of the simple interface provided by the virtual peripherals.

The same is true of accessing files on disk. The OS provides the useful abstraction of having each file
appear as a contiguous, growable array of bytes that supports read and write operations. The OS knows
how the file is mapped to a pool of sectors on the disk and deals with bad sectors, reducing
fragmentation, and improving throughput by doing read look-aheads and write behinds.

For networks, the OS provides access to an in-order stream of bytes to some remote socket. It
implements the appropriate network protocols for packetizing the stream, addressing the packets, and
dealing with dropped, damaged, or out-of-order packets.

To configure and control these virtual services, the process communicates with the OS using supervisor
calls (SVCs), a type of controlled-access procedure call that invokes code in the OS kernel.

The details of the design and implementation of each virtual service are beyond the scope of this
course. If you’re interested, a course on operating systems will explore each of these topics in detail.

The OS provides an independent virtual machine for each process, periodically switching from running
one process to running the next process.

Page 519

Let’s follow along as we switch from running process #0 to running process #1.

Initially, the CPU is executing user-mode code in process #0. That execution is interrupted, either by an
explicit yield by the program, or, more likely, by a timer interrupt. Either ends up transferring control to
OS code running in kernel mode, while saving the current PC+4 value in the XP register. We’ll talk
about the interrupt mechanism in more detail in just a moment.

The OS saves the state of process #0 in the appropriate table in kernel storage. Then it reloads the state
from the kernel table for process #1. Note that the process #1 state was saved when process #1 was
interrupted at some earlier point.

The OS then uses a JMP() to resume user-mode execution using the newly restored process #1 state.
Execution resumes in process #1 just where it was when interrupted earlier.

And now we’re running the user-mode program in process #1.

We’ve interrupted one process and resumed execution of another. We’ll keep doing this in a round-
robin fashion, giving each process a chance to run, before starting another round of execution.

The black arrows give a sense for how time proceeds. For each process, virtual time unfolds as a
sequence of executed instructions. Unless it looks at a real-time clock, a process is unaware that
occasionally its execution is suspended for a while. The suspension and resumption are completely
transparent to a running process.

Of course, from the outside we can see that in real time, the execution path moves from process to
process, visiting the OS during switches, producing the dove-tailed execution path we see here.

Time-multiplexing of the CPU is called “timesharing” and we’ll examine the implementation in more
detail in the following segment.

Page 520

A key technology for timesharing is the periodic interrupt from the external timer device. Let’s remind
ourselves how the interrupt hardware in the Beta works.

External devices request an interrupt by asserting the Beta’s interrupt request (IRQ) input. If the Beta is
running in user mode, i.e., the supervisor bit stored in the PC is 0, asserting IRQ will trigger the
following actions on the clock cycle the interrupt is recognized.

The goal is to save the current PC+4 value in the XP register and force the program counter (PC) to a
particular kernel-mode instruction, which starts the execution of the interrupt handler code. The normal
process of generating control signals based on the current instruction is superseded by forcing
particular values for some of the control signals.

PCSEL is set to 4, which selects a specified kernel-mode address as the next value of the program
counter. The address chosen depends on the type of external interrupt. In the case of the timer interrupt,
the address is 0x80000008. Note that PC[31], the supervisor bit, is being set to 1 and the CPU will be
in kernel-mode as it starts executing the code of the interrupt handler.

The WASEL, WDSEL, and WERF control signals are set so that PC+4 is written into the XP register
(i.e., R30) in the register file.

And, finally, MWR is set to 0 to ensure that if we’re interrupting a ST instruction that its execution is
aborted correctly.

So in the next clock cycle, execution starts with the first instruction of the kernel-mode interrupt
handler, which can find the PC+4 of the interrupted instruction in the XP register of the CPU.

Page 521

As we can see the interrupt hardware is pretty minimal: it saves the PC+4 of the interrupted user-mode
program in the XP register and sets the program counter to some predetermined value that depends on
which external interrupt happened.

The remainder of the work to handle the interrupt request is performed in software. The state of the
interrupted process, e.g., the values in the CPU registers R0 through R30, is stored in main memory in
an OS data structure called UserMState. Then the appropriate handler code, usually a procedure written
in C, is invoked to do the heavy lifting. When that procedure returns, the process state is reloaded from
UserMState. The OS subtracts 4 from the value in XP, making it point to the interrupted instruction and
then resumes user-mode execution with a JMP(XP).

Note that in our simple Beta implementation the first instructions for the various interrupt handlers
occupy consecutive locations in main memory. Since interrupt handlers are longer than one instruction,
this first instruction is invariably a branch to the actual interrupt code. Here we see that the reset
interrupt (asserted when the CPU first starts running) sets the PC to 0, the illegal instruction interrupt
sets the PC to 4, the timer interrupt sets the PC to 8, and so on. In all cases, bit 31 of the new PC value
is set to 1 so that handlers execute in supervisor or kernel mode, giving them access to the kernel
context.

A common alternative is provide a table of new PC values at a known location and have the interrupt
hardware access that table to fetch the PC for the appropriate handler routine. This provides the same
functionality as our simple Beta implementation.

Since the process state is saved and restored during an interrupt, interrupts are transparent to the
running user-mode program. In essence, we borrow a few CPU cycles to deal with the interrupt, then
it’s back to normal program execution.

Page 522

Here’s how the timer interrupt handler would work. Our initial goal is to use the timer interrupt to
update a data value in the OS that records the current time of day (TOD). Let’s assume the timer
interrupt is triggered every 1/60th of a second.

A user-mode program executes normally, not needing to make any special provision to deal with timer
interrupts. Periodically the timer interrupts the user-mode program to run the clock interrupt handler
code in the OS, then resumes execution of the user-mode program. The program continues execution
just as if the interrupt had not occurred. If the program needs access to the TOD, it makes the
appropriate service request to the OS.

The clock handler code in the OS starts and ends with a small amount of assembly-language code to
save and restore the state. In the middle, the assembly code makes a C procedure call to actually handle
the interrupt.

Page 523

Here’s what the handler code might look like. In C, we find the declarations for the TOD data value
and the structure, called UserMState, that temporarily holds the saved process state.

There’s also the C procedure for incrementing the TOD value.

A timer interrupt executes the BR() instruction at location 8, which branches to the actual interrupt
handler code at CLOCK_H. The code first saves the values of all the CPU registers into the
UserMState data structure. Note that we don’t save the value of R31 since its value is always 0.

After setting up the kernel-mode stack, the assembly-language stub calls the C procedure above to do
the hard work. When the procedure returns, the CPU registers are reloaded from the saved process state
and the XP register value decremented by 4 so that it will point to the interrupted instruction. Then a
JMP(XP) resumes user-mode execution.

Okay, that was simple enough. But what does this all have to do with timesharing - wasn’t our goal to
arrange to periodically switch which process was running?

Aha! We have code that runs on every timer interrupt, so let’s modify it so that every so often we
arrange to call the OS’ Scheduler() routine. In this example, we’d set the constant QUANTUM to 2 if
we wanted to call Scheduler() every second timer interrupt.

The Scheduler() subroutine is where the time sharing magic happens!

Page 524

Here we see the UserMState data structure from the previous slide where the user-mode process state is
stored during interrupts.

And here’s an array of process control block (PCB) data structures, one for each process in the system.
The PCB holds the complete state of a process when some other process is currently executing - it’s the
long-term storage for processor state! As you can see, it includes a copy of MState with the process’
register values, the MMU state, and various state associated with the process’ input/output activities,
represented here by a number indicating which virtual user-interface console is attached to the process.

There are N processes altogether. The variable CUR gives the index into ProcTable for the currently
running process.

And here’s the surprisingly simple code for implementing timesharing. Whenever the Scheduler()
routine is called, it starts by moving the temporary saved state into the PCB for the current process. It
then increments CUR to move to the next process, making sure it wraps back around to 0 when we’ve
just finished running the last of the N processes. It then loads reloads the temporary state from the PCB
of the new process and sets up the MMU appropriately.

At this point Scheduler() returns and the clock interrupt handler reloads the CPU registers from the
updated temporary saved state and resumes execution. Voila! We’re now running a new process...

Page 525

Let’s use this diagram to once again walk through how time sharing works. At the top of the diagram
you’ll see the code for the user-mode processes, and below the OS code along with its data structures.

The timer interrupts the currently running user-mode program and starts execution of the OS’ clock
handler code. The first thing the handler does is save all the registers into the UserMState data
structure.

If the Scheduler() routine is called, it moves the temporarily saved state into the PCB, which provides
the long-term storage for a process’ state. Next Scheduler() copies the saved state for the next process
into the temporary holding area. Then the clock handler reloads the updated state into the CPU
registers and resumes execution, this time running code in the new process.

Page 526

While we’re looking at the OS, note that since its code runs with the supervisor mode bit set to 1,
interrupts are disabled while in the OS. This prevents the awkward problem of getting a second
interrupt while still in the middle of handling a first interrupt, a situation that might accidentally
overwrite the state in UserMState. But that means one has to be very careful when writing OS code.
Any sort of infinite loop can never be interrupted. You may have experienced this when your machine
appears to freeze, accepting no inputs and just sitting there like a lump. At this point, your only choice
is to power-cycle the hardware (the ultimate interrupt!) and start afresh.

Interrupts are allowed during execution of user-mode programs, so if they run amok and need to be
interrupted, that’s always possible since the OS is still responding to, say, keyboard interrupts. Every
OS has a magic combination of keystrokes that is guaranteed to suspend execution of the current
process, sometimes arranging to make copy of the process state for later debugging. Very handy!

Page 527

Another service provided by operating system is dealing properly with the attempt to execute
instructions with “illegal” opcodes. Illegal is quotes because that just means opcodes whose operations
aren’t implemented directly by the hardware. As we’ll see, it’s possible extend the functionality of the
hardware via software emulation.

The action of the CPU upon encountering an illegal instruction (sometimes referred to as an
unimplemented user operation or UUO) is very similar to how it processes interrupts. Think of illegal
instructions as an interrupt caused directly by the CPU! As for interrupts, the execution of the current
instruction is suspended and the control signals are set to values to capture PC+4 in the XP register and
set the PC to, in this case, 0x80000004. Note that bit 31 of the new PC, aka the supervisor bit, is set to
1, meaning that the OS handler will have access to the kernel-mode context.

Page 528

Here’s some code similar to that found in the Tiny Operating System (TinyOS), which you’ll be
experimenting with in the final lab assignment. Let’s do a quick walk-through of the code executed
when an illegal instruction is executed. Starting at location 0, we see the branches to the handlers for
the various interrupts and exceptions. In the case of an illegal instruction, the BR(I_IllOp) in location
4 will be executed.

Immediately following is where the OS data structures are allocated. This includes space for the OS
stack, UserMState where user-mode register values are stored during interrupts, and the process table,
providing long-term storage for the complete state of each process while another process is executing.

Page 529

When writing in assembly language, it’s convenient to define macros for operations that are used
repeatedly. We can use a macro call whenever we want to perform the action and the assembler will
insert the body of the macro in place of the macro call, performing a lexical substitution of the macro’s
arguments.

Here’s a macro for a two-instruction sequence that extracts a particular field of bits from a 32-bit value.
M is the bit number of the left-most bit, N is bit number of the right-most bit. Bits are numbered 0
through 31, where bit 31 is the most-significant bit, i.e., the one at the left end of the 32-bit binary
value.

And here are some macros that expand into instruction sequences that save and restore the CPU
registers to or from the UserMState temporary storage area.

Page 530

With those macros in hand, let’s see how illegal opcodes are handled...

Like all interrupt handlers, the first action is to save the user-mode registers in the temporary storage
area and initialize the OS stack.

Next, we fetch the illegal instruction from the user-mode program. Note that the saved PC+4 value is a
virtual address in the context of the interrupted program. So we’ll need to use the MMU routines to
compute the correct physical address - more about this on the next slide.

Then we’ll use the opcode of the illegal instruction as an index into a table of subroutine addresses, one
for each of the 64 possible opcodes. Once we have the address of the handler for this particular illegal
opcode, we JMP there to deal with the situation.

Selecting a destination from a table of addresses is called “dispatching” and the table is called the
“dispatch table”. If the dispatch table contains many different entries, dispatching is much more
efficient in time and space than a long series of compares and branches. In this case, the table is
indicating that the handler for most illegal opcodes is the UUOError routine, so it might have smaller
and faster simply to test for the two illegal opcodes the OS is going to emulate.

Illegal opcode 1 will be used to implement procedure calls from user-mode to the OS, which we call
supervisor calls. More on this in the next segment.

As an example of having the OS emulate an instruction, we’ll use illegal opcode 2 as the opcode for
the SWAPREG instruction, which we’ll discuss now.

Page 531

But first just a quick look at how the OS converts user-mode virtual addresses into physical addresses it
can use. We’ll build on the MMU VtoP procedure, described in the previous lecture. This procedure
expects as its arguments the virtual page number and offset fields of the virtual address, so, following
our convention for passing arguments to C procedures, these are pushed onto the stack in reverse order.
The corresponding physical address is returned in R0.

We can then use the calculated physical address to read the desired location from physical memory.

Page 532

Okay, back to dealing with illegal opcodes. Here’s the handler for opcodes that are truly illegal. In this
case the OS uses various kernel routines to print out a helpful error message on the user’s console, then
crashes the system! You may have seen these “blue screens of death” if you run the Windows operating
system, full of cryptic hex numbers.

Actually, this wouldn’t be the best approach to handling an illegal opcode in a user’s program. In a real
operating system, it would be better to save the state of the process in a special debugging file
historically referred to as a “core dump” and then terminate this particular process, perhaps printing a
short message on the user’s console to let them know what happened. Then later the user could start a
debugging program to examine the dump file to see where their bug is.

Page 533

Finally, here’s the handler that will emulate the actions of the SWAPREG instruction, after which
program execution will resume as if the instruction had been implemented in hardware. SWAPREG is
an instruction that swaps the values in the two specified registers.

To define a new instruction, we’d first have to let the assembler know to convert the swapreg(ra,rc)
assembly language statement into binary. In this case we’ll use a binary format similar to the ADDC
instruction, but setting the unused literal field to 0. The encoding for the RA and RC registers occur in
their usual fields and the opcode field is set to 2.

Emulation is surprisingly simple. First we extract the RA and RC fields from the binary for the
swapreg instruction and convert those values into the appropriate byte offsets for accessing the
temporary array of saved register values.

Then we use RA and RC offsets to access the user-mode register values that have been saved in
UserMState. We’ll make the appropriate interchange, leaving the updated register values in
UserMState, where they’ll be loaded into the CPU registers upon returning from the illegal instruction
interrupt handler.

Finally, we’ll branch to the kernel code that restores the process state and resumes execution. We’ll see
this code in the next segment.

Page 534

User-mode programs need to communicate with the OS to request service or get access to useful OS
data like the time of day. But if they’re running in a different MMU context than the OS, they don’t
have direct access to OS code and data. And that might be bad idea in any case: the OS is usually
responsible for implementing security and access policies and other users of the system would be upset
if any random user program could circumvent those protections.

What’s needed is the ability for user-mode programs to call OS code at specific entry points, using
registers or the user-mode virtual memory to send or receive information. We’d use these “supervisor
calls” to access a well-documented and secure OS application programming interface (API). An
example of such an interface is POSIX, a standard interface implemented by many Unix-like operating
systems.

As it turns out, we have a way of transferring control from a user-mode program to a specific OS
handler - just execute an illegal instruction! We’ll adopt the convention of using illegal instructions
with an opcode field of 1 to serve as supervisor calls. The low order bits of these SVC instructions will
contain an index indicating which SVC service we’re trying to access.

Let’s see how this would work.

Page 535

https://en.wikipedia.org/wiki/POSIX

Here’s our user-mode/kernel-mode diagram again. Note that the user-mode programs contain
supervisor calls with different indices, which when executed are intended to serve as requests for
different OS services.

When an SVC instruction is executed, the hardware detects the opcode field of 1 as an illegal
instruction and triggers an exception that runs the OS IllOp handler, as we saw in the previous
segment.

The handler saves the process state in the temporary storage area, then dispatches to the appropriate
handler based on the opcode field. This handler can access the user’s registers in the temporary storage
area, or using the appropriate OS subroutines can access the contents of any user-mode virtual address.
If information is to be returned to the user, the return values can be stored in the temporary storage
area, overwriting, say, the saved contents of the user’s R0 register. Then, when the handler completes,
the potentially-updated saved register values are reloaded into the CPU registers and execution of the
user-mode program resumes at the instruction following the supervisor call.

Page 536

Earlier we saw how the illegal instruction handler uses a dispatch table to choose the appropriate sub-
handler depending on the opcode field of the illegal instruction.

In this slide we see the sub-handler for SVC instructions, i.e., those with an opcode field of 1. This
code uses the low-order bits of the instruction to access another dispatch table to select the appropriate
code for each of the eight possible SVCs.

Our Tiny OS only has a meagre selection of simple services. A real OS would have SVCs for accessing
files, dealing with network connections, managing virtual memory, spawning new processes, and so on.

Page 537

Here’s the code for resuming execution of the user-mode process when the SVC handler is done:
simply restore the saved values for the registers and JMP to resume execution at the instruction
following the SVC instruction.

There are times when for some reason the SVC request cannot not be completed and the request should
be retried in the future. For example, the ReadCh SVC returns the next character typed by the user, but
if no character has yet been typed, the OS cannot complete the request at this time. In this case, the
SVC handler should branch to I_Wait, which arranges for the SVC instruction to be re-executed next
time this process runs and then calls Scheduler() to run the next process. This gives all the other
processes a chance to run before the SVC is tried again, hopefully this time successfully.

You can see that this code also serves as the implementation for two different SVCs! A process can
give up the remainder of its current execution time slice by calling the Yield() SVC. This simply causes
the OS to call Scheduler(), suspending execution of the current process until its next turn in the round-
robin scheduling process.

