

6.004 Worksheet - 1 of 12 - Basics of Information

Concept Inventory:

• Measuring information content; entropy
• Two’s complement; modular arithmetic
• Variable-length encodings; Huffman’s algorithm
• Hamming distance, error detection, error correction

Notes:

Measuring information: 𝐼 𝑥# = log(1 𝑝# 	bits

N equally-probable choices down to M choices: log((𝑁 𝑀)	bits

Entropy: 𝐻 𝑋 = 𝐸 𝐼 𝑋 = 𝑝## log((1 𝑝#)

N-bit 2’s complement:

Variable-length encoding:

Symbols with smallest pi have longest encodings, symbols with largest pi have shortest
encodings.

Huffman’s algorithm:

• Build binary decoding tree bottom-up starting with symbols that have smallest pi.
• Each step: combine the two symbols or subtrees with smallest pi into new subtree.

Hamming distance:

• HD = # of bit positions that differ between to codewords
• need to know min Hamming distance (HDmin) considering all pairs of codewords
• # of errors detected = HDmin – 1

• # of errors corrected = HDmin-<
(

Basics of Information Worksheet

6.004 Worksheet - 2 of 12 - Basics of Information

1. Information Content and Entropy

A. You are given an unknown 3-bit binary number. You are then told that the binary
representation contains exactly two 1’s. How much information have you been given?

B. You are then given the additional information that the number is also odd. How much
additional information have you been given?

C. A random variable X represents the outcome of flipping an unfair coin, where p(HEADS)
= 0.6. Please give the value for the entropy H(X). You may express your answer as a
numeric expression (i.e., you don’t have to actually do the arithmetic).

D. A single decimal digit is chosen at random and you’re told that its value is 0 mod 3. How
much information have you learned about the digit?

E. X is an unknown 8-bit binary number. You are given another 8-bit binary number,
10101100, and told that the Hamming distance between X and 10101100 is one. How
many bits of information about X have you been given? You can give a formula if you
wish.

F. We wish to transmit messages comprised of the four symbols shown below with their
associated probabilities and 5-bit fixed-length encoding.

Symbol p(symbol) encoding
α 0.5 00000
β 0.125 11100
γ 0.25 11011
δ 0.125 10111

An unknown symbol is received and you are told it’s not δ. How much information have
you received?

6.004 Worksheet - 3 of 12 - Basics of Information

G. When transmitting a message comprised of these four symbols with the probabilities as

given above, what is the expected amount information received when you are told the
next symbol in the message?

H. You are given an unknown 5-bit binary number. You are then told that the first and last
bits are the same. How much information have you been given?

I. I’ve randomly selected a letter from the alphabet and tell you that my selection is neither
“X”, “Y”, nor “Z”. How much information have I given you about my letter?

J. I make up a random 4-bit two’s complement number by flipping a fair coin to determine
each bit. You’re trying to guess the number. If I tell you that the number is positive (>
0), how many bits of information have I given you? Be precise; you may answer by a
formula or a number.

6.004 Worksheet - 4 of 12 - Basics of Information

2. Two’s Complement

A. What is the 6-bit two’s complement representation of the decimal number -21?

B. What is the hexadecimal representation for decimal -51 encoded as an 8-bit two’s
complement number?

C. The hexadecimal representation for an 8-bit two’s complement number is 0xD6. What is
its decimal representation?

D. Since the start of official pitching statistics in 1988, the highest number of pitches in a
single game has been 172. Assuming that remains the upper bound on pitch count, how
many bits would we need to record the pitch count for each game as a two’s complement
binary number?

E. Can the value of the sum of two 2’s complement numbers 0xB3 + 0x47 be represented
using an 8-bit 2’s complement representation? If so, what is the sum in hex? If not, write
NO.

F. Can the value of the sum of two 2’s complement numbers 0xB3 + 0xB1 be represented
using an 8-bit 2’s complement representation? If so, what is the sum in hex? If not, write
NO.

6.004 Worksheet - 5 of 12 - Basics of Information

G. Please compute the value of the expression 0xBB – 8 using 8-bit two’s complement
arithmetic and give the result in decimal (base 10).

H. What is the smallest (most negative) integer that can be represented as an 8-bit two’s-
complement integer? Give your answer as a decimal integer.

I. The following operations are performed on an 8-bit adder. Give the 8-bit sum produced
for each, in hexadecimal.
 0xF0 + 0x34 = 0x________

0xF0 + 0x80 = 0x________

J. Using a 5-bit two’s complement representation, what is the range of integers that can be
represented with a single 5-bit quantity?