And to stop execution, a process can call the Halt() SVC. Looking at the implementation, we can see
that “halt” is a bit of misnomer. What really happens is that the system arranges to re-execute the Halt()
SVC each time the process is scheduled, which then causes the OS to schedule the next process for
execution. The process appears to halt since the instruction following the Halt() SVC is never executed.

Page 538

Adding new SVC handlers is straightforward.

First we need to define new SVC macros for use in user-mode programs. In this example, we’re
defining SVCs for getting and setting the time of day.

Since these are the eighth and ninth SVCs, we need to make a small adjustment to the SVC dispatch
code and then add the appropriate entries to the end of the dispatch table.

Page 539

The code for the new handlers is equally straightforward. The handler can access the value of the
program’s R0 by looking at the correct entry in the UserMState temporary holding area. It just takes a
few instructions to implement the desired operations.

The SVC mechanism provides controlled access to OS services and data. As we’ll see in a few
lectures, it’ll be useful that SVC handlers can’t be interrupted since they are running in supervisor
mode where interrupts are disabled. So, for example, if we need to increment a value in main memory,
using a LD/ADDC/ST sequence, but we want to ensure no other process execution intervenes between
the LD and the ST, we can encapsulate the required functionality as an SVC, which is guaranteed to be
uninterruptible.

We’ve made an excellent start at exploring the implementation of a simple time-shared operating
system. We’ll continue the exploration in the next lecture when we see how the OS deals with external
input/output devices.

Page 540

18: Devices and Interrupts

1. OS Organization: I/O Devices
2. Asynchronous I/O Handling
3. Interrupt-based Asynch I/O
4. ReadKey SVC: Attempt #1
5. ReadKey SVC: Attempt #2
6. ReadKey SVC: Attempt #3
7. Sophisticated Scheduling
8. ReadKey SVC: Attempt #4
9. Example: Match Handler to OS

10. Which Handler and OS? #1
11. Which Handler and OS? #2
12. Which Handler and OS? #3
13. The Need for “Real Time”
14. Interrupt Latency
15. Sources of Interrupt Latency
16. Scheduling of Multiple Devices
17. Weak (Non-preemptive) Priorities
18. Setting Priorities
19. The Need for Preemption
20. Strong Priority Implementation
21. Recurring Interrupts
22. Interrupt Load
23. Mr. Blue Visits the ISS
24. Mr. Blue Visits the ISS (cont&rsquo'd.)
25. Summary

Page 541

Let’s turn our attention to how the operating system (OS) deals with input/output devices. There are
actually two parts to the discussion. First, we’ll talk about how the OS interacts with the devices
themselves. This will involve a combination of interrupt handlers and kernel buffers. Then we’ll
discuss how supervisor calls access the kernel buffers in response to requests from user-mode
processes. As we’ll see, this can get a bit tricky when the OS cannot complete the request at the time
the SVC was executed.

Page 542

Here’s the plan! When the user types a key on the keyboard, the keyboard triggers an interrupt request
to the CPU. The interrupt suspends execution of the currently-running process and executes the handler
whose job it is to deal with this particular I/O event.

In this case, the keyboard handler reads the character from the keyboard and saves it in a kernel buffer
associated with the process that has been chosen to receive incoming keystrokes. In the language of
OSes, we’d say that process has the keyboard focus. This transfer takes just a handful of instructions
and when the handler exits, we resume running the interrupted process.

Assuming the interrupt request is serviced promptly, the CPU can easily keep up with the arrival of
typed characters. Humans are pretty slow compared to the rate of executing instructions! But the buffer
in the kernel can hold only so many characters before it fills up. What happens then?

Well, there are a couple of choices. Overwriting characters received earlier doesn’t make much sense:
why keep later characters if the earlier ones have been discarded. Better that the CPU discard any
characters received after the buffer was full, but it should give some indication that it’s doing so. And,
in fact, many systems beep at the user to signal that the character they’ve just typed is being ignored.

At some later time, a user-mode program executes a ReadKey() supervisor call, requesting that the OS
return the next character in R0. In the OS, the ReadKey SVC handler grabs the next character from the
buffer, places it in the user’s R0, and resumes execution at the instruction following the SVC.

There are few tricky bits we need to figure out. The ReadKey() SVC is what we call a “blocking I/O”
request, i.e., the program assumes that when the SVC returns, the next character is in R0. If there isn’t
(yet) a character to be returned, execution should be “blocked”, i.e., suspended, until such time that a
character is available.

Many OSes also provide for non-blocking I/O requests, which always return immediately with both a
status flag and a result. The program can check the status flag to see if there was a character and do the
right thing if there wasn’t, e.g., reissue the request at a later time.

Page 543

Note that the user-mode program didn’t have any direct interaction with the keyboard, i.e., it’s not
constantly polling the device to see if there’s a keystroke to be processed. Instead, we’re using an
“event-driven” approach, where the device signals the OS, via an interrupt, when it needs attention.

This is an elegant separation of responsibilities. Imagine how cumbersome it would be if every
program had to check constantly to see if there were pending I/O operations. Our event-driven
organization provides for on-demand servicing of devices, but doesn’t devote CPU resources to the I/O
subsystem until there’s actually work to be done. The interrupt-driven OS interactions with I/O devices
are completely transparent to user programs.

Here’s sketch of what the OS keyboard handler code might actually look like. Depending on the
hardware, the CPU might access device status and data using special I/O instructions in the ISA. For
example, in the simulated Beta used for lab assignments, there’s a RDCHAR() instruction for reading
keyboard characters and a CLICK() instruction for reading the coordinates of a mouse click.

Another common approach is to use “memory-mapped I/O”, where a portion of the kernel address
space is devoted to servicing I/O devices. In this scheme, ordinary LD and ST store instructions are
used to access specific addresses, which the CPU recognizes as accesses to the keyboard or mouse
device interfaces. This is the scheme shown in the code here. The C data structure represents the two
I/O locations devoted to the keyboard: one for status and one for the actual keyboard data.

The keyboard interrupt handler reads the keystroke data from the keyboard and places the character
into the next location in the circular character buffer in the kernel.

In real life keyboard processing is usually a bit more complicated. What one actually reads from a
keyboard is a key number and a flag indicating whether the event is a key press or a key release.
Knowing the keyboard layout, the OS translates the key number into the appropriate ASCII character,
dealing with complications like holding down the shift key or control key to indicate a capital character
or a control character. And certain combination of keystrokes, e.g., CTRL-ALT-DEL on a Windows
system, are interpreted as special user commands to start running particular applications like the Task

Page 544

Manager. Many OSes let the user specify whether they want “raw” keyboard input (i.e., the key
numbers and status) or “digested” input (i.e., ASCII characters).

Whew! Who knew that processing keystrokes could be so complicated!

Next, we’ll figure out how to code the associated supervisor call that lets user programs read
characters.

Page 545

When a user-mode program wants to read a typed character it executes a ReadKey() SVC. The binary
representation of the SVC has an illegal value in the opcode field, so the CPU hardware causes an
exception, which starts executing the illegal opcode handler in the OS. The OS handler recognizes the
illegal opcode value as being an SVC and uses the low-order bits of the SVC instruction to determine
which sub-handler to call.

Here’s our first draft for the ReadKey sub-handler, this time written in C. The handler starts by looking
at the process table entry for the current process to determine which keyboard buffer holds the
characters for the process. Let’s assume for the moment the buffer is *not* empty and skip to the last
line, which reads the character from the buffer and uses it to replace the saved value for the user’s R0
in the array holding the saved register values. When the handler exits, the OS will reload the saved
registers and resume execution of the user-mode program with the just-read character in R0.

Now let’s figure what to do when the keyboard buffer is empty. The code shown here simply loops
until the buffer is no longer empty. The theory is that eventually the user will type a character, causing
an interrupt, which will run the keyboard interrupt handler discussed in the previous section, which will
store a new character into the buffer.

This all sounds good until we remember that the SVC handler is running with the supervisor bit
(PC[31]) set to 1, disabling interrupts. Oops! Since the keyboard interrupt will never happen, the while
loop shown here is actually an infinite loop. So if the user-mode program tries to read a character from
an empty buffer, the system will appear to hang, not responding to any external inputs since interrupts
are disabled. Time to reach for the power switch :)

Page 546

We’ll fix the looping problem by adding code to subtract 4 from the saved value of the XP register
before returning. How does this fix the problem?

Recall that when the SVC illegal instruction exception happened, the CPU stored the PC+4 value of the
illegal instruction in the user’s XP register. When the handler exits, the OS will resume execution of
the user-mode program by reloading the registers and then executing a JMP(XP), which would
normally then execute the instruction *following* the SVC instruction. By subtracting 4 from the
saved XP value, it will be the SVC itself that gets re-executed.

That, of course, means we’ll go through the same set of steps again, repeating the cycle until the
keyboard buffer is no longer empty. It’s just a more complicated loop! But with a crucial difference:
one of the instructions — the ReadKey() SVC — is executed in user-mode with PC[31] = 0. So during
that cycle, if there’s a pending interrupt from the keyboard, the device interrupt will supersede the
execution of the ReadKey() and the keyboard buffer will be filled. When the keyboard interrupt handler
finishes, the ReadKey() SVC will be executed again, this time finding that the buffer is no longer
empty. Yay!

So this version of the handler actually works, with one small caveat. If the buffer is empty, the user-
mode program will continually re-execute the complicated user-mode/kernel-mode loop until the timer
interrupt eventually transfers control to the next process. This seems pretty inefficient. Once we’ve
checked and found the buffer is empty, it would be better to give other processes a chance to run before
we try again.

Page 547

This problem is easy to fix! We’ll just add a call to Scheduler() right after arranging for the ReadKey()
SVC to be re-executed. The call to Scheduler() suspends execution of the current process and arranges
for the next process to run when the handler exits. Eventually the round-robin scheduling will come
back to the current process and the ReadKey() SVC will try again.

With this simple one-line fix the system will spend much less time wasting cycles checking the empty
buffer and instead use those cycles to run other, hopefully more productive, processes. The cost is a
small delay in restarting the program after a character is typed, but typically the time slices for each
process are small enough that one round of process execution happens more quickly than the time
between two typed characters, so the extra delay isn’t noticeable.

So now we have some insights into one of the traditional arguments against timesharing. The argument
goes as follows. Suppose we have 10 processes, each of which takes 1 second to complete its
computation. Without timesharing, the first process would be done after 1 second, the second after 2
seconds, and so on. With timesharing using, say, a 1/10 second time slice, all the processes will
complete sometime after 10 seconds since there’s a little extra time needed for the hundred or so
process switches that would happen before completion. So in a timesharing system the time-to-
completion for *all* processes is as long the worst-case completion time without time sharing! So why
bother with timesharing?

We saw one answer to this question earlier in this slide. If a process can’t make productive use of its
time slice, it can donate those cycles to completion of some other task. So in a system where most
processes are waiting for some sort of I/O, timesharing is actually a great way of spending cycles
where they’ll do the most good.

If you open the Task Manager or Activity Monitor on the system you’re using now, you’ll see there are
hundreds of processes, almost all of which are in some sort of I/O wait. So timesharing does extract a
cost when running compute-intensive computations, but in an actual system where there’s a mix of I/O
and compute tasks, time sharing is the way to go.

Page 548

We can actually go one step further to ensure we don’t run processes waiting for an I/O event that
hasn’t yet happened. We’ll add a status field to the process state indicating whether the process is
ACTIVE (e.g., status is 0) or WAITING (e.g., status is non-zero). We’ll use different non-zero values
to indicate what event the process is waiting for. Then we’ll change the Scheduler() to only run
ACTIVE processes.

To see how this works, it’s easiest to use a concrete example. The UNIX OS has two kernel
subroutines: sleep() and wakeup() both of which require a non-zero argument. The argument will be
used as the value of the status field. Let’s see this in action.

Page 549

When the ReadKey() SVC detects the buffer is empty, it calls sleep() with an argument that uniquely
identifies the I/O event it’s waiting for, in this case the arrival of a character in a particular buffer.
sleep() sets the process status to this unique identifier, then calls Scheduler().

Scheduler() has been modified to skip over processes with a non-zero status, not giving them a chance
to run. Meanwhile, a keyboard interrupt will cause the interrupt handler to add a character to the
keyboard buffer and call wakeup() to signal any process waiting on that buffer. Watch what happens
when the kbdnum in the interrupt handler matches the kbdnum in the ReadKey() handler.

wakeup() loops through all processes, looking for ones that are waiting for this particular I/O event.
When it finds one, it sets the status for the process to zero, marking it as ACTIVE. The zero status will
cause the process to run again next time the Scheduler() reaches it in its round-robin search for things
to do.

The effect is that once a process goes to sleep() WAITING for an event, it’s not considered for
execution again until the event occurs and wakeup() marks the process as ACTIVE. Pretty neat!
Another elegant fix to ensure that no CPU cycles are wasted on useless activity. I can remember how
impressed I was when I first saw this many years ago in a (very) early version of the UNIX code :)

Page 550

Here’s an old quiz problem we can use to test our understanding of all the factors that went into the
final design of our ReadKey() SVC code. We’re considering three different versions (R1, R2, and R3)
of the ReadKey() SVC code, all variants of the various attempts from the previous section. And there
are three types of systems (Models A, B, and C). We’ve been asked to match the three handlers to the
appropriate system.

Looking at R1, we see it’s similar to Attempt #2 from the previous section, except it always reads from
the same keyboard regardless of the process making the SVC request. That wouldn’t make much sense
in a timesharing system since a single stream of input characters would be shared across all the
processes. So this handler must be intended for the Model C system, which has only a single process.

Looking at R2, we see it’s similar to Attempt #1 from the previous section, which had the fatal flaw of
a potentially infinite loop if attempting to read from an empty buffer. So this code would only run
successfully on the Model B system, which *does* allow device interrupts even when the CPU is
running inside an SVC call. So the keyboard interrupt would interrupt the while loop in R2 and the
next iteration of the loop would discover that buffer was no longer empty.

By the process of elimination that leaves the R3 handler to be paired with the Model A system. R3 is
Attempt #3 from the previous section and is designed for our standard system in which the kernel is
uninterruptible.

Page 551

The problem goes on to say that a fumble-fingered summer intern has jumbled up the disks containing
the handlers and sent an unknown handler version to each user running one of the three model systems.
To atone for the mistake, he’s been assigned the task of reading various user messages sent after the
user has tried the new handler disk on their particular system. Based on the message, he’s been asked to
identify which handler disk and system the user is using.

The first message says “I get compile-time errors; Scheduler and ProcTbl are undefined.”

On the right of the slide we’ve included a table enumerating all the combinations of handlers and
systems, where we’ve X-ed the matches from the previous slide since they correspond to when the new
handler would be the same as the old handler and the user wouldn’t be sending a message!

The phrase “Scheduler and ProcTbl are undefined” wouldn’t apply to a timesharing system, which
includes both symbols. So we can eliminate the first two columns from consideration. And we can also
eliminate the second row, since handler R2 doesn’t include a call to Scheduler.

So this message came from a user trying to run handler R3 on a Model C system. Since Model C
doesn’t support timesharing, it would have neither Scheduler nor ProcTbl as part the OS code.

Page 552

Okay, here’s the next message: “Hey, now the system always reads everybody’s input from keyboard 0.
Besides that, it seems to waste a lot more CPU cycles than it used to.”

R1 is the only handler that always reads from keyboard 0, so we can eliminate rows 2 and 3.

So how can we tell if R1 is being run on a Model A or a Model B system. The R1 handler wastes a lot
of cycles looping while waiting for a character to arrive and the implication is that was a big change for
the user since they’re complaining that running R1 is wasting time compared to their previous handler.
If the user had been running R2 on a model B system, they’re already used to the performance hit of
looping and so wouldn’t have noticed a performance difference switching to R1, so we can eliminate
Model B from consideration.

So this message came from a user running handler R1 on a model A system.

Page 553

The final message reads “Neat, the new system seems to work fine. It even wastes less CPU time than
it used to!”

Since the system works as expected with the new handler, we can eliminate a lot of possibilities.

Handler R1 wouldn’t work fine on a timesharing system since the user could tell that the processes
were now all reading from the same keyboard buffer, so we can eliminate R1 on Models A and B.

And handlers R2 and R3 wouldn’t work on a Model C system since that doesn’t include process tables
or scheduling, eliminating the right-most column.

Finally handler R2 wouldn’t work on a Model A system with its uninterruptible kernel since any
attempt to read from an empty buffer would cause an infinite loop.

So, the message must have been sent by a Model B user now running R3.

Well, that was fun! Just like solving the logic puzzles you find in games magazines :)

Page 554

So far in constructing our timesharing system, we’ve worked hard to build an execution environment
that gives each process the illusion of running on its own independent virtual machine. The processes
appear to run concurrently although we’re really quickly switching between running processes on a
single hardware system. This often leads to better overall utilization since if a particular process is
waiting for an I/O event, we can devote the unneeded cycles to running other processes.

The downside of timesharing is that it can be hard to predict exactly how long a process will take to
complete since the CPU time it will receive depends on how much time the other processes are using.
So we’d need to know how many other processes there are, whether they’re waiting for I/O events, etc.
In a timesharing system we can’t make any guarantees on completion times.

And we chose to have the OS play the intermediary between interrupt events triggered by the outside
world and the user-mode programs where the event processing occurs. In other words, we’ve separated
event handling (where the data is stored by the OS) and event processing (where the data is passed to
user-mode programs via SVCs).

This means that using a conventional timesharing system, it’s hard to ensure that event processing will
be complete by a specified event deadline, i.e., before the end of a specified time period after the event
was triggered.

Since modern CPU chips provide inexpensive, high-performance, general-purpose computing, they are
often used as the “brains” of control systems where deadlines are a fact of life.

For example, consider the electronic stability control (ESC) system on modern cars. This system helps
drivers maintain control of their vehicle during steering and braking maneuvers by keeping the car
headed in the driver’s intended direction. The computer at the heart of the system measures the forces
on the car, the direction of steering, and the rotation of the wheels to determine if there’s been a loss of
control due to a loss of traction, i.e., is the car “spinning out”? If so, the ESC uses rapid automatic
braking of individual wheels to prevent the car’s heading from veering from the driver’s intended
heading. With ESC you can slam on your brakes or swerve to avoid an obstacle and not worry that the
car will suddenly fishtail out of control. You can feel the system working as a chatter in the brakes.

Page 555

To be effective, the ESC system has to guarantee the correct braking action at each wheel within a
certain time of receiving dangerous sensor settings. This means that it has to be able to guarantee that
certain subroutines will run to completion within some predetermined time of a sensor event. To be
able to make these guarantees we’ll have to come up with a better way to schedule process execution
— round-robin scheduling won’t get the job done! Systems that can make such guarantees are called
“real-time systems”.

Page 556

One measure of performance in a real-time system is the interrupt latency L, the amount of time that
elapses between a request to run some code and when that code actually starts executing. If there’s a
deadline D associated with servicing the request, we can compute the maximum allowable latency that
still permits the service routine to complete by the deadline. In other words, what’s the largest L such
that ?

Bad things can happen if we miss certain deadlines. Maybe that’s why we call them “dead”-lines :) In
those cases we want our real time system to guarantee that the actual latency is always less than the
maximum allowable latency. These critical deadlines give rise to what we call “hard real-time
constraints”.

Lmax + S = D

Page 557

What factors contribute to interrupt latency?

Well, while handling an interrupt it takes times to save the process state, switch to the kernel context,
and dispatch to the correct interrupt handler. When writing our OS, we can work to minimize the
amount of code involved in the setup phase of an interrupt handler.

We also have to avoid long periods of time when the processor cannot be interrupted. Some ISAs have
complex multi-cycle instructions, e.g., block move instructions where a single instruction makes many
memory accesses as it moves a block of data from one location to another. In designing the ISA, we
need to avoid such instructions or design them so that they can be interrupted and restarted.

The biggest problem comes when we’re executing another interrupt handler in kernel mode. In kernel
mode, interrupts are disabled, so the actual latency will be determined by the time it takes to complete
the current interrupt handler in addition to the other costs mentioned above. This latency is not under
the control of the CPU designer and will depend on the particular application. Writing programs with
hard real-time constraints can get complicated!

Our goal is to bound and minimize interrupt latency. We’ll do this by optimizing the cost of taking an
interrupt and dispatching to the correct handler code. We’ll avoid instructions whose execution time is
data dependent. And we’ll work to minimize the time spent in kernel mode.

But even with all these measures, we’ll see that in some cases we’ll have to modify our system to allow
interrupts even in kernel mode.

Next we’ll look at some concrete examples and see what mechanisms are required to make guarantees
about hard real-time constraints.

Page 558

Suppose we have a real-time system supporting three devices: a keyboard whose interrupt handler has
a service time of 800 us, a disk with a service time of 500 us, and a printer with a service time of 400
us.

What is the worst-case latency seen by each device? For now we’ll assume that requests are infrequent,
i.e., that each request only happens once in each scenario. Requests can arrive at any time and in any
order. If we serve the requests in first-come-first-served order, each device might be delayed by the
service of all other devices.

So the start of the keyboard handler might be delayed by the execution of the disk and printer handlers,
a worst-case latency of 900 us.

The start of the disk handler might be delayed by the keyboard and printer handlers, a worst-case
latency of 1200 us.

And the printer handler might be delayed by the keyboard and disk handlers, a worst-case latency of
1300 us.

In this scenario we see that long-running handlers have a huge impact on the worst-case latency seen
by the other devices. What are the possibilities for reducing the worst-case latencies? Is there a better
scheduling algorithm than first-come-first-served?

Page 559

One strategy is to assign priorities to the pending requests and to serve the requests in priority order. If
the handlers are uninterruptible, the priorities will be used to select the *next* task to be run at the
completion of the current task. Note that under this strategy, the current task always runs to completion
even if a higher-priority request arrives while it’s executing. This is called a “nonpreemptive” or
“weak” priority system.

Using a weak priority system, the worst-case latency seen by each device is the worst-case service time
of all the other devices (since that handler may have just started running when the new request arrives),
plus the service time of all higher-priority devices (since they’ll be run first).

In our example, suppose we assigned the highest priority to the disk, the next priority to the printer, and
the lowest priority to the keyboard.

The worst-case latency of the keyboard is unchanged since it has the lowest priority and hence can be
delayed by the higher-priority disk and printer handlers.

The disk handler has the highest priority and so will always be selected for execution after the current
handler completes. So its worst-case latency is the worst-case service time for the currently-running
handler, which in this case is the keyboard, so the worst-case latency for the disk is 800 us. This is a
considerable improvement over the first-come-first-served scenario.

Finally the worst-case scenario for the printer is 1300 us since it may have to wait for the keyboard
handler to finish running (which can take up to 800 us) and then for a higher-priority disk request to be
serviced (which takes 500 us).

Page 560

How should priorities be assigned given hard real-time constraints? We’ll assume each device has a
service deadline D after the arrival of its service request.

If not otherwise specified, assume D is the time until the *next* request for the same device. This is a
reasonably conservative assumption that prevents the system from falling further and further behind.
For example, it makes sense that the keyboard handler should finish processing one character before
the next arrives.

“Earliest Deadline” is a strategy for assigning priorities that is guaranteed to meet the deadlines if any
priority assignment can meet the deadlines. It’s very simple: Sort the requests by their deadlines.
Assign the highest priority to the earliest deadline, second priority to the next deadline, and so on. A
weak priority system will choose the pending request with the highest priority, i.e., the request that has
the earliest deadline.

Earliest Deadline has an intuitive appeal. Imagine standing in a long security line at the airport. It
would make sense to prioritize the processing of passengers who have the earliest flights assuming that
there’s enough time to process everyone before their flight leaves. Processing 10 people whose flights
leave in 30 minutes before someone whose flight leaves in 5 min will cause that last person to miss
their flight. But if that person is processed first, the other passengers may be slightly delayed but
everyone will make their flight. This is the sort of scheduling problem that Earliest Deadline and a
weak priority system can solve.

It’s outside the scope of our discussion, but it’s interesting to think about what should happen if some
flights are going to be missed. If the system is overloaded, prioritizing by earliest deadline may mean
that everyone will miss their flights! In this scenario it might be better to assign priorities to the
minimize the total number of missed flights. This gets complicated in a hurry since the assignment of
priorities now depends on exactly what requests are pending and how long it will take them to be
serviced. An intriguing problem to think about!

Page 561

In a weak priority system the currently-running task will always run to completion before considering
what to run next. This means the worst-case latency for a device always includes the worst-case service
time across all the other devices, i.e., the maximum time we have to wait for the currently-running task
to complete.

If there’s a long-running task that usually means it will be impossible to meet tight deadlines for other
tasks. For example, suppose disk requests have a 800 us deadline in order to guarantee the best
throughput from the disk subsystem. Since the disk handler service time is 500 us, the maximum
allowable latency between a disk request and starting to execute the disk service routine is 300 us.

Oops! The weak priority scheme can only guarantee a maximum latency of 800 us, not nearly fast
enough to meet the disk deadline. We can’t meet the disk deadline using weak priorities.

We need to introduce a preemptive priority system that allows lower-priority handlers to be interrupted
by higher-priority requests. We’ll refer to this as a “strong” priority system. Suppose we gave the disk
the highest priority, the printer second priority, and keyboard the lowest priority, just like we did
before.

Now when a disk request arrives, it will start executing immediately without having to wait for the
completion of the lower-priority printer or keyboard handlers. The worst-case latency for the disk has
dropped to 0.

The printer can only be preempted by the disk, so it’s worst-case latency is 500 us. Since it has the
lowest priority, the worst-case latency for the keyboard is unchanged at 900 us since it might still have
to wait on the disk and printer.

The good news: with the proper assignment of priorities, the strong priority system can guarantee that
disk requests will be serviced by the 800 us deadline.

Page 562

We’ll need to make a small tweak to our Beta hardware to implement a strong priority system. We’ll
replace the single supervisor mode bit in PC[31] with, say, a three-bit field (PRI) in PC[31:29] that
indicates which of the eight priority levels the processor is currently running at.

Next, we’ll modify the interrupt mechanism as follows. In addition to requesting an interrupt, the
requesting device also specifies the 3-bit priority it was assigned by the system architect. We’ll add a
priority encoder circuit to the interrupt hardware to select the highest-priority request and compare the
priority of that request (PDEV) to the 3-bit PRI value in the PC. The system will take the interrupt
request only if PDEV > PRI, i.e., if the priority of the request is *higher* than the priority the system is
running at.

When the interrupt is taken, the old PC and PRI information is saved in XP, and the new PC is
determined by the type of interrupt and the new PRI field is set to PDEV. So the processor will now be
running at the higher priority specified by the device.

A strong priority system allows low-priority handlers to be interrupted by higher-priority requests, so
the worst-case latencies seen at high priorities is unaffected by the service times of lower-priority
handlers.

Page 563

Using strong priorities allows us to assign a high priority to devices with tight deadlines and thus
guarantee their deadlines are met.

Now let’s consider the impact of recurring interrupts, i.e., multiple interrupt requests from each device.
We’ve added a “maximum frequency” column to our table, which gives the maximum rate at which
requests will be generated by each device.

The execution diagram for a strong priority system is shown below the table. Here we see there are
multiple requests from each device, in this case shown at their maximum possible rate of request. Each
tick on the timeline represent 100 us of real time. Printer requests occur every 1 ms (10 ticks), disk
requests every 2 ms (20 ticks), and keyboard requests every 10 ms (100 ticks).

In the diagram you can see that the high-priority disk requests are serviced as soon as they’re received.
And that medium-priority printer requests preempt lower-priority execution of the keyboard handler.
Printer requests would be preempted by disk requests, but given their request patterns, there’s never a
printer request in progress when a disk request arrives, so we don’t see that happening here.

The maximum latency before a keyboard requests starts is indeed 900 us. But that doesn’t tell the
whole story! As you can see, the poor keyboard handler is continually preempted by higher-priority
disk and printer requests and so the keyboard handler doesn’t complete until 3 ms after its request was
received! This illustrates why real-time constraints are best expressed in terms of deadlines and not
latencies.

If the keyboard deadline had been less that 3 ms, even the strong priority system would have failed to
meet the hard real-time constraints. The reason would be that there simply aren’t enough CPU cycles to
meet the recurring demands of the devices in the face of tight deadlines.

Page 564

Speaking of having enough CPU cycles, there are several calculations we need to do when thinking
about recurring interrupts.

The first is to consider how much load each periodic request places on the system. There’s one
keyboard request every 10 ms and servicing each request takes 800 us, which consumes 800us/10ms =
8% of the CPU. A similar calculation shows that servicing the disk takes 25% of the CPU and
servicing the printer takes 40% of the CPU.

Collectively servicing all the devices takes 73% of the CPU cycles, leaving 27% for running user-mode
programs. Obviously we’d be in trouble if takes more than 100% of the available cycles to service the
devices.

Another way to get in trouble is to not have enough CPU cycles to meet each of the deadlines. We need
500/800 = 67.5% of the cycles to service the disk in the time between the disk request and disk
deadline.

If we assume we want to finish serving one printer request before receiving the next, the effective
printer deadline is 1000 us. In 1000 us we need to be able to service one higher-priority disk request
(500 us) and, obviously, the printer request (400 us). So we’ll need to use 900 us of CPU in that 1000
us interval. Whew, just barely made it!

Suppose we tried setting the keyboard deadline to 2000 us. In that time interval we’d also need to
service 1 disk request and 2 printer requests. So the total service time needed is 500 + 2*400 + 800 =
2100 us. Oops, that exceeds the 2000 us window we were given, so we can’t meet the 2000 us deadline
with the available CPU resources.

But if the keyboard deadline is 3000 us, let’s see what happens. In a 3000 us interval we need to
service 2 disk requests, 3 printer requests, and, of course, 1 keyboard request, for a total service time of
2*500 + 3*400 + 800 = 3000 us. Whew! Just made it!

Page 565

Let’s finish up by looking at two extended examples. The scenario for both examples is the control
system for the International Space Station, which has to handle three recurring tasks: supply ship
guidance (SSG), gyroscope control (G), and cabin pressure (CP). For each device, the table shows us
the time between successive requests (the period), the service time for each request, and the service
deadline for each request.

We’ll first analyze the system assuming that it’s using a weak priority system.

First question: What is the maximum service time for the cabin pressure task that still allows all
constraints to be met? Well, the SSG task has a maximum allowable latency of 20 ms, i.e., it’s service
routine must start execution within 20 ms if it is to meet its 25 ms deadline. The G task has a maximum
allowable latency of 10 ms if it’s to meet its deadline. So no other handler can take longer than 10 ms
to run or the G task will miss its deadline.

2. Give a weak priority ordering that meets the constraints. Using the earliest deadline strategy
discussed earlier, the priority would be G with the highest priority, SSG with the middle priority, and
CP with the lowest priority.

3. What fraction of time will the processor spend idle? We need to compute the fraction of CPU cycles
need to service the recurring requests for each task. SSG takes 5/30 = 16.67% of the CPU cycles. G
takes 10/40 = 25% of the CPU cycles. And CP takes 10/100 = 10% of the CPU cycles. So servicing the
task requests takes 51.67% of the cycles, leaving 48.33% of the cycles unused. So the astronauts will
be able to play Minecraft in their spare time :)

4. What is the worst-case delay for each task until completion of its service routine? Each task might
have to wait for the longest-running lower-priority handler to complete plus the service times of any
other higher-priority tasks plus, of course, its own service time.

SSG might have to wait for CP and G to complete (a total of 20 ms), then add its own service time (5
ms). So its worst-case completion time is 25 ms after the request.

Page 566

G might to wait for CP to complete (10 ms), then add its own service time (10 ms) for a worst-case
completion time of 20 ms.

CP might have to wait for SSG to finish (5 ms), then wait for G to run (10 ms), then add its own service
time (10 ms) for a worst-case completion time of 25 ms.

Page 567

Let’s redo the problem, this timing assuming a strong priority system where, as before, G has the
highest priority, SSG the middle priority, and CP the lowest priority.

1. What is the maximum service time for CP that still allows all constraints to be met? This calculation
is different in a strong priority system, since the service time of CP is no longer constrained by the
maximum allowable latency of the higher-priority tasks — they’ll simply preempt CP when they need
to run!

Instead we need to think about how much CPU time will be used by the SSG and G tasks in the 100 ms
interval between the CP request and its deadline.

In a 100 ms interval, there might be four SSG requests (at times 0, 30, 60, and 90) and three G requests
(at times 0, 40, and 80). Together these require a total of 50 ms to service. So the service time for CP
can be up 50 ms and still meet the 100 ms deadline.

2. What fraction of the time will the processor spend idle? Assuming a 50 ms service time for CP, it
now consumes 50% of the CPU. The other request loads are as before, so 91.67% of the CPU cycles
will be spent servicing requests, leaving 8.33% of idle time.

3. What is the worst-case completion time for each task?

The G task has the highest priority, so its service routine runs immediately after the request is received
and its worst-case completion time is exactly its service time.

In the 25 ms interval between an SSG request and its deadline, there might be at most one G request
that will preempt execution. So the worst-case completion time is one G service time (10 ms) plus the
SSG service time (5 ms).

Finally, from the calculation for problem 1, we chose the service time for the CP task so that it will
complete just at its deadline of 100 ms, taking into account the service time for multiple higher-priority
requests.

Page 568

We covered a lot of ground in this lecture!

We saw that the computation needed for user-mode programs to interact with external devices was split
into two parts. On the device-side, the OS handles device interrupts and performs the task of moving
data between kernel buffers and the device. On the application side, user-mode programs access the
information via SVC calls to the OS.

We worried about how to handle SVC requests that needed to wait for an I/O event before the request
could be satisfied. Ultimately we came up with a sleep/wakeup mechanism that suspends execution of
the process until the some interrupt routine signals that the needed information has arrived, causing the
sleeping process to marked as active. Then the SVC is retried the next time the now active process is
scheduled for execution.

We discussed hard real-time constraints with their latencies, service times and deadlines. Then we
explored the implementation of interrupt systems using both weak and strong priorities.

Real-life computer systems usual implement strong priorities and support a modest number of priority
levels, using a weak priority system to deal with multiple devices assigned to the same strong priority
level. This seems to work quite well in practice, allowing the systems to meet the variety of real-time
constraints imposed by their I/O devices.

Page 569

L19: Concurrency and Synchronization

1. Interprocess Communication
2. Synchronous Communication
3. FIFO Buffering
4. Example: Bounded Buffer Problem
5. Semaphores (Dijkstra)
6. Semaphores for Precedence
7. Semaphores for Resource Allocation
8. Bounded Buffer Problem with Semaphores
9. Flow Control Problems

10. Bounded Buffer Problem with More Semaphores
11. Simultaneous Transactions
12. But, What If...
13. Semaphores for Mutual Exclusion
14. Producer/Consumer Atomicity Problems
15. Bounded Buffer Problem with Even More Semaphores
16. The Power of Semaphores
17. Semaphore Implementation
18. Semaphores as a Supervisor Call
19. Hardware Support for Semaphores
20. Synchronization: The Dark Side
21. Dining Philosophers
22. Deadlock!
23. One Solution
24. Dealing With Deadlocks
25. Summary

Page 570

It’s not unusual to find that an application is organized as multiple communicating processes. What’s
the advantage of using multiple processes instead of just a single process?