K. Consider the following subtraction problem where the operands are 5-bit two’s
complement numbers. Compute the result and give the answer as a decimal (base 10)
number.
 10101
 − 00011

6.004 Worksheet - 6 of 12 - Basics of Information

3. Variable-length Encodings

A. Given a variable X that can take on one of four values A, B, C, or D with the following
probabilities.

Symbol Probability
A 0.5
B 0.3
C 0.1
D 0.1

If you encoded this variable using a Huffman encoding, how many bits would be in the
encoding of each of the symbols?

For each of the probability distributions for symbols A-E, select the Huffman encoding tree or
trees that could result from running Huffman’s algorithm on those probability distributions.

B. p(A) = 0.3, p(B) = 0.3, p(C) = 0.2, p(D) = 0.1, p(E) = 0.1. Tree(s): ______________

C. p(A) = 0.6, p(B) = 0.1, p(C) = 0.1, p(D) = 0.1, p(E) = 0.1. Tree(s): ______________

D. p(A) = 0.5, p(B) = 0.15, p(C) = 0.15, p(D) = 0.1, p(E) = 0.1. Tree(s): _____________

E. p(A) = 0.5, p(B) = 0.2, p(C) = 0.15, p(D) = 0.05, p(E) = 0.1. Tree(s): _____________

6.004 Worksheet - 7 of 12 - Basics of Information

Baseball loves statistics! There are many different types of pitches that a pitcher can throw – the
table below shows the probability for each type of pitch during 2014.

F. How much information have you received when learning that
particular pitch was NOT a fastball? You can express your
answer as a formula if you wish.

G. To save on storage costs, Major League Baseball would like to use an optimal variable-
length code to record, one at a time, the type of each pitch (i.e., to record one of the 5
types shown in the table above). Use Huffman’s algorithm to derive such a code and list
the resulting binary encodings below.

H. The table below shows the 2012-13 enrollments in the various EECS majors. To save a
bit of space in their database the department would like to use a variable-length Huffman
code to encode a student’s choice of major. For each of the four majors, please give the
encoding the department should use.

I. We wish to transmit messages comprised of the four symbols shown below with their

associated probabilities and 5-bit fixed-length encoding

Huffman’s algorithm is used to construct a variable-length code for the four symbols for
transmitting a single symbol at a time. The resulting encoding could be

(1) α: 00, β: 01, γ: 10, δ: 10
(2) α: 00, β: 01, γ: 100, δ: 101
(3) α: 1, β: 01, γ: 000, δ: 001
(4) α: 0, β: 110, γ: 01, δ: 111
(5) none of the above

Type of pitch Probability
Fastball 0.34
Change-up 0.14
Curveball 0.08
Slider 0.28
Other 0.16

Symbol p(symbol) encoding
α 0.5 00000
β 0.125 11100
γ 0.25 11011
δ 0.125 10111

Major Count p p log2(1/p)
6-1 74 0.09 0.30
6-2 387 0.44 0.52
6-3 360 0.41 0.53
6-7 54 0.06 0.25

Total 875 1.00 1.60

6.004 Worksheet - 8 of 12 - Basics of Information

NerdLink is a new web-based startup that aims to keep MIT EECS students in touch with their
parents. NerdLink streamlines parental communication by providing each student with an online
choice of one of the five messages, then automatically fills in boilerplate and emails the parent a
long and charming version of the message. The five messages, and their relative probabilities, are
listed below:

Message # Message to parents p(Message)
M1 Send money! 60%
M2 I love this course called 6.004 8%
M3 I’m changing my major to Poetry 2%
M4 I’m getting a 5.0 this term! 1%
M5 Nothing much is new… (none of the above) 29%

NerdLink’s initial implementation conveyed each message using a fixed-length code.

J. What is the average number of bits needed to convey a message, using a fixed-length code?

K. Given the probability distribution of the messages, what is the actual amount of information

conveyed by message M5? Your answer may be a formula.

L. To enable error correction, the fixed-length code for a given message is sent five times.
Using the five copies of the received message, in the worst case how many bit errors can be
corrected at the receiver?

NerdLink, wanting to economize on communication costs, has hired you as a consultant to design
a Huffman code for sending the messages.

M. Give the number of bits sent by your Huffman code for each message (M1 though M5), and

the average number of bits transmitted per message using your code (a formula will be fine).

6.004 Worksheet - 9 of 12 - Basics of Information

The Registrar’s office would like to encode the letter grades (A, B, C, D, F) from a large GIR
with 1000 students. They plan to encode each grade separately using a variable-length code. An
analysis of previous terms has produced the following table of grade probabilities. In case it’s
useful, a thoughtful former 6.004 student has augmented the table by computing p log2(1 p) for
each grade.

Grade p p log2(1 p)
A 0.24 0.49
B 0.35 0.53
C 0.21 0.47
D 0.13 0.38
F 0.07 0.27

Totals 1.00 2.14

N. Use Huffman’s algorithm to construct an optimal variable-length encoding.

O. Two 6.004 students have proposed competing variable-length codes. Alice says that

encoding 1000 grades using her code will, on the average, produce messages of 2200 bits.
Bob says that encoding 1000 grades using his code will, on the average, produce messages
of 1950 bits. Which of the following is your best response when the Registrar asks your
opinion?

(A) Choose Bob’s: it has the shorter average length
(B) Choose Alice’s: more bits means more information is transmitted
(C) Choose Bob’s: Bob’s average message length is less than the information entropy
(D) Choose Alice’s: Bob’s average message length is less than the information entropy
(E) Choose neither: a fixed-length code will have lower average message size

 Best Choice (A through E): __________

6.004 Worksheet - 10 of 12 - Basics of Information

4. Error Detection and Correction

A. A message about the suit of a card is sent using the encoding shown at
the right. Using this encoding, how many bit errors can be detected?
How many bit errors can be corrected?

B. A message about the suit of a card is sent using the encoding shown at
the right. Give an example of a 5-bit received message with an
uncorrectable single-bit error or write NONE if all single-bit errors can
be corrected.

C. The MIT baseball coach likes to record the umpire’s call for each pitch (one of “strike”,
“ball” or “other”). Worried that bit errors might corrupt the records archive, he proposes
using the following 5-bit binary encoding for each of the three possible entries:

Strike 11111
Ball 01101
Other 00000

Using this encoding what is the largest number of bit errors that be detected when
examining a particular record? The largest number of bit errors that can be corrected?

D. When transmitting the information about EECS majors over a noisy
communication link, the department has chosen to use the 7-bit
encoding shown on the right in the hopes that they’ll be able to correct
multiple-bit errors during transmission. Using this code, how many bit
errors in a message about a single major will the receiver be able to
correct?

Club: 000
Diamond: 011
Heart: 101
Spade: 110

Heart: 00000
Diamond: 11001
Spade: 10111
Club: 01011

6-1: 0101010
6-2: 1001100
6-3: 0110001
6-7: 1010010

6.004 Worksheet - 11 of 12 - Basics of Information

E. We wish to transmit messages comprised of the four symbols shown below with their
associated probabilities and 5-bit fixed-length encoding

If we transmit messages using the 5-bit fixed-length encoding shown above, will it be
possible to perform single-bit error detection and correction at the receiver?

F. What is the Hamming distance between the encodings for A and B?
Using an encoding scheme with this Hamming distance, how many bits
of error can be detected? How many bits of error can be corrected?

Symbol p(symbol) encoding
α 0.5 00000
β 0.125 11100
γ 0.25 11011
δ 0.125 10111

A: 010010
B: 110101

6.004 Worksheet - 12 of 12 - Basics of Information

1 1 1 0
0 1 1 1
1 1 0 1
1 1 1 1

1 1 1 0
1 1 0 1
0 1 1 1
1 1 1 0

0 1 0 1
0 0 1 0
1 1 0 1
1 0 0 1

0 0 0 1
1 1 1 0
0 1 1 1
0 1 1 1

An internet Sudoku gaming site transmits messages containing nine data bits and seven parity
bits, arranged in a rectangle as follows:

D00 D01 D02 P0x

D10 D11 D12 P1x

D20 D21 D22 P2x

Px0 Px1 Px2 Pxx

Each Dij in the above diagram indicates a data bit, equally likely to be a 0 or 1. Each Pix and Pxj is
an odd parity bit chosen to make the total number of 1s in the ith row or jth column, respectively,
odd. Pxx is an odd parity bit chosen to make the total number of 1s in the entire transmission odd.
Thus in an error-free transmission, the total number of 1s in 4-bit columns 0 thru 2 and 4-bit rows
0 thru 2, as well as in the entire 16-bit transmission, is odd.

Note that each 9-bit data word determines a unique 16-bit valid codeword to be transmitted.