Many applications exhibit concurrency, i.e., some of the required computations can be performed in
parallel. For example, video compression algorithms represent each video frame as an array of 8-pixel
by 8-pixel macroblocks. Each macroblock is individually compressed by converting the 64 intensity
and color values from the spatial domain to the frequency domain and then quantizing and Huffman
encoding the frequency coefficients. If you’re using a multi-core processor to do the compression, you
can perform the macroblock compressions concurrently.

Applications like video games are naturally divided into the “front-end” user interface and “back-end”
simulation and rendering engines. Inputs from the user arrive asynchronously with respect to the
simulation and it’s easiest to organize the processing of user events separately from the backend
processing.

Processes are an effective way to encapsulate the state and computation for what are logically
independent components of an application, which communicate with one another when they need to
share information.

These sorts of applications are often data- or event-driven, i.e., the processing required is determined
by the data to be processed or the arrival of external events.

How should the processes communicate with each other?

If the processes are running out of the same physical memory, it would be easy to arrange to share
memory data by mapping the same physical page into the contexts for both processes. Any data written
to that page by one process will be able to be read by the other process.

To make it easier to coordinate the processes’ communicating via shared memory, we’ll see it’s
convenient to provide synchronization primitives. Some ISAs include instructions that make it easy to
do the required synchronization.

Page 571

Another approach is to add OS supervisor calls to pass messages from one process to another. Message
passing involves more overhead than shared memory, but makes the application programming
independent of whether the communicating processes are running on the same physical processor.

In this lecture, we’ll use the classic producer-consumer problem as our example of concurrent
processes that need to communicate and synchronize. There are two processes: a producer and a
consumer. The producer is running in a loop, which performs some computation to generate
information, in this case, a single character C. The consumer is also running a loop, which waits for the
next character to arrive from the producer, then performs some computation .

The information passing between the producer and consumer could obviously be much more
complicated than a single character. For example, a compiler might produce a sequence of assembly
language statements that are passed to the assembler to be converted into the appropriate binary
representation. The user interface front-end for a video game might pass a sequence of player actions to
the simulation and rendering back-end. In fact, the notion of hooking multiple processes together in a
processing pipeline is so useful that the Unix and Linux operating systems provide a PIPE primitive in
the operating system that connects the output channel of the upstream process to the input channel of
the downstream process.

Page 572

Let’s look at a timing diagram for the actions of our simple producer/consumer example. We’ll use
arrows to indicate when one action happens before another. Inside a single process, e.g., the producer,
the order of execution implies a particular ordering in time: the first execution of is followed by the
sending of the first character. Then there’s the second execution of , followed by the sending of the
second character, and so on. In later examples, we’ll omit the timing arrows between successive
statements in the same program.

We see a similar order of execution in the consumer: the first character is received, then the
computation is performed for the first time, etc. Inside of each process, the process’ program counter is
determining the order in which the computations are performed.

So far, so good - each process is running as expected. However, for the producer/consumer system to
function correctly as a whole, we’ll need to introduce some additional constraints on the order of
execution. These are called “precedence constraints” and we’ll use this stylized less-than sign to
indicate that computation A must precede, i.e., come before, computation B.

In the producer/consumer system we can’t consume data before it’s been produced, a constraint we can
formalize as requiring that the ith send operation has to precede the ith receive operation. This timing
constraint is shown as the solid red arrow in the timing diagram.

Assuming we’re using, say, a shared memory location to hold the character being transmitted from the
producer to the consumer, we need to ensure that the producer doesn’t overwrite the previous character
before it’s been read by the consumer. In other words, we require the ith receive to precede the i+1st

send. These timing constraints are shown as the dotted red arrows in the timing diagram.

Together these precedence constraints mean that the producer and consumer are tightly coupled in the
sense that a character has to be read by the consumer before the next character can be sent by the
producer, which might be less than optimal if the and computations take a variable amount of time. So
let’s see how we can relax the constraints to allow for more independence between the producer and
consumer.

Page 573

We can relax the execution constraints on the producer and consumer by having them communicate via
N-character first-in-first-out (FIFO) buffer. As the producer produces characters it inserts them into the
buffer. The consumer reads characters from the buffer in the same order as they were produced. The
buffer can hold between 0 and N characters. If the buffer holds 0 characters, it’s empty; if it holds N
characters, it’s full. The producer should wait if the buffer is full, the consumer should wait if the
buffer is empty.

Using the N-character FIFO buffer relaxes our second overwrite constraint to the requirement that the
ith receive must happen before i+Nth send. In other words, the producer can get up to N characters
ahead of the consumer.

FIFO buffers are implemented as an N-element character array with two indices: the read index
indicates the next character to be read, the write index indicates the next character to be written. We’ll
also need a counter to keep track of the number of characters held by the buffer, but that’s been omitted
from this diagram. The indices are incremented modulo N, i.e., the next element to be accessed after
the N-1st element is the 0th element, hence the name “circular buffer”.

Here’s how it works. The producer runs, using the write index to add the first character to the buffer.
The producer can produce additional characters, but must wait once the buffer is full.

The consumer can receive a character anytime the buffer is not empty, using the read index to keep
track of the next character to be read. Execution of the producer and consumer can proceed in any
order so long as the producer doesn’t write into a full buffer and the consumer doesn’t read from any
empty buffer.

Page 574

Here’s what the code for the producer and consumer might look like. The array and indices for the
circular buffer live in shared memory where they can be accessed by both processes. The SEND
routine in the producer uses the write index IN to keep track of where to write the next character.
Similarly the RCV routine in the consumer uses the read index OUT to keep track of the next character
to be read. After each use, each index is incremented modulo N.

The problem with this code is that, as currently written, neither of the two precedence constraints is
enforced. The consumer can read from an empty buffer and the producer can overwrite entries when
the buffer is full.

We’ll need to modify this code to enforce the constraints and for that we’ll introduce a new
programming construct that we’ll use to provide the appropriate inter-process synchronization.

Page 575

What we’d like to do is to create a single abstraction that can be used to address all our synchronization
needs. In the early 1960’s, the Dutch computer scientist Edsger Dijkstra proposed a new abstract data
type called the semaphore, which has an integer value greater than or equal to 0. A programmer can
declare a semaphore as shown here, specifying its initial value. The semaphore lives in a memory
location shared by all the processes that need to synchronize their operation.

The semaphore is accessed with two operations: WAIT and SIGNAL. The WAIT operation will wait
until the specified semaphore has a value greater than 0, then it will decrement the semaphore value
and return to the calling program. If the semaphore value is 0 when WAIT is called, conceptually
execution is suspended until the semaphore value is non-zero. In a simple (inefficient) implementation,
the WAIT routine loops, periodically testing the value of the semaphore, proceeding when its value is
non-zero.

The SIGNAL operation increments the value of the specified semaphore. If there any processes
WAITing on that semaphore, exactly one of them may now proceed. We’ll have to be careful with the
implementation of SIGNAL and WAIT to ensure the “exactly one” constraint is satisfied, i.e., that two
processes both WAITing on the same semaphore won’t both think they can decrement it and proceed
after a SIGNAL.

A semaphore initialized with the value K guarantees that the ith call to SIGNAL will precede (i+K)th

call to WAIT. In a moment, we’ll see some concrete examples that will make this clear. Note that in
6.004, we’re ruling out semaphores with negative values.

In the literature, you may see P(s) used in place of WAIT(s) and V(s) used in place of SIGNAL(s).
These operation names are derived from the Dutch words for “test” and “increase”.

Let’s see how to use semaphores to implement precedence constraints.

Page 576

Here are two processes, each running a program with 5 statements. Execution proceeds sequentially
within each process, so A1 executes before A2, and so on. But there are no constraints on the order of
execution between the processes, so statement B1 in Process B might be executed before or after any
of the statements in Process A. Even if A and B are running in a timeshared environment on a single
physical processor, execution may switch at any time between processes A and B.

Suppose we wish to impose the constraint that the execution of statement A2 completes before
execution of statement B4 begins. The red arrow shows the constraint we want.

Here’s the recipe for implementing this sort of simple precedence constraint using semaphores.

First, declare a semaphore (called “s” in this example) and initialize its value to 0.

Place a call to signal(s) at the start of the arrow. In this example, signal(s) is placed after the statement
A2 in process A.

Then place a call to wait(s) at the end of the arrow. In this example, wait(s) is placed before the
statement B4 in process B.

With these modifications, process A executes as before, with the signal to semaphore s happening after
statement A2 is executed.

Statements B1 through B3 also execute as before, but when the wait(s) is executed, execution of
process B is suspended until the signal(s) statement has finished execution. This guarantees that
execution of B4 will start only after execution of A2 has completed.

By initializing the semaphore s to 0, we enforced the constraint that the first call to signal(s) had to
complete before the first call to wait(s) would succeed.

Page 577

Another way to think about semaphores is as a management tool for a shared pool of K resources,
where K is the initial value of the semaphore. You use the SIGNAL operation to add or return
resources to the shared pool. And you use the WAIT operation to allocate a resource for your exclusive
use.

At any given time, the value of the semaphore gives the number of unallocated resources still available
in the shared pool.

Note that the WAIT and SIGNAL operations can be in the same process, or they may be in different
processes, depending on when the resource is allocated and returned.

Page 578

We can use semaphores to manage our N-character FIFO buffer. Here we’ve defined a semaphore
CHARS and initialized it to 0. The value of CHARS will tell us how many characters are in the buffer.

So SEND does a signal(CHARS) after it has added a character to the buffer, indicating the buffer now
contains an additional character.

And RCV does a wait(CHARS) to ensure the buffer has at least one character before reading from the
buffer.

Since CHARS was initialized to 0, we’ve enforced the constraint that the ith call to signal(CHARS)
precedes the completion of the ith call to wait(CHARS). In other words, RCV can’t consume a
character until it has been placed in the buffer by SEND.

Does this mean our producer and consumer are now properly synchronized? Almost! Using the
CHARS semaphore, we implemented *one* of the two precedence constraints we identified as being
necessary for correct operation. Next we’ll see how to implement the other precedence constraint.

Page 579

What keeps the producer from putting more than N characters into the N-character buffer? Nothing.
Oops, the producer can start to overwrite characters placed in the buffer earlier even though they
haven’t yet been read by the consumer. This is called buffer overflow and the sequence of characters
transmitted from producer to consumer becomes hopelessly corrupted.

What we’ve guaranteed so far is that the consumer can read a character only after the producer has
placed it in the buffer, i.e., the consumer can’t read from an empty buffer.

What we still need to guarantee is that the producer can’t get too far ahead of the consumer. Since the
buffer holds at most N characters, the producer can’t send the (i+N)th character until the consumer has
read the ith character.

Page 580

Here we’ve added a second semaphore, SPACES, to manage the number of spaces in the buffer.
Initially the buffer is empty, so it has N spaces. The producer must WAIT for a space to be available.
When SPACES in non-zero, the WAIT succeeds, decrementing the number of available spaces by one
and then the producer fills that space with the next character.

The consumer signals the availability of another space after it reads a character from the buffer.

There’s a nice symmetry here. The producer consumes spaces and produces characters. The consumer
consumes characters and produces spaces. Semaphores are used to track the availability of both
resources (i.e., characters and spaces), synchronizing the execution of the producer and consumer.

This works great when there is a single producer process and a single consumer process. Next we’ll
think about what will happen if we have multiple producers and multiple consumers.

Page 581

Let’s take a moment to look at a different example. Automated teller machines allow bank customers to
perform a variety of transactions: deposits, withdrawals, transfers, etc. Let’s consider what happens
when two customers try to withdraw $50 from the same account at the same time.

A portion of the bank’s code for a withdrawal transaction is shown in the upper right. This code is
responsible for adjusting the account balance to reflect the amount of the withdrawal. Presumably the
check to see if there is sufficient funds has already happened.

What’s supposed to happen? Let’s assume that the bank is using a separate process to handle each
transaction, so the two withdrawal transactions cause two different processes to be created, each of
which will run the Debit code. If each of the calls to Debit run to completion without interruption, we
get the desired outcome: the first transaction debits the account by $50, then the second transaction
does the same. The net result is that you and your friend have $100 and the balance is $100 less.

So far, so good.

Page 582

But what if the process for the first transaction is interrupted just after it’s read the balance? The second
process subtracts $50 from the balance, completing that transaction. Now the first process resumes,
using the now out-of-date balance it loaded just before being interrupted. The net result is that you and
your friend have $100, but the balance has only been debited by $50.

The moral of the story is that we need to be careful when writing code that reads and writes shared data
since other processes might modify the data in the middle of our execution. When, say, updating a
shared memory location, we’ll need to LD the current value, modify it, then ST the updated value. We
would like to ensure that no other processes access the shared location between the start of the LD and
the completion of the ST. The LD/modify/ST code sequence is what we call a “critical section.” We
need to arrange that other processes attempting to execute the same critical section are delayed until
our execution is complete. This constraint is called “mutual exclusion,” i.e., only one process at a time
can be executing code in the same critical section.

Once we’ve identified critical sections, we’ll use semaphores to guarantee they execute atomically, i.e.,
that once execution of the critical section begins, no other process will be able to enter the critical
section until the execution is complete. The combination of the semaphore to enforce the mutual
exclusion constraint and the critical section of code implement what’s called a “transaction”. A
transaction can perform multiple reads and writes of shared data with the guarantee that none of the
data will be read or written by other processes while the transaction is in progress.

Page 583

Here’s the original code to Debit, which we’ll modify by adding a LOCK semaphore. In this case, the
resource controlled by the semaphore is the right to run the code in the critical section. By initializing
LOCK to 1, we’re saying that at most one process can execute the critical section at a time.

A process running the Debit code WAITs on the LOCK semaphore. If the value of LOCK is 1, the
WAIT will decrement value of LOCK to 0 and let the process enter the critical section. This is called
acquiring the lock. If the value of LOCK is 0, some other process has acquired the lock and is
executing the critical section and our execution is suspended until the LOCK value is non-zero.

When the process completes execution of the critical section, it releases the LOCK with a call to
SIGNAL, which will allow other processes to enter the critical section. If there are multiple WAITing
processes, only one will be able to acquire the lock, and the others will still have to wait their turn.

Used in this manner, semaphores are implementing a mutual exclusion constraint, i.e., there’s a
guarantee that two executions of the critical section cannot overlap. Note that if multiple processes
need to execute the critical section, they may run in any order and the only guarantee is that their
executions will not overlap.

There are some interesting engineering issues to consider. There’s the question of the granularity of the
lock, i.e., what shared data is controlled by the lock? In our bank example, should there be one lock
controlling access to the balance for all accounts? That would mean that no one could access any
balance while a transaction was in progress. That would mean that transactions accessing different
accounts would have to run one after the other even though they’re accessing different data. So one
lock for all the balances would introduce unnecessary precedence constraints, greatly slowing the rate
at which transactions could be processed.

Since the guarantee we need is that we shouldn’t permit multiple simultaneous transactions on the
same account, it would make more sense to have a separate lock for each account, and change the
Debit code to acquire the account’s lock before proceeding. That will only delay transactions that truly
overlap, an important efficiency consideration for a large system processing many thousands of mostly
non-overlapping transactions each second.

Page 584

Of course, having per-account locks would mean a lot of locks! If that’s a concern, we can adopt a
compromise strategy of having locks that protect groups of accounts, e.g., accounts with same last
three digits in the account number. That would mean we’d only need 1000 locks, which would allow
up to 1000 transactions to happen simultaneously.

The notion of transactions on shared data is so useful that we often use a separate system called a
database that provides the desired functionality. Database systems are engineered to provide low-
latency access to shared data, providing the appropriate transactional semantics. The design and
implementation of databases and transactions is pretty interesting - to follow up, I recommend reading
about databases on the web.

Page 585

Returning to our producer/consumer example, we see that if multiple producers are trying to insert
characters into the buffer at the same time, it’s possible that their execution may overlap in a way that
causes characters to be overwritten and/or the index to be improperly incremented.

We just saw this bug in the bank example: the producer code contains a critical section of code that
accesses the FIFO buffer and we need to ensure that the critical section is executed atomically.

Page 586

Here we’ve added a third semaphore, called LOCK, to implement the necessary mutual exclusion
constraint for the critical section of code that inserts characters into the FIFO buffer. With this
modification, the system will now work correctly when there are multiple producer processes.

There’s a similar issue with multiple consumers, so we’ve used the same LOCK to protect the critical
section for reading from the buffer in the RCV code.

Using the same LOCK for producers and consumers will work, but does introduce unnecessary
precedence constraints since producers and consumers use different indices, i.e., IN for producers and
OUT for consumers. To solve this problem we could use two locks: one for producers and one for
consumers.

Page 587

Semaphores are a pretty handy Swiss army knife when it comes to dealing with synchronization issues.
When WAIT and SIGNAL appear in different processes, the semaphore ensures the correct execution
timing between processes. In our example, we used two semaphores to ensure that consumers can’t
read from an empty buffer and that producers can’t write into a full buffer.

We also used semaphores to ensure that execution of critical sections - in our example, updates of the
indices IN and OUT - were guaranteed to be atomic. In other words, that the sequence of reads and
writes needed to increment a shared index would not be interrupted by another process between the
initial read of the index and the final write.

Page 588

Now let’s figure out how to implement semaphores. They are themselves shared data and implementing
the WAIT and SIGNAL operations will require read/modify/write sequences that must be executed as
critical sections. Normally we’d use a lock semaphore to implement the mutual exclusion constraint for
critical sections. But obviously we can’t use semaphores to implement semaphores! We have what’s
called a bootstrapping problem: we need to implement the required functionality from scratch.

Happily, if we’re running on a timeshared processor with an uninterruptible OS kernel, we can use the
supervisor call (SVC) mechanism to implement the required functionality.