G. What is the minimum Hamming distance between valid codewords? [Hint: flipping one
bit of the data word changes how many bits of the codeword?]

Each of the following represents a transmission received, with at most a single-bit error. For each
message, circle the bit, if any, that was changed due to a transmission error.

H. I.

 J. K.

6.004 Worksheet - 1 of 9 - The Digital Abstraction

Signaling:
• Analog: each processing step accumulates noise
• Digital: each processing step restores output to a valid digital level

The Digital Abstraction Worksheet

6.004 Worksheet - 2 of 9 - The Digital Abstraction

Problem 1.

Ms. Anna Logge, founder at a local MIT start-up, has developed a device to be used as an
inverter. Anna is considering the choice of parameters by which her logic family will represent
logic values and needs your help.

The voltage transfer curve of a proposed inverter for a new
logic family is shown to the right (spare copies of this
diagram can be found below).

Several possible schemes for mapping logic values to
voltages are being considered, as summarized in the
incomplete table below. Recall that Noise Immunity (last
row) is defined as the lesser of the two noise margins.

Complete the table by filling in missing entries. Choose
each value you enter so as to maximize the noise margins of
the corresponding scheme. If the numbers in a scheme
can’t be completed such that the device functions as an
inverter with positive noise margins, put an X in the
entries for that column.

(complete table – 10 entries)

LNI’s Possible Logic Mappings:

 Scheme

A
Scheme

B
Scheme

C

VOL 1
VIL 2 1 0.5
VIH 3
VOH
Noise

Immunity

1 2 3 4 5 0
0

1
2
3

4
5

VOUT

VIN

VOUT

VIN

VOUT

VIN

VOUT

VIN

(2.86,1)

6.004 Worksheet - 3 of 9 - The Digital Abstraction

Problem 2.

The following are voltage transfer characteristics of single-input, single-output devices to be used
in a new logic family:

Your job is to choose a single set of signaling thresholds VOL, VIL, VOH, and VIH to be used with
both devices to give the best noise margins you can. Recall that the VTC can touch the edge of
the forbidden regions but not pass through those regions. Fill in your answers below, together
with the resulting noise margins. You’ll get partial credit for anything that works with nonzero
noise margins; for full credit, maximize the noise immunity (i.e., the smaller of the two noise
margins).

 VOL = ______ VIL = ______ VIH = ______ VOH = ______

 Low Noise Margin = ______ High Noise Margin = ______

6.004 Worksheet - 4 of 9 - The Digital Abstraction

Problem 3.

Massachusetts Instruments manufactures the XYZZY family of combinational logic devices,
which have the following specifications:

• When signaling a “0” on a device output, XYZZY devices are guaranteed to produce an
output voltage of 0.875 ± 0.075 volts.

• When signaling a “1” on a device output, XYZZY devices are guaranteed produce an
output voltage of 1.525 ± 0.075 volts.

• XYZZY device inputs compare the incoming voltage against a logic threshold VTH.
Input voltages less than or equal to VTH – 0.05V are guaranteed to be interpreted as “0”.
Input voltages greater than or equal to VTH + 0.05V are guaranteed to be interpreted as
“1”. VTH is an internal voltage in the range 1.2 ± .1 volts.

(A) Please give the appropriate values for the four digital signaling thresholds:

 VOL (volts): _______________

 VIL (volts): _______________

 VIH (volts): _______________

 VOH (volts): _______________

(B) The noise immunity of a signaling specification is the minimum of the two noise margins.
What is the noise immunity of your signaling specification?

 Noise immunity (volts): _______________

6.004 Worksheet - 5 of 9 - The Digital Abstraction

Problem 4.

The following are voltage transfer characteristics of devices to be used in a new logic family as
an inverter and buffer, respectively:

Your job is to choose a single set of signaling thresholds VOL, VIL, VOH, and VIH to be used with both
devices to give the best noise margins you can. Recall that the VTC can touch the edge of the
forbidden regions but not pass through those regions. Fill in your answers below, together with
the resulting noise margins. You’ll get partial credit for anything that works with nonzero noise
margins; for full credit, maximize each of the noise margins.

 VOL = ______ VIL = ______ VIH = ______ VOH = ______

 Low Noise Margin = ______ High Noise Margin = ______

Scratch copy of the VTC diagrams:

6.004 Worksheet - 6 of 9 - The Digital Abstraction

Problem 5.

The voltage transfer curve for an NMOS inverter is
shown to the right.