We can also extend the ISA to include a special test-and-set instruction that will let us implement a
simple lock semaphore, which can then be used to protect critical sections that implement more
complex semaphore semantics. Single instructions are inherently atomic and, in a multi-core processor,
will do what we want if the shared main memory supports both reading the old value and writing a new
value to a specific memory location as a single memory access.

There are other, more complex, software-only solutions that rely only on the atomicity of individual
reads and writes to implement a simple lock. For example, see “Dekker’s Algorithm” on Wikipedia.

We’ll look in more detail at the first two approaches.

Page 589

Here are the OS handlers for the WAIT and SIGNAL supervisor calls. Since SVCs are run kernel
mode, they can’t be interrupted, so the handler code is naturally executed as a critical section.

Both handlers expect the address of the semaphore location to be passed as an argument in the user’s
R0. The WAIT handler checks the semaphore’s value and if it’s non-zero, the value is decremented and
the handler resumes execution of the user’s program at the instruction following the WAIT SVC. If the
semaphore is 0, the code arranges to re-execute the WAIT SVC when the user program resumes
execution and then calls SLEEP to mark the process as inactive until the corresponding WAKEUP call
is made.

The SIGNAL handler is simpler: it increments the semaphore value and calls WAKEUP to mark as
active any processes that were WAITing for this particular semaphore.

Eventually the round-robin scheduler will select a process that was WAITing and it will be able to
decrement the semaphore and proceed. Note that the code makes no provision for fairness, i.e., there’s
no guarantee that a WAITing process will eventually succeed in finding the semaphore non-zero. The
scheduler has a specific order in which it runs processes, so the next-in-sequence WAITing process will
always get the semaphore even if there are later-in-sequence processes that have been WAITing longer.
If fairness is desired, WAIT could maintain a queue of waiting processes and use the queue to
determine which process is next in line, independent of scheduling order.

Page 590

Many ISAs support an instruction like the TEST-and-CLEAR instruction shown here. The TCLR
instruction reads the current value of a memory location and then sets it to zero, all as a single
operation. It’s like a LD except that it zeros the memory location after reading its value.

To implement TCLR, the memory needs to support read-and-clear operations, as well as normal reads
and writes.

The assembly code at the bottom of the slide shows how to use TCLR to implement a simple lock. The
program uses TCLR to access the value of the lock semaphore. If the returned value in RC is zero, then
some other process has the lock and the program loops to try TCLR again. If the returned value is non-
zero, the lock has been acquired and execution of the critical section can proceed. In this case, TCLR
has also set the lock to zero, so that other processes will be prevented from entering the critical section.

When the critical section has finished executing, a ST instruction is used to set the semaphore to a non-
zero value.

Page 591

If the necessary synchronization requires acquiring more than one lock, there are some special
considerations that need to be taken into account. For example, the code below implements the transfer
of funds from one bank account to another. The code assumes there is a separate semaphore lock for
each account and since it needs to adjust the balance of two accounts, it acquires the lock for each
account.

Consider what happens if two customers try simultaneous transfers between their two accounts. The
top customer will try to acquire the locks for accounts 6005 and 6004. The bottom customer tries to
acquire the same locks, but in the opposite order. Once a customer has acquired both locks, the transfer
code will complete, releasing the locks.

But what happens if the top customer acquires his first lock (for account 6005) and the bottom
customer simultaneously acquires his first lock (for account 6004). So far, so good, but now each
customer will be not be successful in acquiring their second lock, since those locks are already held by
the other customer!

This situation is called a “deadlock” or “deadly embrace” because there is no way execution for either
process will resume - both will wait indefinitely to acquire a lock that will never be available.

Obviously, synchronization involving multiple resources requires a bit more thought.

Page 592

The problem of deadlock is elegantly illustrated by the Dining Philosophers problem. Here there are,
say, 5 philosophers waiting to eat. Each requires two chopsticks in order to proceed, and there are 5
chopsticks on the table.

The philosophers follow a simple algorithm. First they pick up the chopstick on their left, then the
chopstick on their right. When they have both chopsticks they eat until they’re done, at which point
they return both chopsticks to the table, perhaps enabling one of their neighbors to pick them up and
begin eating. Again, we see the basic setup of needing two (or more) resources before the task can
complete.

Page 593

Hopefully you can see the problem that may arise...

If all philosophers pick up the chopstick on their left, then all the chopsticks have been acquired, and
none of the philosophers will be able to acquire their second chopstick and eat. Another deadlock!

Here are the conditions required for a deadlock:

1. Mutual exclusion, where a particular resource can only be acquired by one process at a time.

2. Hold-and-wait, where a process holds allocated resources while waiting to acquire the next resource.

3. No preemption, where a resource cannot be removed from the process which acquired it. Resources
are only released after the process has completed its transaction.

4. Circular wait, where resources needed by one process are held by another, and vice versa.

How can we solve the problem of deadlocks when acquiring multiple resources? Either we avoid the
problem to begin with, or we detect that deadlock has occurred and implement a recovery strategy.
Both techniques are used in practice.

Page 594

In the Dining Philosophers problem, deadlock can be avoided with a small modification to the
algorithm. We start by assigning a unique number to each chopstick to establish a global ordering of all
the resources, then rewrite the code to acquire resources using the global ordering to determine which
resource to acquire first, which second, and so on.

With the chopsticks numbered, the philosophers pick up the lowest-numbered chopstick from either
their left or right. Then they pick up the other, higher-numbered chopstick, eat, and then return the
chopsticks to the table.

How does this avoid deadlock? Deadlock happens when all the chopsticks have been picked up but no
philosopher can eat. If all the chopsticks have been been picked up, that means some philosopher has
picked up the highest-numbered chopstick and so must have earlier picked up the lower-numbered
chopstick on his other side. So that philosopher can eat then return both chopsticks to the table,
breaking the hold-and-wait cycle.

So if all the processes in the system can agree upon a global ordering for the resources they require,
then acquire them in order, there will be no possibility of a deadlock caused by a hold-and-wait cycle.

Page 595

A global ordering is easy to arrange in our banking code for the transfer transaction. We’ll modify the
code to first acquire the lock for the lower-numbered account, then acquire the lock for the higher-
numbered account. Now, both customers will first try to acquire the lock for the 6004 account. The
customer that succeeds then can acquire the lock for the 6005 account and complete the transaction.
The key to deadlock avoidance was that customers contented for the lock for the *first* resource they
both needed - acquiring that lock ensured they would be able to acquire the remainder of the shared
resources without fear that they would already be allocated to another process in a way that could cause
a hold-and-wait cycle.

Establishing and using a global order for shared resources is possible when we can modify all
processes to cooperate. Avoiding deadlock without changing the processes is a harder problem. For
example, at the operating system level, it would be possible to modify the WAIT SVC to detect circular
wait and terminate one of the WAITing processes, releasing its resources and breaking the deadlock.

The other strategy we mentioned was detection and recovery. Database systems detect when there’s
been an external access to the shared data used by a particular transaction, which causes the database to
abort the transaction. When issuing a transaction to a database, the programmer specifies what should
happen if the transaction is aborted, e.g., she can specify that the transaction be retried. The database
remembers all the changes to shared data that happen during a transaction and only changes the master
copy of the shared data when it is sure that the transaction will not be aborted, at which point the
changes are committed to the database.

Page 596

In summary, we saw that organizing an application as communicating processes is often a convenient
way to go. We used semaphores to synchronize the execution of the different processes, providing
guarantees that certain precedence constraints would be met, even between statements in different
processes.

We also introduced the notion of critical code sections and mutual exclusion constraints that guaranteed
that a code sequence would be executed without interruption by another process. We saw that
semaphores could also be used to implement those mutual exclusion constraints.

Finally we discussed the problem of deadlock that can occur when multiple processes must acquire
multiple shared resources, and we proposed several solutions based on a global ordering of resources
or the ability to restart a transaction.

Synchronization primitives play a key role in the world of “big data” where there are vast amounts of
shared data, or when trying to coordinate the execution of thousands of processes in the cloud.
Understanding synchronization issues and their solutions is a key skill when writing most modern
applications.

Page 597

20: System‑level communication

1. Computer System Technologies
2. Interfaces Last Forever
3. System Interfaces & Modularity
4. Buses, Interconnect, So...?
5. Electrical Model for Real Wires
6. Real-world Consequences
7. Space & Time Constraints
8. Gates, Wires, & Delays
9. Interface Standard: Backplane Bus

10. A Parallel Bus Transaction
11. Bus Lines as Transmission Lines
12. Meanwhile, Outside the Box...
13. Lessons learned: single driver; point-to-point
14. Lessons learned: clock recovery
15. Serial, Point-to-point Communications
16. Improving on the Bus
17. Communications in Today's Computers
18. Example serial link: PCI Express (PCIe)
19. Communication Topologies
20. Quadratic-cost Topologies
21. Mesh Topologies
22. Logarithmic-latency Networks
23. Communication Technologies: Latency
24. Communications Futures

Page 598

Computer systems bring together many technologies and harness them to provide fast execution of
programs. Some of these technologies are relatively new, others have been with us for decades. Each of
the system components comes with a detailed specification of their functionality and interface. The
expectation is that system designers can engineer the system based on the component specifications
without having to know the details of the implementations of each component. This is good since many
of the underlying technologies change, often in ways that allow the components to become smaller,
faster, cheaper, more energy efficient, and so on. Assuming the new components still implement same
interfaces, they can be integrated into the system with very little effort.

The moral of this story is that the important part of the system architecture is the interfaces.

Page 599

Our goal is to design interface specifications that can survive many generations of technological
change. One approach to long-term survival is to base the specification on a useful abstraction that
hides most, if not all, of the low-level implementation details. Operating systems provide many
interfaces that have remained stable for many years. For example, network interfaces that reliably
deliver streams of bytes to named hosts, hiding the details of packets, sockets, error detection and
recovery, etc. Or windowing and graphics systems that render complex images, shielding the
application from details about the underlying graphics engine. Or journaled file systems that behind-
the-scenes defend against corruption in the secondary storage arrays.

Basically, we’re long since past the point where we can afford to start from scratch each time the
integrated circuit gurus are able to double the number of transistors on a chip, or the communication
wizards figure out how to go from 1GHz networks to 10GHz networks, or the memory mavens are able
to increase the size of main memory by a factor of 4. The interfaces that insulate us from technological
change are critical to ensure that improved technology isn’t a constant source of disruption.

There are some famous examples of where an apparently convenient choice of interface has had
embarrassing long-term consequences. For example, back in the days of stand-alone computing,
different ISAs made different choices on how to store multi-byte numeric values in main memory. IBM
architectures are store the most-significant byte in the lowest address (so called “big endian”), while
Intel’s x86 architectures store the least-significant byte first (so called “little endian”). But this leads to
all sorts of complications in a networked world where numeric data is often transferred from system to
system. This is a prime example of a locally-optimal choice having an unfortunate global impact. As
the phrase goes: “a moment of convenience, a lifetime of regret.”

Another example is the system-level communication strategy chosen for the first IBM PC, the original
personal computer based Intel CPU chips. IBM built their expansion bus for adding I/O peripherals,
memory cards, etc., by simply using the interface signals provided by then-current x86 CPU. So the
width of the data bus, the number of address pins, the data-transfer protocol, etc. where are exactly as
designed for interfacing to that particular CPU. A logical choice since it got the job done while keeping
costs as low a possible. But that choice quickly proved unfortunate as newer, higher-performance
CPUs were introduced, capable of addressing more memory or providing 32-bit instead of 16-bit

Page 600

external data paths. So system architects were forced into offering customers the Hobson’s choice of
crippling system throughput for the sake of backward compatibility, or discarding the networking card
they bought last year since it was now incompatible with this year’s system.

But there are success stories too. The System/360 interfaces chosen by IBM in the early 1960s carried
over to the System/370 in the 70’s and 80’s and to the Enterprise System Architecture/390 of the 90’s.
Customers had the expectation that software written for the earlier machines would continue to work
on the newer systems and IBM was able to fulfill that expectation.

Maybe the most notable long-term interface success is the design the TCP and IP network protocols in
the early 70’s, which formed the basis for most packet-based network communication. A recent refresh
expanded the network addresses from 32 to 128 bits, but that was largely invisible to applications using
the network. It was a remarkably prescient set of engineering choices that stood the test of time for
over four decades of exponential growth in network connectivity.

Page 601

Today’s lecture topic is figuring out the appropriate interface choices for interconnecting system
components. In the earliest systems these connections were very ad hoc in the sense that the protocols
and physical implementation were chosen independently for each connection that had to be made. The
cable connecting the CPU box to the memory box (yes, in those days, they lived in separate 19-inch
racks!) was different than the cable connecting the CPU to the disk.

Improving circuit technologies allowed system components to shrink from cabinet-size to board-size
and system engineers designed a modular packaging scheme that allowed users to mix-and-match
board types that plugged into a communication backplane. The protocols and signals on the backplane
reflected the different choices made by each vendor — IBM boards didn’t plug into Digital Equipment
backplanes, and vice versa.

This evolved into some standardized communication backplanes that allowed users to do their own
system integration, choosing different vendors for their CPU, memory, networking, etc. Healthy
competition quickly brought prices down and drove innovation. However this promising development
was overtaken by rapidly improving performance, which required communication bandwidths that
simply could not be supported across a multi-board backplane.

These demands for higher performance and the ability to integrate many different communication
channels into a single chip, lead to a proliferation of different channels. In many ways, the system
architecture was reminiscent of the original systems — ad-hoc purpose-built communication channels
specialized to a specific task.

As we’ll see, engineering considerations have led to the widespread adoption of general-purpose
unidirectional point-to-point communication channels. There are still several types of channels
depending on the required performance, the distance travelled, etc., but asynchronous point-to-point
channels have mostly replaced the synchronous multi-signal channels of earlier systems.

Most system-level communications involve signaling over wires, so next we’ll look into some the
engineering issues we’ve had to deal with as communication speeds have increased from kHz to GHz.

Page 602

So, how hard can it be to build a communication channel? Aren’t they just logic circuits with a long
wire that runs from one component to another?

A circuit theorist would tell you that wires in a schematic diagram are intended to represent the
equipotential nodes of the circuit, which are used to connect component terminals. In this simple
model, a wire has the same voltage at all points and any changes in the voltage or current at one
component terminal is instantly propagated to the other component terminals connected to the same
wire. The notion of distance is abstracted out of our circuit models: terminals are either connected by a
wire, or they’re not. If there are resistances, capacitances, and inductances that need to be accounted
for, the necessary components can be added to the circuit model. Wires are timeless. They are used to
show how components connect, but they aren’t themselves components.

In fact, thinking of wires as equipotential nodes is a very workable model when the rate of change of
the voltage on the wire is slow compared to the time it takes for an electromagnetic wave to propagate
down the wire. Only as circuit speeds have increased with advances in integrated circuit technologies
did this rule-of-thumb start to be violated in logic circuits where the components were separated by at
most 10’s of inches.

In fact, it has been known since the late 1800s that changes in voltage levels take finite time to
propagate down a wire. Oliver Heaviside was a self-taught English electrical engineer who, in the
1880’s, developed a set of “telegrapher’s equations” that described how signals propagate down wires.
Using these, he was able to show how to improve the rate of transmission on then new transatlantic
telegraph cable by a factor of 10.

We now know that for high-speed signaling we have to treat wires as transmission lines, which we’ll
say more about in the next few slides. In this domain, the distance between components and hence the
lengths of wires is of critical concern if we want to correctly predict the performance of our circuits.
Distance and signal propagation matter — real-world wires are, in fact, fairly complex components!

Page 603

Here’s an electrical model for an infinitesimally small segment of a real-world wire. An actual wire is
correctly modeled by imagining a many copies of the model shown here connected end-to-end. The
signal, i.e., the voltage on the wire, is measured with respect to the reference node which is also shown
in the model.

There are 4 parameters that characterize the behavior of the wire. R tells us the resistance of the
conductor. It’s usually negligible for the wiring on printed circuit boards, but it can be significant for
long wires in integrated circuits. L represents the self-inductance of the conductor, which characterizes
how much energy will be absorbed by the wire’s magnetic fields when the current flowing through the
wire changes. The conductor and reference node are separated by some sort insulator (which might be
just air!) and hence form a capacitor with capacitance C. Finally, the conductance G represents the
current that leaks through the insulator. Usually this is quite small.

The table shows the parameter values we might measure for wires inside an integrated circuit and on
printed circuit boards.

If we analyze what happens when sending signals down the wire, we can describe the behavior of the
wires using a single component called a transmission line which has a characteristic complex-valued
impedance . At high signaling frequencies and over the distances found on-chip or on circuit boards,
such as one might find in a modern digital system, the transmission line is lossless, and voltage changes
(“steps”) propagate down the wire at the rate of meters per second. Using the values given
here for a printed circuit board, the characteristic impedance is approximately 50 ohms and the speed
of propagation is about 18 cm (7 in.) per ns.

To send digital information from one component to another, we change the voltage on the connecting
wire, and that voltage step propagates from the sender to the receiver. We have to pay some attention to
what happens to that energy front when it gets to the end of the wire! If we do nothing to absorb that
energy, conservation laws tell us that it reflects off the end of the wire as an “echo” and soon our wire
will be full of echoes from previous voltage steps!

Z0

1/√(LC)

Page 604

To prevent these echoes we have to terminate the wire with a resistance to ground that matches the
characteristic impedance of the transmission line. If the signal can propagate in both directions, we’ll
need termination at both ends.

What this model is telling is the time it takes to transmit information from one component to another
and that we have to be careful to absorb the energy associated with the transmission when the
information has reached its destination.

Page 605

With that little bit of theory as background, we’re in a position to describe the real-world consequences
of poor engineering of our signal wires. The key observation is that unless we’re careful there can still
be energy left over from previous transmissions that might corrupt the current transmission. The
general fix to this problem is time, i.e., giving the transmitted value a longer time to settle to an
interference-free value. But slowing down isn’t usually acceptable in high-performance systems, so we
have to do our best to minimize these energy storage effects.

If there the termination isn’t exactly right, we’ll get some reflections from any voltage step reaching the
end of the wire, and it will take a while for the echoes to die out. In fact, as we’ll see, energy will
reflect off of any impedance discontinuity, which mean we’ll want to minimize the number of such
discontinuities.

We need to be careful to allow sufficient time for signals to reach valid logic levels. The shaded region
shows a transition of the wire A from 1 to 0 to 1. The first inverter is trying to produce a 1-output from
the initial input transition to 0, but doesn’t have sufficient time to complete the transition on wire B
before the input changes again. This leads to a runt pulse on wire C, the output of the second inverter,
and we see that the sequence of bits on A has been corrupted by the time the signal reaches C. This
problem was caused by the energy storage in the capacitance of the wire between the inverters, which
will limit the speed at which we can run the logic.

And here see we what happens when a large voltage step triggers oscillations in wire, called ringing,
voltages due to the wire’s inductance and capacitance. The graph shows it takes some time before the
ringing dampens to the point that we have a reliable digital signal. The ringing can be diminished by
spreading the voltage step over a longer time.

The key idea here is that by paying close attention to the design of our wiring and the drivers that put
information onto the wire, we can minimize the performance implications of these energy-storage
effects.

Page 606

Okay, enough electrical engineering! Suppose we have some information in our system. If we preserve
that information over time, we call that storage. If we send that information to another component, we
call that communication. In the real world, we’ve seen that communication takes time and we have to
budget for that time in our system timing. Our engineering has to accommodate the fundamental
bounds on propagating speeds, distances between components and how fast we can change wire
voltages without triggering the effects we saw on the previous slide. The upshot: our timing models
will have to account for wire delays.

Page 607

Earlier in the course, we had a simple timing model that assigned a fixed propagation delay, , to the
time it took for the output of a logic gate to reflect a change to the gate’s input.

We’ll need to change our timing model to account for delay of transmitting the output of a logic gate to
the next components. The timing will be load dependent, so signals that connect to the inputs of many
other gates will be slower than signals that connect to only one other gate. The Jade simulator takes the
loading of a gate’s output signal into account when calculating the effective propagation delay of the
gate.

We can improve propagation delays by reducing the number of loads on output signals or by using
specially-design gates called buffers (the component shown in red) to drive signals that have very large
loads. A common task when optimizing the performance of a circuit is to track down heavily loaded
and hence slow wires and re-engineering the circuit to make them faster.

Today our concern is wires used to connect components at the system level. So next we’ll turn our
attention to possible designs for system-level interconnect and the issues that might arise.

tPD

Page 608

If we want our system to be modular and expandable, how should its design accommodate components
that the user might add at a later time? For many years the approach was to provide a way to plug
additional printed circuit boards into the main “motherboard” that holds the CPU, memory, and the
initial collection of I/O components. The socket on the motherboard connects the circuitry on the add-
in card to the signals on the motherboard that allow the CPU to communicate with the add-in card.
These signals include power and a clock signal used to time the communication, along with the
following.

* Address wires to select different communication end points on the add-in card. The end points might
include memory locations, control registers, diagnostic ports, etc.

* Data wires for transferring data to and from the CPU. In older systems, there would many data wires
to support byte- or word-width data transfers.

* Some number of control wires that tell the add-in card when a particular transfer has started and that
allow the add-in card to indicate when it has responded.

If there are multiple slots for plugging in multiple add-in cards, the same signals might be connected to
all the cards and the address wires would be used to sort out which transfers were intended for which
cards. Collectively these signals are referred to as the system bus. “Bus” is system architect jargon for a
collection of wires used to transfer data using a pre-determined communication protocol.

Page 609

Here’s an example of how a bus transaction might work.

The CLK signal is used to time when signals are placed on the bus wires (at the assertion edge of CLK)
and when they’re read by the recipient (at the sample edge of the CLK). The timing of the clock
waveform is designed to allow enough time for the signals to propagate down the bus and reach valid
logic levels at all the receivers.

The component initiating the transaction is called the bus master who is said to “own” the bus. Most
buses provide a mechanism for transferring ownership from one component to another. The master sets
the bus lines to indicate the desired operation (read, write, block transfer, etc.), the address of the
recipient, and, in the case of a write operation, the data to be sent to the recipient.

The intended recipient, called the slave, is watching the bus lines looking for its address at each sample
edge. When it sees a transaction for itself, the slave performs the requested operation, using a bus
signal to indicate when the operation is complete. On completion it may use the data wires to return
information to the master.

The bus itself may include circuitry to look for transactions where the slave isn’t responding and, after
an appropriate interval, generate an error response so the master can take the appropriate action.

This sort of bus architecture proved to be a very workable design for accommodating add-in cards as
long as the rate of transactions wasn’t too fast, say less than 50 MHz.

Page 610

But as system speeds increased, transaction rates had to increase to keep system performance at
acceptable levels, so the time for each transaction got smaller. With less time for signaling on the bus
wires, various effects began loom large.

If the clock had too short a period, there wasn’t enough time for the master to see the assertion edge,
enable its drivers, have the signal propagate down a long bus to the intended receiver and be stable at
each receiver for long enough before the sample edge.

Another problem was that the clock signal would arrive at different cards at different times. So a card
with an early-arriving clock might decide it was its turn to start driving the bus signals, while a card
with a late-arriving clock might still be driving the bus from the previous cycle. These momentary
conflicts between drivers could add huge amounts of electrical noise to the system.

Another big issue is that energy would reflect off all the small impedance discontinuities caused by the
bus connectors. If there were many connectors, there would be many small echoes which would could
corrupt the signal seen by various receivers. The equations in the upper right show how much of the
signal energy is transmitted and how much is reflected at each discontinuity. The net effect was like
trying to talk very fast while yelling into the Grand Canyon — the echoes could distort the message
beyond recognition unless sufficient time was allocated between words for the echoes to die away.

Eventually buses were relegated to relatively low-speed communication tasks and a different approach
had to be developed for high-speed communication.

Page 611

Network technologies were developed to connect components (in this case individual computer
systems) separated by larger distances, i.e., distances measured in meters instead of centimeters.
Communicating over these larger distances led to different design tradeoffs. In early networks,
information was sent as a sequence of bits over the shared communication medium. The bits were
organized into packets, each containing the address of the destination. Packets also included a
checksum used to detect errors in transmission and the protocol supported the ability to request the
retransmission of corrupted packets.

The software controlling the network is divided into a “stack” of modules, each implementing a
different communication abstraction. The lowest-level physical layer is responsible for transmitting and
receiving an individual packet of bits. Bit errors are detected and corrected, and packets with
uncorrectable errors are discarded. There are different physical-layer modules available for the
different types of physical networks.

The network layer deals with the addressing and routing of packets. Clever routing algorithms find the
shortest communication path through the multi-hop network and deal with momentary or long-term
outages on particular network links.

The transport layer is responsible for providing the reliable communication of a stream of data, dealing
with the issues of discarded or out-of-order packets. In an effort to optimize network usage and limit
packet loses due to network congestion, the transport layer deals with flow control, i.e., the rate at
which packets are sent.

A key idea in the networking community is the notion of building a reliable communication channel on
top of a “best efforts” packet network. Higher layers of the protocol are designed so that its possible to
recover from errors in the lower layers. This has proven much more cost-effective and robust than
trying to achieve 100% reliability at each layer.

Page 612

As we saw in the previous section, there are a lot of electrical issues when trying to communicate over
a shared wire with multiple drivers and receivers. Slowing down the rate of communication helps to
solve the problems, but “slow” isn’t in the cards for today’s high-performance systems.

Experience in the network world has shown that the fastest and least problematic communication
channels have a single driver communicating with a single receiver, what’s called a point-to-point link.
Using differential signaling is particularly robust. With differential signaling, the receiver measures the
voltage difference across the two signaling wires. Electrical effects that might induce voltage noise on
one signaling wire will affect the other in equal measure, so the voltage difference will be largely
unaffected by most noise. Almost all high-performance communication links use differential signaling.

Page 613

If we’re sending digital data, does that mean we also have to send a separate clock signal so the
receiver knows when to sample the signal to determine the next bit?

With some cleverness, it turns out that we can recover the timing information from the received signal
assuming we know the nominal clock period at the transmitter. If the transmitter changes the bit its
sending at the rising edge of the transmitter’s clock, then the receiver can use the transitions in the
received waveform to infer the timing for some of the clock edges.

Then the receiver can use its knowledge of the transmitter’s nominal clock period to infer the location
of the remaining clock edges. It does this by using a phase-locked loop to generate a local facsimile of
the transmitter’s clock, using any received transitions to correct the phase and period of the local clock.
The transmitter adds a training sequence of bits at the front of packet to ensure that the receiver’s
phased-lock loop is properly synchronized before the packet data itself is transmitted. A special unique
bit sequence is used to separate the training signal from the packet data so the receiver can tell exactly
where the packet data starts even if it missed a few training bits while the clocks were being properly
synchronized.

Once the receiver knows the timing of the clock edges, it can then sample the incoming waveform
towards the end of each clock period to determine the transmitted bit.

To keep the local clock in sync with the transmitter’s clock, the incoming waveform needs to have
reasonably frequent transitions. But if the transmitter is sending say, all zeroes, how can we guarantee
frequent-enough clock edges?

The trick, invented by IBM, is for the transmitter to take the stream of message bits and re-encode
them into a bit stream that is guaranteed to have transitions no matter what the message bits are. The
most commonly used encoding is 8b10b, where 8 message bits are encoded into 10 transmitted bits,
where the encoding guarantees a transition at least every 6 bit times. Of course, the receiver has to
reverse the 8b10b encoding to recover the actual message bits. Pretty neat!

Page 614

The benefit of this trick is that we truly only need to send a single stream of bits. The receiver will be
able to recover both the timing information and the data without also needing to transmit a separate
clock signal.

Page 615

Using these lessons, networks have evolved from using shared communication channels to using point-
to-point links. Today local-area networks use 10, 100, or 1000 BaseT wiring which includes separate
differential pairs for sending and receiving, i.e., each sending or receiving channel is unidirectional
with a single driver and single receiver. The network uses separate switches and routers to receive
packets from a sender and then forward the packets over a point-to-point link to the next switch, and so
on, across multiple point-to-point links until the packet arrives at its destination.

System-level connections have evolved to use the same communication strategy: point-to-point links
with switches for routing packets to their intended destination. Note that communication along each
link is independent, so a network with many links can actually support a lot of communication
bandwidth. With a small amount of packet buffering in the switches to deal with momentary contention
for a particular link, this is a very effective strategy for moving massive amounts of information from
one component to the next.

In the next section, we’ll look at some of the more interesting details.

Page 616

Serial point-to-point links are the modern replacement for the parallel communications bus with all its
electrical and timing issues. Each link is unidirectional and has only a single driver and the receiver
recovers the clock signal from the data stream, so there are no complications from sharing the channel,
clock skew, and electrical problems. The very controlled electrical environment enables very high
signaling rates, well up into the gigahertz range using today’s technologies.

If more throughput is needed, you can use multiple serial links in parallel. Extra logic is needed to
reassemble the original data from multiple packets sent in parallel over multiple links, but the cost of
the required logic gates is very modest in current technologies.

Note that the expansion strategy of modern systems still uses the notion of an add-in card that plugs
into the motherboard. But instead of connecting to a parallel bus, the add-in card connects to one or
more point-to-point communication links.

Page 617

Here’s the system-level communications diagram for a recent system based on an Intel Core i7 CPU
chip. The CPU is connected directly to the memories for the highest-possible memory bandwidth, but
talks to all the other components over the QuickPath Interconnect (QPI), which has 20 differential
signaling paths in each direction. QPI supports up to 6.4 billion 20-bit transfers in each direction every
second.

All the other communication channels (USB, PCIe, networks, Serial ATA, Audio, etc.) are also serial
links, providing various communication bandwidths depending on the application.

Reading about the QPI channel used by the CPU reminded me a lot of the one ring that could be used
to control all of Middle Earth in the Tolkien trilogy Lord of the Rings. Why mess around with a lot of
specialized communication channels when you have a single solution that’s powerful enough to solve
all your communication needs?

Page 618

PCI Express (PCIe) is often used as the communication link between components on the system
motherboard. A single PCIe version 2 “lane” transmits data at 5 Gb/sec using low-voltage differential
signal (LVDS) over wires designed to have a 100-Ohm characteristic impedance.

The PCIe lane is under the control of the same sort of network stack as described earlier. The physical
layer transmits packetized data through the lane. Each packet starts with a training sequence to
synchronize the receiver’s clock-recovery circuitry, followed by a unique start sequence, then the
packet’s data payload, and ends with a unique end sequence.

The physical layer payload is organized as a sequence number, a transaction layer payload and a
cyclical redundancy check sequence that’s used to validate the data. Using the sequence number, the
data link layer can tell when a packet has been dropped and request the transmitter restart transmission
at the missing packet. It also deals with flow control issues.

Finally, the transaction layer reassembles the message from the transaction layer payloads from all the
lanes and uses the header to identify the intended recipient at the receive end.

Altogether, a significant amount of logic is needed to send and receive messages on multiple PCIe
lanes, but the cost is quite acceptable when using today’s integrated circuit technologies. Using 8 lanes,
the maximum transfer rate is 4 GB/sec, capable of satisfying the needs of high-performance peripherals
such as graphics cards.

So knowledge from the networking world has reshaped how components communicate on the
motherboard, driving the transition from parallel buses to a handful of serial point-to-point links. As a
result today’s systems are faster, more reliable, more energy-efficient and smaller than ever before.

Page 619

Let’s wrap up our discussion of system-level interconnect by considering how best to connect N
components that need to send messages to one another, e.g., CPUs on a multicore chip. Today such
chips have a handful of cores, but soon they may have 100s or 1000s of cores.

We’ll build our communications network using point-to-point links. In our analysis, each point-to-point
link is counted at a cost of 1 hardware unit. Sending a message across a link requires one time unit.
And we’ll assume that different links can operate in parallel, so more links will mean more message
traffic.

We’ll do an asymptotic analysis of the throughput (total messages per unit time), latency (worst-case
time to deliver a single message), and hardware cost. In other words, we’ll make a rough estimate how
these quantities change as N grows.

Note that in general the throughput and hardware cost are proportional to the number of point-to-point
links.

Our baseline is the backplane bus discussed earlier, where all the components share a single
communication channel. With only a single channel, bus throughput is 1 message per unit time and a
message can travel between any two components in one time unit. Since each component has to have
an interface to the shared channel, the total hardware cost is O(n).

In a ring network each component sends its messages to a single neighbor and the links are arranged so
that its possible to reach all components. There are N links in total, so the throughput and cost are both
O(n). The worst case latency is also O(n) since a message might have to travel across N-1 links to
reach the neighbor that’s immediately upstream. Ring topologies are useful when message latency isn’t
important or when most messages are to the component that’s immediately downstream, i.e., the
components form a processing pipeline.

Page 620

The most general network topology is when every component has a direct link to every other
component. There are O(N**2) links so the throughput and cost are both O(N**2). And the latency is 1
time unit since each destination is directly accessible. Although expensive, complete graphs offer very
high throughput with very low latencies.

A variant of the complete graph is the crossbar switch where a particular row and column can be
connected to form a link between particular A and B components with the restriction that each row and
each column can only carry 1 message during each time unit. Assume that the first row and first
column connect to the same component, and so on, i.e., that the example crossbar switch is being used
to connect 4 components. Then there are O(n) messages delivered each time unit, with a latency of 1.
There are N**2 switches in the crossbar, so the cost is O(N**2) even though there are only O(n) links.

Page 621

In mesh networks, components are connected to some fixed number of neighboring components, in
either 2- or 3-dimensions. Hence the total number of links is proportional to the number of
components, so both throughput and cost are O(n). The worst-case latencies for mesh networks are
proportional to length of the sides, so the latency is O(sqrt n) for 2D meshes and O(cube root n) for 3D
meshes. The orderly layout, constant per-node hardware costs, and modest worst-case latency make 2D
4-neighbor meshes a popular choice for the current generation of experimental multi-core processors.

Page 622

Hypercube and tree networks offer logarithmic latencies, which for large N may be faster than mesh
networks. The original CM-1 Connection Machine designed in the 80’s used a hypercube network to
connect up to 65,536 very simple processors, each connected to 16 neighbors. Later generations
incorporated smaller numbers of more sophisticated processors, still connected by a hypercube
network. In the early 90’s the last generation of Connection Machines used a tree network, with the
clever innovation that the links towards the root of the tree had a higher message capacity.

Page 623

Here’s a summary of the theoretical latencies we calculated for the various topologies.

As a reality check, it’s important to realize that the lower bound on the worst-case distance between
components in our 3-dimensional world is O(cube root of N). In the case of a 2D layout, the worst-case
distance is O(sqrt N). Since we know that the time to transmit a message is proportional to the distance
traveled, we should modify our latency calculations to reflect this physical constraint.

Note that the bus and crossbar involve N connections to a single link, so here the lower-bound on the
latency needs to reflect the capacitive load added by each connection.

The winner? Mesh networks avoid the need for longer wires as the number of connected components
grows and appear to be an attractive alternative for high-capacity communication networks connecting
1000’s of processors.

Page 624

Summarizing our discussion:

Point-to-point links are in common use today for system-level interconnect, and as a result our
systems are faster, more reliable, more energy-efficient and smaller than ever before.

Multi-signal parallel buses are still used for very-high-bandwidth connections to memories, with
a lot of very careful engineering to avoid the electrical problems observed in earlier bus
implementations.