The manufacturer decided to crowd-source the digital
signaling specifications for the NMOS inverter and has
received some suggestions for VOL, VIL, VIH, and VOH,
presented below in tabular form. For each suggested
specification determine if the NMOS inverter above
would be a legitimate combinational device obeying the
static discipline with non-zero positive noise margins. If
it is a legitimate combinational device, give the noise
immunity of the inverter (the smaller of the low and high
noise margins) when operating under that specification.
If the inverter wouldn’t be a legitimate combinational
device, please write NOT LEGIT in the rightmost
column.

 Fill in rightmost column for each suggested specification.

Suggestion VOL VIL VIH VOH Noise immunity, or
NOT LEGIT

#1 0.00 0.50 1.50 2.00
#2 0.25 0.75 1.25 1.75
#3 0.50 0.75 1.25 1.50
#4 0.75 0.50 1.75 1.50

Problem 6.

A new family of logic devices uses signaling voltages in the range −1V to +1V. One proposed
assignment of our voltage specification is shown below.

(A) The noise immunity of a signaling specification is the smaller of the two noise margins.
What is the noise immunity for the signaling scheme proposed above?

(B) The output voltage of an inverter is measured to be 0.9V in the steady state. The
inverter is a combinational device obeying the signaling specification shown above.
What is the best characterization of the steady-state input voltage VIN of the inverter
when the measurement was made?

6.004 Worksheet - 7 of 9 - The Digital Abstraction

Problem 7.

Ivan Idea, a resident of Chelyabinsk who’s been watching the 6.004 videos on YouTube, was
inspired to attach electrodes to opposite ends of a meteor fragment that came through his roof and
produce a voltage transfer curve (VTC) of the resulting device, which is shown below.

Amazingly all the “corner points” of the VTC
fall on the 0.5V grid.

Ivan is hoping he can sell his device as the
world’s only extraterrestrial combinational
inverter and has provided the table below
suggesting possible voltage thresholds to
achieve 0.3V noise margins. He’s happy to
report that for any input voltage, the output
voltage becomes stable within 1ns of the
application of a new, stable input voltage. For
each proposed specification please circle
“YES” if the device obeys the static discipline
and “NO” if it does not.

Circle YES or NO for each proposal below

 VOL VIL VIH VOH Obeys static discipline?

Specification #1 0.1 0.4 4.6 4.9 YES NO

Specification #2 0.6 0.9 4.1 4.4 YES NO

Specification #3 1.1 1.4 3.6 3.9 YES NO

6.004 Worksheet - 8 of 9 - The Digital Abstraction

Problem 8.

Consider a device whose voltage transfer characteristic is
specified as a function of the supply voltage V as follows

Note that the device has a sharp (infinite gain) threshold at
0.5V.

(A) Using this device as an inverter, if VOL is chosen to

be 0.2V, what value for VIH will maximize the high
noise margin?

(B) What is the maximum noise immunity that can be realized using this device as an inverter,
with an appropriately chosen signaling specification?

(C) Suppose manufacturing variations for the above device now allow the threshold voltage to
vary between 0.4V and 0.6V, rather than always being 0.5V exactly. If the signaling
specifications were adjusted to accommodate this variation, what would be the maximum
possible noise immunity?

6.004 Worksheet - 9 of 9 - The Digital Abstraction

X Y

Inverter

Problem 9.

Organic Logic, Inc., is a Cambridge startup that has developed
an interesting device built using unidentified organic sludge
from the depths of the Charles river; they would like to use it to
perform logic functions. Their device, termed a Slime Gate, has
two inputs A and B, and one output C (in addition to power and
ground connections):

With a 3 volt power supply, they have noted that Slime Gates reliably behave as follows:

• The output C is always in the range 0 volts < C < 3 volts.
• When either (or both) A or B has been less than 1 volt for a nanosecond or more, the

voltage at C is greater than 2.5 volts.
• When A and B have both been more than 2 volts for at least a nanosecond, C carries a

voltage of less than 0.5 volts.

Aside from the above constraints, the voltage at C is generally unpredictable; it varies widely
between individual Slime Gate devices.

As an O.L.I. consultant, you have proposed the following
circuit as an inverter in the evolving family of Slime Gate
logic:

(A) (2 points) Give logic representation parameters

yielding 0.5-volt noise margins and for which the
above diagram depicts a valid inverter.