Wireless connections are in common use to connect mobile devices to nearby components and
there has been interesting work on how to allow mobile devices to discover what peripherals are
nearby and enable them to connect automatically.

The upcoming generation of multi-core chips will have 10’s to 100’s of processing cores. There
is a lot ongoing research to determine which communication topology would offer the best
combination of high communication bandwidth and low latency. The next ten years will be an
interesting time for on-chip network engineers!

Page 625

L21: Parallel Processing

1. Processor Performance
2. 5-Stage Pipelined Processors
3. Improving 5-Stage Pipeline Performance
4. Limits to Pipeline Depth
5. Improving 5-Stage Pipeline Performance
6. Instruction-level Parallelism (ILP)
7. Wider or Superscalar Pipelines
8. A Modern Out-of-Order Superscalar Processor
9. Limits to Single-Processor Performance

10. Data-Level Parallelism
11. Vector Code Example
12. Data-Dependent Vector Operations
13. Vector Processing Implementations
14. Multicore Processors
15. Amdahl’s Law
16. Amdahl’s Law and Parallelism
17. Thread-Level Parallelism
18. Multicore Caches
19. What Are the Possible Outcomes
20. Uniprocessor Outcome
21. Sequential Consistency
22. Alternatives to Sequential Consistency?
23. Fix: “Snoopy” Cache Coherence Protocol
24. Example: MESI Cache Coherence Protocol
25. The Cache Has Two Customers!
26. MESI Activity Diagram
27. Cache Coherence in Action
28. Parallel Processing Summary

Page 626

The modern world has an insatiable appetite for computation, so system architects are always thinking
about ways to make programs run faster. The running time of a program is the product of three terms:

The number of instructions in the program, multiplied by the average number of processor cycles
required to execute each instruction (CPI), multiplied by the time required for each processor cycle (

).

To decrease the running time we need to decrease one or more of these terms. The number of
instructions per program is determined by the ISA and by the compiler that produced the sequence of
assembly language instructions to be executed. Both are fair game, but for this discussion, let’s work
on reducing the other two terms.

As we’ve seen, pipelining reduces by dividing instruction execution into a sequence of steps,
each of which can complete its task in a shorter . What about reducing CPI?

In our 5-stage pipelined implementation of the Beta, we designed the hardware to complete the
execution of one instruction every clock cycle, so CPI_ideal is 1. But sometimes the hardware has to
introduce “NOP bubbles” into the pipeline to delay execution of a pipeline stage if the required
operation couldn’t (yet) be completed. This happens on taken branch instructions, when attempting to
immediately use a value loaded from memory by the LD instruction, and when waiting for a cache
miss to be satisfied from main memory. CPI_stall accounts for the cycles lost to the NOPs introduced
into the pipeline. Its value depends on the frequency of taken branches and immediate use of LD
results. Typically it’s some fraction of a cycle. For example, if a 6-instruction loop with a LD takes 8
cycles to complete, CPI_stall for the loop would be 2/6, i.e., 2 extra cycles for every 6 instructions.

tCLK

tCLK

tCLK

Page 627

Our classic 5-stage pipeline is an effective compromise that allows for a substantial reduction of
while keeping CPI_stall to a reasonably modest value.

There is room for improvement. Since each stage is working on one instruction at a time, CPI_ideal is
1.

Slow operations — e.g., completing a multiply in the ALU stage, or accessing a large cache in the IF or
MEM stages — force to be large to accommodate all the work that has to be done in one cycle.

The order of the instructions in the pipeline is fixed. If, say, a LD instruction is delayed in the MEM
stage because of a cache miss, all the instructions in earlier stages are also delayed even though their
execution may not depend on the value produced by the LD. The order of instructions in the pipeline
always reflects the order in which they were fetched by the IF stage.

Let’s look into what it would take to relax these constraints and hopefully improve program runtimes.

tCLK

tCLK

Page 628

Increasing the number of pipeline stages should allow us to decrease the clock cycle time. We’d add
stages to break up performance bottlenecks, e.g., adding additional pipeline stages (MEM1 and
MEM2) to allow a longer time for memory operations to complete. This comes at cost to CPI_stall
since each additional MEM stage means that more NOP bubbles have to be introduced when there’s a
LD data hazard. Deeper pipelines mean that the processor will be executing more instructions in
parallel.

Page 629

Let’s interrupt enumerating our performance shopping list to think about limits to pipeline depth.

Each additional pipeline stage includes some additional overhead costs to the time budget. We have to
account for the propagation, setup, and hold times for the pipeline registers. And we usually have to
allow a bit of extra time to account for clock skew, i.e., the difference in arrival time of the clock edge
at each register. And, finally, since we can’t always divide the work exactly evenly between the
pipeline stages, there will be some wasted time in the stages that have less work. We’ll capture all of
these effects as an additional per-stage time overhead of O.

If the original clock period was T, then with N pipeline stages, the clock period will be T/N + O.

At the limit, as N becomes large, the speedup approaches T/O. In other words, the overhead starts to
dominate as the time spent on work in each stage becomes smaller and smaller. At some point adding
additional pipeline stages has almost no impact on the clock period.

As a data point, the Intel Core-2 x86 chips (nicknamed “Nehalem”) have a 14-stage execution pipeline.

Page 630

Okay, back to our performance shopping list...

There may be times we can arrange to execute two or more instructions in parallel, assuming that their
executions are independent from each other. This would increase CPI_ideal at the cost of increasing the
complexity of each pipeline stage to deal with concurrent execution of multiple instructions.

If there’s an instruction stalled in the pipeline by a data hazard, there may be following instructions
whose execution could still proceed. Allowing instructions to pass each other in the pipeline is called
out-of-order execution. We’d have to be careful to ensure that changing the execution order didn’t
affect the values produced by the program.

More pipeline stages and wider pipeline stages increase the amount of work that has to be discarded on
control hazards, potentially increasing CPI_stall. So it’s important to minimize the number of control
hazards by predicting the results of a branch (i.e., taken or not taken) so that we increase the chances
that the instructions in the pipeline are the ones we’ll want to execute.

Our ability to exploit wider pipelines and out-of-order execution depends on finding instructions that
can be executed in parallel or in different orders. Collectively these properties are called “instruction-
level parallelism” (ILP).

Page 631

Here’s an example that will let us explore the amount of ILP that might be available. On the left is an
unoptimized loop that computes the product of the first N integers. On the right, we’ve rewritten the
code, placing instructions that could be executed concurrently on the same line.

First notice the red line following the BF instruction. Instructions below the line should only be
executed if the BF is *not* taken. That doesn’t mean we couldn’t start executing them before the
results of the branch are known, but if we executed them before the branch, we would have to be
prepared to throw away their results if the branch was taken.

The possible execution order is constrained by the read-after-write (RAW) dependencies shown by the
red arrows. We recognize these as the potential data hazards that occur when an operand value for one
instruction depends on the result of an earlier instruction. In our 5-stage pipeline, we were able to
resolve many of these hazards by bypassing values from the ALU, MEM, and WB stages back to the
RF stage where operand values are determined.

Of course, bypassing will only work when the instruction has been executed so its result is available
for bypassing! So in this case, the arrows are showing us the constraints on execution order that
guarantee bypassing will be possible.

There are other constraints on execution order. The green arrow identifies a write-after-write (WAW)
constraint between two instructions with the same destination register. In order to ensure the correct
value is in R2 at the end of the loop, the LD(r,R2) instruction has to store its result into the register file
after the result of the CMPLT instruction is stored into the register file.

Similarly, the blue arrow shows a write-after-read (WAR) constraint that ensures that the correct values
are used when accessing a register. In this case, LD(r,R2) must store into R2 after the Ra operand for
the BF has been read from R2.

As it turns out, WAW and WAR constraints can be eliminated if we give each instruction result a
unique register name. This can actually be done relatively easily by the hardware by using a generous
supply of temporary registers, but we won’t go into the details of renaming here. The use of temporary

Page 632

registers also makes it easy to discard results of instructions executed before we know the outcomes of
branches.

In this example, we discovered that the potential concurrency was actually pretty good for the
instructions following the BF.

Page 633

To take advantage of this potential concurrency, we’ll need to modify the pipeline to execute some
number N of instructions in parallel. If we can sustain that rate of execution, CPI_ideal would then be
1/N since we’d complete the execution of N instructions in each clock cycle as they exited the final
pipeline stage.

So what value should we choose for N? Instructions that are executed by different ALU hardware are
easy to execute in parallel, e.g., ADDs and SHIFTs, or integer and floating-point operations. Of course,
if we provided multiple adders, we could execute multiple integer arithmetic instructions concurrently.
Having separate hardware for address arithmetic (called LD/ST units) would support concurrent
execution of LD/ST instructions and integer arithmetic instructions.

This set of lecture slides from Duke gives a nice overview of techniques used in each pipeline stage to
support concurrent execution.

Basically by increasing the number of functional units in the ALU and the number of memory ports on
the register file and main memory, we would have what it takes to support concurrent execution of
multiple instructions. So, what’s the right tradeoff between increased circuit costs and increased
concurrency?

As a data point, the Intel Nehalem core can complete up to 4 micro-operations per cycle, where each
micro-operation corresponds to one of our simple RISC instructions.

Page 634

Here’s a simplified diagram of a modern out-of-order superscalar processor.

Instruction fetch and decode handles, say, 4 instructions at a time. The ability to sustain this execution
rate depends heavily on the ability to predict the outcome of branch instructions, ensuring that the wide
pipeline will be mostly filled with instructions we actually want to execute. Good branch prediction
requires the use of the history from previous branches and there’s been a lot of cleverness devoted to
getting good predictions from the least amount of hardware! If you’re interested in the details, search
for “branch predictor” on Wikipedia.

The register renaming happens during instruction decode, after which the instructions are ready to be
dispatched to the functional units.

If an instruction needs the result of an earlier instruction as an operand, the dispatcher has identified
which functional unit will be producing the result. The instruction waits in a queue until the indicated
functional unit produces the result and when all the operand values are known, the instruction is finally
taken from the queue and executed. Since the instructions are executed by different functional units as
soon as their operands are available, the order of execution may not be the same as in the original
program.

After execution, the functional units broadcast their results so that waiting instructions know when to
proceed. The results are also collected in a large reorder buffer so that that they can be retired (i.e.,
write their results in the register file) in the correct order.

Whew! There’s a lot of circuitry involved in keeping the functional units fed with instructions,
knowing when instructions have all their operands, and organizing the execution results into the correct
order. So how much speed up should we expect from all this machinery? The effective CPI is very
program-specific, depending as it does on cache hit rates, successful branch prediction, available ILP,
and so on. Given the architecture described here the best speed up we could hope for is a factor of 4.
Googling around, it seems that the reality is an average speed-up of 2, maybe slightly less, over what
would be achieved by an in-order, single-issue processor.

Page 635

What can we expect for future performance improvements in out-of-order, superscalar pipelines?

Increases in pipeline depth can cause CPI_stall and timing overheads to rise. At the current pipeline
depths the increase in CPI_stall is larger than the gains from decreased and so further increases in
depth are unlikely.

A similar tradeoff exists between using more out-of-order execution to increase ILP and the increase in
CPI_stall caused by the impact of mis-predicted branches and the inability to run main memories any
faster.

Power consumption increases more quickly than the performance gains from lower and
additional out-of-order execution logic.

The additional complexity required to enable further improvements in branch prediction and
concurrent execution seems very daunting.

All of these factors suggest that is unlikely that we’ll see substantial future improvements in the
performance of out-of-order superscalar pipelined processors.

So system architects have turned their attention to exploiting data-level parallelism (DLP) and thread-
level parallelism (TLP). These are our next two topics.

tCLK

tCLK

Page 636

For some applications, data naturally comes in vector or matrix form. For example, a vector of
digitized samples representing an audio waveform over time, or an matrix of pixel colors in a 2D
image from a camera. When processing that data, it’s common to perform the same sequence of
operations on each data element. The example code shown here is computing a vector sum, where each
component of one vector is added to the corresponding component of another vector.

By replicating the datapath portion of our CPU, we can design special-purpose vector processors
capable of performing the same operation on many data elements in parallel. Here we see that the
register file and ALU have been replicated and the control signals from decoding the current instruction
are shared by all the datapaths. Data is fetched from memory in big blocks (very much like fetching a
cache line) and the specified register in each datapath is loaded with one of the words from the block.
Similarly each datapath can contribute a word to be stored as a contiguous block in main memory. In
such machines, the width of the data buses to and from main memory is many words wide, so a single
memory access provides data for all the datapaths in parallel.

Executing a single instruction on a machine with N datapaths is equivalent to executing N instructions
on a conventional machine with a single datapath. The result achieves a lot of parallelism without the
complexities of out-of-order superscalar execution.

Page 637

Suppose we had a vector processor with 16 datapaths. Let’s compare its performance on a vector-sum
operation to that of a conventional pipelined Beta processor.

Here’s the Beta code, carefully organized to avoid any data hazards during execution. There are 9
instructions in the loop, taking 10 cycles to execute if we count the NOP introduced into the pipeline
when the BNE at the end of the loop is taken. It takes 160 cycles to sum all 16 elements assuming no
additional cycles are required due to cache misses.

And here’s the corresponding code for a vector processor where we’ve assumed constant-sized 16-
element vectors. Note that “V” registers refer to a particular location in the register file associated with
each datapath, while the “R” registers are the conventional Beta registers used for address
computations, etc. It would only take 4 cycles for the vector processor to complete the desired
operations, a speed-up of 40.

This example shows the best-possible speed-up. The key to a good speed-up is our ability to
“vectorize” the code and take advantage of all the datapaths operating in parallel. This isn’t possible for
every application, but for tasks like audio or video encoding and decoding, and all sorts of digital
signal processing, vectorization is very doable. Memory operations enjoy a similar performance
improvement since the access overhead is amortized over large blocks of data.

Page 638

You might wonder if it’s possible to efficiently perform data-dependent operations on a vector
processor. Data-dependent operations appear as conditional statements on conventional machines,
where the body of the statement is executed if the condition is true. If testing and branching is under
the control of the single instruction execution engine, how can we take advantage of the parallel
datapaths?

The trick is provide each datapath with a local predicate flag. Use a vectorized compare instruction
(CMPLT.V) to perform the a[i] < b[i] comparisons in parallel and remember the result locally in each
datapath’s predicate flag. Then extend the vector ISA to include “predicated instructions” which check
the local predicate to see if they should execute or do nothing. In this example, ADDC.V.iftrue only
performs the ADDC on the local data if the local predicate flag is true.

Instruction predication is also used in many non-vector architectures to avoid the execution-time
penalties associated with mis-predicted conditional branches. They are particularly useful for simple
arithmetic and boolean operations (i.e., very short instruction sequences) that should be executed only
if a condition is met. The x86 ISA includes a conditional move instruction, and in the 32-bit ARM ISA
almost all instructions can be conditionally executed.

Page 639

The power of vector processors comes from having 1 instruction initiate N parallel operations on N
pairs of operands.

Most modern CPUs incorporate vector extensions that operate in parallel on 8-, 16-, 32- or 64-bit
operands organized as blocks of 128-, 256-, or 512-bit data. Often all that’s needed is some simple
additional logic on an ALU designed to process full-width operands. The parallelism is baked into the
vector program, not discovered on-the-fly by the instruction dispatch and execution machinery. Writing
the specialized vector programs is a worthwhile investment for certain library functions which see a lot
use in processing today’s information streams with their heavy use of images, and A/V material.

Perhaps the best example of architectures with many datapaths operating in parallel are the graphics
processing units (GPUs) found in almost all computer graphics systems. GPU datapaths are typically
specialized for 32- and 64-bit floating point operations found in the algorithms needed to display in
real-time a 3D scene represented as billions of triangular patches as a 2D image on the computer
screen. Coordinate transformation, pixel shading and antialiasing, texture mapping, etc., are examples
of “embarrassingly parallel” computations where the parallelism comes from having to perform the
same computation independently on millions of different data objects. Similar problems can be found
in the fields of bioinformatics, big data processing, neural net emulation used in deep machine learning,
and so on. Increasingly, GPUs are used in many interesting scientific and engineering calculations and
not just as graphics engines.

Data-level parallelism provides significant performance improvements in a variety of useful situations.
So current and future ISAs will almost certainly include support for vector operations.

Page 640

In discussing out-of-order superscalar pipelined CPUs we commented that the costs grow very quickly
relative the to performance gains, leading to the cost-performance curve shown here. If we move down
the curve, we can arrive at more efficient architectures that give, say, 1/2 the performance at a 1/4 of
the cost.

When our applications involve independent computations that can be performed in a parallel, it may be
that we would be able to use two cores to provide the same performance as the original expensive core,
but a fraction of the cost. If the available parallelism allows us to use additional cores, we’ll see a linear
relationship between increased performance vs. increased cost. The key, of course, is that desired
computations can be divided into multiple tasks that can run independently, with little or no need for
communication or coordination between the tasks.

What is the optimal tradeoff between core cost and the number of cores? If our computation is
arbitrarily divisible without incurring additional overhead, then we would continue to move down the
curve until we found the cost-performance point that gave us the desired performance at the least cost.
In reality, dividing the computation across many cores does involve some overhead, e.g., distributing
the data and code, then collecting and aggregating the results, so the optimal tradeoff is harder to find.
Still, the idea of using a larger number of smaller, more efficient cores seems attractive.

Page 641

Many applications have some computations that can be performed in parallel, but also have
computations that won’t benefit from parallelism. To understand the speedup we might expect from
exploiting parallelism, it’s useful to perform the calculation proposed by computer scientist Gene
Amdahl in 1967, now known as Amdahl’s Law.

Suppose we’re considering an enhancement that speeds up some fraction F of the task at hand by a
factor of S. As shown in the figure, the gray portion of the task now takes F/S of the time that it used to
require.

Some simple arithmetic lets us calculate the overall speedup we get from using the enhancement. One
conclusion we can draw is that we’ll benefit the most from enhancements that affect a large portion of
the required computations, i.e., we want to make F as large a possible.

Page 642

What’s the best speedup we can hope for if we have many cores that can be used to speed up the
parallel part of the task? Here’s the speedup formula based on F and S, where in this case F is the
parallel fraction of the task. If we assume that the parallel fraction of the task can be speed up
arbitrarily by using more and more cores, we see that the best possible overall speed up is 1/(1-F).

For example, your write a program that can do 90% of its work in parallel, but the other 10% must be
done sequentially. The best overall speedup that can be achieved is a factor of 10, no matter how many
cores you have at your disposal.

Turning the question around, suppose you have a 1000-core machine which you hope to be able to use
to achieve a speedup of 500 on your target application. You would need to be able parallelize 99.8% of
the computation in order to reach your goal! Clearly multicore machines are most useful when the
target task has lots of natural parallelism.

Page 643

Using multiple independent cores to execute a parallel task is called thread-level parallelism (TLP),
where each core executes a separate computation “thread”. The threads are independent programs, so
the execution model is potentially more flexible than the lock-step execution provided by vector
machines.

When there are a small number of threads, you often see the cores sharing a common main memory,
allowing the threads to communicate and synchronize by sharing a common address space. We’ll
discuss this further in the next section. This is the approach used in current multicore processors, which
have between 2 and 12 cores.

Shared memory becomes a real bottleneck when there 10’s or 100’s of cores, since collectively they
quickly overwhelm the available memory bandwidth. In these architectures, threads communicate
using a communication network to pass messages back and forth. We discussed possible network
topologies in an earlier lecture. A cost-effective on-chip approach is to use a nearest-neighbor mesh
network, which supports many parallel point-to-point communications, while still allowing multi-hop
communication between any two cores. Message passing is also used in computing clusters, where
many ordinary CPUs collaborate on large tasks. There’s a standardized message passing interface
(MPI) and specialized, very high throughput, low latency message-passing communication networks
(e.g., Infiniband) that make it easy to build high-performance computing clusters.

In the next couple of sections we’ll look more closely at some of the issues involved in building
shared-memory multicore processors.

Page 644

A conceptual schematic for a multicore processor is shown below. To reduce the average memory
access time, each of the four cores has its own cache, which will satisfy most memory requests. If
there’s a cache miss, a request is sent to the shared main memory. With a modest number of cores and a
good cache hit ratio, the number of memory requests that must access main memory during normal
operation should be pretty small. To keep the number of memory accesses to a minimum, the caches
implement a write-back strategy, where ST instructions update the cache, but main memory is only
updated when a dirty cache line is replaced.

Our goal is that each core should share the contents of main memory, i.e., changes made by one core
should visible to all the other cores. In the example shown here, core 0 is running Thread A and core 1
is running Thread B. Both threads reference two shared memory locations holding the values for the
variables X and Y.

The current values of X and Y are 1 and 2, respectively. Those values are held in main memory as well
as being cached by each core.

Page 645

What happens when the threads are executed? Each thread executes independently, updating its cache
during stores to X and Y. For any possible execution order, either concurrent or sequential, the result is
the same: Thread A prints “2”, Thread B prints “1”. Hardware engineers would point to the consistent
outcomes and declare victory!

But closer examination of the final system state reveals some problems. After execution is complete,
the two cores disagree on the values of X and Y. Threads running on core 0 will see X=3 and Y=2.
Threads running on core 1 will see X=1 and Y=4. Because of the caches, the system isn’t behaving as
if there’s a single shared memory. On the other hand, we can’t eliminate the caches since that would
cause the average memory access time to skyrocket, ruining any hoped-for performance improvement
from using multiple cores.

Page 646

What outcome should we expect? One plausible standard of correctness is the outcome when the
threads are run a single timeshared core. The argument would be that a multicore implementation
should produce the same outcome but more quickly, with parallel execution replacing timesharing.

The table shows the possible results of the timesharing experiment, where the outcome depends on the
order in which the statements are executed. Programmers will understand that there is more than one
possible outcome and know that they would have to impose additional constraints on execution order,
say, using semaphores, if they wanted a specific outcome.

Notice that the multicore outcome of 2,1 doesn’t appear anywhere on the list of possible outcomes
from sequential timeshared execution.

Page 647

The notion that executing N threads in parallel should correspond to some interleaved execution of
those threads on a single core is called “sequential consistency”. If multicore systems implement
sequential consistency, then programmers can think of the systems as providing hardware-accelerated
timesharing.

So, our simple multicore system fails on two accounts. First, it doesn’t correctly implement a shared
memory since, as we’ve seen, it’s possible for the two cores to disagree about the current value of a
shared variable. Second, as a consequence of the first problem, the system doesn’t implement
sequential consistency.

Clearly, we’ll need to figure out a fix!

Page 648

One possible fix is to give up on sequential consistency. An alternative memory semantics is “weak
consistency”, which only requires that the memory operations from each thread appear to be performed
in the order issued by that thread. In other words in a weakly consistent system, if a particular thread
writes to X and then writes to Y, the possible outcomes from reads of X and Y by any thread would be
one of

(unchanged X, unchanged Y), or (changed X, unchanged Y), or (changed X, changed Y).

But no thread would see changed Y but unchanged X.

In a weakly consistent system, memory operations from other threads may overlap in arbitrary ways
(not necessarily consistent with any sequential interleaving).

Note that our multicore cache system doesn’t itself guarantee even weak consistency. A thread that
executes “write X; write Y” will update its local cache, but later cache replacements may cause the
updated Y value to be written to main memory before the updated X value. To implement weak
consistency, the thread should be modified to “write X; communicate changes to all other processors;
write Y”. In the next section, we’ll discuss how to modify the caches to perform the required
communication automatically.

Out-of-order cores have an extra complication since there’s no guarantee that successive ST
instructions will complete in the order they appeared in the program. These architectures provide a
BARRIER instruction that guarantees that memory operations before the BARRIER are completed
before memory operation executed after the BARRIER.

There are many types of memory consistency — each commercially-available multicore system has its
own particular guarantees about what happens when. So the prudent programmer needs to read the ISA
manual carefully to ensure that her program will do what she wants. See the referenced PDF file for a
very readable discussion about memory semantics in multicore systems.

Page 649

The problem with our simple multicore system is that there is no communication when the value of a
shared variable is changed. The fix is to provide the necessary communications over a shared bus that’s
watched by all the caches. A cache can then “snoop” on what’s happening in other caches and then
update its local state to be consistent. The required communications protocol is called a “cache
coherence protocol”.

In designing the protocol, we’d like to incur the communications overhead only when there’s actual
sharing in progress, i.e., when multiple caches have local copies of a shared variable.

Page 650

To implement a cache coherence protocol, we’ll change the state maintained for each cache line.

The initial state for all cache lines is INVALID indicating that the tag and data fields do not contain up-
to-date information. This corresponds to setting the valid bit to 0 in our original cache implementation.

When the cache line state is EXCLUSIVE, this cache has the only copy of those memory locations and
indicates that the local data is the same as that in main memory. This corresponds to setting the valid
bit to 1 in our original cache implementation.

If the cache line state is MODIFIED, that means the cache line data is the sole valid copy of the data.
This corresponds to setting both the dirty and valid bits to 1 in our original cache implementation.

To deal with sharing issues, there’s a fourth state called SHARED that indicates when other caches
may also have a copy of the same unmodified memory data.

When filling a cache from main memory, other caches can snoop on the read access and participate if
fulfilling the read request.

If no other cache has the requested data, the data is fetched from main memory and the requesting
cache sets the state of that cache line to EXCLUSIVE.

If some other cache has the requested in line in the EXCLUSIVE or SHARED state, it supplies the data
and asserts the SHARED signal on the snoopy bus to indicate that more than one cache now has a copy
of the data. All caches will mark the state of the cache line as SHARED.

If another cache has a MODIFIED copy of the cache line, it supplies the changed data, providing the
correct values for the requesting cache as well as updating the values in main memory. Again the
SHARED signal is asserted and both the reading and responding cache will set the state for that cache
line to SHARED.

So, at the end of the read request, if there are multiple copies of the cache line, they will all be in the
SHARED state. If there’s only one copy of the cache line it will be in the EXCLUSIVE state.

Page 651

Writing to a cache line is when the sharing magic happens. If there’s a cache miss, the first cache
performs a cache line read as described above. If the cache line is now in the SHARED state, a write
will cause the cache to send an INVALIDATE message on the snoopy bus, telling all other caches to
invalidate their copy of the cache line, guaranteeing the local cache now has EXCLUSIVE access to
the cache line. If the cache line is in the EXCLUSIVE state when the write happens, no communication
is necessary. Now the cache data can be changed and the cache line state set to MODIFIED,
completing the write.

This protocol is called “MESI” after the first initials of the possible states. Note that the the valid and
dirty state bits in our original cache implementation have been repurposed to encode one of the four
MESI states.

The key to success is that each cache now knows when a cache line may be shared by another cache,
prompting the necessary communication when the value of a shared location is changed. No attempt is
made to update shared values, they’re simply invalidated and the other caches will issue read requests
if they need the value of the shared variable at some future time.

Page 652

To support cache coherence, the cache hardware has to be modified to support two request streams: one
from the CPU and one from the snoopy bus.

The CPU side includes a queue of store requests that were delayed by cache misses. This allows the
CPU to proceed without having to wait for the cache refill operation to complete. Note that CPU read
requests will need to check the store queue before they check the cache to ensure the most-recent value
is supplied to the CPU. Usually there’s a STORE_BARRIER instruction that stalls the CPU until the
store queue is empty, guaranteeing that all processors have seen the effect of the writes before
execution resumes.

On the snoopy-bus side, the cache has to snoop on the transactions from other caches, invalidating or
supplying cache line data as appropriate, and then updating the local cache line state. If the cache is
busy with, say, a refill operation, INVALIDATE requests may be queued until they can be processed.
Usually there’s a READ_BARRIER instruction that stalls the CPU until the invalidate queue is empty,
guaranteeing that updates from other processors have been applied to the local cache state before
execution resumes.

Note that the “read with intent to modify” transaction shown here is just protocol shorthand for a
READ immediately followed by an INVALIDATE, indicating that the requester will be changing the
contents of the cache line.

Page 653

How do the CPU and snoopy-bus requests affect the cache state? Here in micro type is a flow chart
showing what happens when. If you’re interested, try following the actions required to complete
various transactions.

Intel, in its wisdom, adds a fifth “F” state, used to determine which cache will respond to read request
when the requested cache line is shared by multiple caches — basically it selects which of the
SHARED cache lines gets to be the responder.

But this is a bit abstract. Let’s try the MESI cache coherence protocol on our earlier example!

Page 654

Here are our two threads and their local cache states indicating that values of locations X and Y are
shared by both caches. Let’s see what happens when the operations happen in the order (1 through 4)
shown here. You can check what happens when the transactions are in a different order or happen
concurrently.

First, Thread A changes X to 3. Since this location is marked as SHARED [S] in the local cache, the
cache for core 0 ($_0) issues an INVALIDATE transaction for location X to the other caches, giving it
exclusive access to location X, which it changes to have the value 3. At the end of this step, the cache
for core 1 ($_1) no longer has a copy of the value for location X.

In step 2, Thread B changes Y to 4. Since this location is marked as SHARED in the local cache, cache
1 issues an INVALIDATE transaction for location Y to the other caches, giving it exclusive access to
location Y, which it changes to have the value 4.

In step 3, execution continues in Thread B, which needs the value of location X. That’s a cache miss,
so it issues a read request on the snoopy bus, and cache 0 responds with its updated value, and both
caches mark the location X as SHARED. Main memory, which is also watching the snoopy bus, also
updates its copy of the X value.

Finally, in step 4, Thread A needs the value for Y, which results in a similar transaction on the snoopy
bus.

Note the outcome corresponds exactly to that produced by the same execution sequence on a
timeshared core since the coherence protocol guarantees that no cache has an out-of-date copy of a
shared memory location. And both caches agree on the ending values for the shared variables X and Y.

If you try other execution orders, you’ll see that sequential consistency and shared memory semantics
are maintained in each case. The cache coherency protocol has done it’s job!

Page 655

Let’s summarize our discussion of parallel processing.

At the moment, it seems that the architecture of a single core has reached a stable point. At least with
the current ISAs, pipeline depths are unlikely to increase and out-of-order, superscalar instruction
execution has reached the point of diminishing performance returns. So it seems unlikely there will be
dramatic performance improvements due to architectural changes inside the CPU core. GPU
architectures continue to evolve as they adapt to new uses in specific application areas, but they are
unlikely to impact general-purpose computing.

At the system level, the trend is toward increasing the number of cores and figuring out how to best
exploit parallelism with new algorithms.

Looking further ahead, notice that the brain is able to accomplish remarkable results using fairly slow
mechanisms (it takes ~.01 seconds to get a message to the brain and synapses fire somewhere between
0.3 to 1.8 times per second). Is it massive parallelism that gives the brain its “computational” power?
Or is it that the brain uses a different computation model, e.g., neural nets, to decide upon new actions
given new inputs? At least for applications involving cognition there are new architectural and
technology frontiers to explore. You have some interesting challenges ahead if you get interested in the
future of parallel processing!

Page 656

L22: Wrap‑up

1. From Atoms to Amazon
2. The Power of Engineering Abstractions
3. 6.004: The Big Lesson
4. Things To Look Forward To...
5. Thinking Outside the Box
6. The End!

Page 657

And now we’ve reached the end of 6.004. Looking back, there are two ways of thinking about the
material we’ve discussed, the skills we’ve practiced, and the designs we’ve completed.

Starting at devices, we’ve worked our way up the design hierarchy, each level serving as building
blocks for the next. Along the way we thought about design tradeoffs, choosing the alternatives that
would make our systems reliable, efficient and easy to understand and hence easy to maintain.

In the other view of 6.004, we created and then used a hierarchy of engineering abstractions that are
reasonably independent of the technologies they encapsulate. Even though technologies change at a
rapid pace, these abstractions embody principles that are timeless. For example, the symbolic logic
described by George Boole in 1847 is still used to reason about the operation of digital circuits you and
I design today.

Page 658

The power of engineering abstractions is that they allow us to reason about the behavior of a system
based on the behavior of the components without having to understand the implementation details of
each component.

The advantage of viewing components as “black boxes” implementing some specified function is that
the implementation can change as long as the same specification is satisfied. In my lifetime, the size of
a 2-input NAND gate has shrunk by 10 orders of magnitude, yet a 50-year-old logic design would still
work as intended if implemented in today’s technologies.

Imagine trying to build a circuit that added two binary numbers if you had to reason about the electrical
properties of doped silicon and conducting metals. Using abstractions lets us limit the design
complexity at each level, shortening design time and making it easier to verify that the specifications
have been met. And once we’ve created a useful repertoire of building blocks, we can use them again
and again to assemble many different systems.

Page 659

Our goal in 6.004 is to demystify how computers work, starting with MOSFETs and working our way
up to operating systems. We hope you’ve understood the engineering abstractions we’ve introduced
and had a chance to practice using them when completing the design problems offered in the labs.

We also hope that you’ll also understand their limitations and have the confidence to create new
abstractions when tackling new engineering tasks. Good engineers use abstractions, but great engineers
create them.

Page 660

6.004 is an introductory course that only touches upon the basic principles used at each level of the
design hierarchy. If a particular topic struck you as especially interesting, we hope you’ll seek out a
more advanced course that will let you dig deeper into that engineering discipline. Hundreds of
thousands of engineers have worked to create the digital systems that are the engines of today’s
information society. As you can imagine, there’s no end of interesting engineering to explore and
master - so roll up your sleeves and come join in the fun!

Page 661

What will be the engineering challenges of tomorrow? Here are a few thoughts about how the future of
computing may be very different than the present.

The systems we build today have a well-defined notion of state: the exact digital values stored in their
memories, produced by their logic components, and traveling along their interconnect. But
computation based on the principles of quantum mechanics may allow us to solve what are now
intractable problems using states described not as collections of 1’s and 0’s, but as interrelated
probabilities that describe the superposition of many states.

We’ve built our systems using voltages to encode information and voltage-controlled switches to
perform computation, using silicon-based electrical devices. But the chemistry of life has been carrying
out detailed manufacturing operations for millennia using information encoded as sequences of amino
acids. Some of the information encoded in our DNA has been around for millions of years, a truly
long-lived information system! Today biologists are starting to build computational components from
biological materials. Maybe in 50 years instead of plugging in your laptop, you’ll have to feed it :)

Instead of using truth tables and logic functions, some computations are best performed neural
networks that operate by forming appropriately weighted combinations of analog inputs, where the
weights are learned by the system as it is trained using example inputs that should produce known
outputs. Artificial neural nets are thought to model the operation of the synapses and neurons in our
brains. As we learn more about how the brain operates, we may get many new insights into how to
implement systems that are good at recognition and reasoning.

Again using living organisms as useful models, programming may be replaced by learning, where
stimulus and feedback are used to evolve system behavior. In other words, systems will use adaptation
mechanisms to evolve the desired functionality rather than have it explicitly programmed.

This all seems the stuff of science fiction, but I suspect our parents feel the same way about having
conversations with Siri about tomorrow’s weather.

Page 662

Thanks for joining us here in 6.004. We’ve enjoyed presenting the material and challenging you with
design tasks to exercise your new skills and understanding. There are interesting times ahead in the
world of digital systems and we can certainly use your help in inventing the future!

We’d welcome any feedback you have about the course so please feel free leave comments in the
forum. Good bye for now... and good luck in your future studies...

Page 663