VOL: ________; VIL: ________; VIH: ________; VOH: ________

(B) (2 points) Give appropriate specifications for the propagation delay for this inverter.

tPD: __________ ns

B

A
C

Slime Gate

6.004 Worksheet - 1 of 7 - CMOS Technology

Concept Inventory:

• PFET, NFET: voltage controlled switches
• CMOS composition rules: complementary pullup and pulldown
• CMOS gates are naturally inverting
• tPD and tCD timing specifications
• Lenient gates

Notes:

CMOS Technology Worksheet

CMOS gates are naturally inverting:
• Rising input (0 to 1): NFETs turn on, PFETs turn off; if output changes, it falls (1 to 0)
• Falling input (1 to 0): NFETs turn off, PFETs turn on; if output changes, it rises (0 to 1)

Timing:
• tPD (propagation delay): how long after inputs are stable and valid until outputs are stable and valid =

max over all paths from input to output (sum of component tPD along path)
o tPD specification is an upper bound on all measured propagation delays

• tCD (contamination delay): how long output stays valid after inputs go invalid =
min over all paths from input to output (sum of component tCD along path)

o tCD specification is a lower bound on all measured contamination delays

Lenient gate:
• If a subset of a lenient gate’s inputs is suffice to guarantee an specific output value (i.e., the values of

the other inputs don’t matter in this case), then the output will remain valid and stable by transitions
on the irrelevant inputs.

• CMOS gates are naturally lenient

6.004 Worksheet - 2 of 7 - CMOS Technology

Problem 1.

(A) Which of the above CMOS pulldown circuits would implement F if the

corresponding complementary pullup circuit was also provided? For
each pulldown, select Yes if it is a valid pulldown for F, and No if it is
not a valid pulldown for F.

PD1 (Yes/No): _______

 PD2 (Yes/No): _______

 PD3 (Yes/No): _______

PD4 (Yes/No): _______

 PD5 (Yes/No): _______

 (B) Are all the implementations you selected for part (A) lenient?

All lenient (Yes/No): _______

Problem 2.

(A) A single CMOS gate, consisting of an output node connected to a single PFET-based pullup

circuit and a single NFET-based pulldown circuit (as described in lecture) computes F(A, B,
C, D). It is observed that F(1, 0, 1, 0) = 1. What can you say about the following values?

(circle one) F(0, 0, 1, 0) = : 0 … 1 … (can’t say)

(circle one) F(1, 1, 1, 0) = : 0 … 1 … (can’t say)

(circle one) F(1, 1, 1, 1) = : 0 … 1 … (can’t say)

A B C D F

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

6.004 Worksheet - 3 of 7 - CMOS Technology

(B) The Boolean function F(A,B,C) can be implemented using a single CMOS gate operating as
a combinational device that obeys the static discipline. It’s known that F(1,1,0) = 1 and
F(0,1,1) = 0. What can be determined about the value of F in the following cases? Please
circle one of “0”, “1” or “Can’t tell”.

 (circle one) F(1,0,0) = 0 … 1 … Can’t tell

 (circle one) F(1,0,1) = 0 … 1 … Can’t tell

 (circle one) F(1,1,1) = 0 … 1 … Can’t tell

(C) A single CMOS gate, consisting of an output node connected to a single pullup circuit
containing one or more PFETs and a single pulldown circuit containing one or more NFETs
(as described in lecture), computes

€

F(A,B) . F has the property that for all A,

€

F(A,0) = F(A,1) . What can you say about the value of

€

F(1,0)?

(circle one): F(1,0) = 1 … 0 … can’t tell

Problem 3.

For each of the functions F and G, if the function can be implemented using a
single CMOS gate, please draw the corresponding single CMOS gate. If it
cannot be implemented using a single CMOS gate, then write NONE. For full
credit use a minimum number of FETs.

Draw CMOS implementation of
F(A,B,C) below or write NONE if
F cannot be implemented as single
CMOS gate.

Draw CMOS implementation of
G(A,B,C) below or write NONE if
G cannot be implemented as single
CMOS gate.

A B C F G

0 0 0 1 1
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1

1 1 1 1 0

6.004 Worksheet - 4 of 7 - CMOS Technology

Problem 4.

Consider the Boolean function that has the truth table shown to the right; a possible
implementation as a combinational circuit is shown in the schematic below. You
may assume that the NOR2 and NAND2 components are combinational.

(A) Using the timing specifications shown above for NOR2 and NAND2, compute the

contamination and propagation delay for the implementation of H shown above.

 timing for H (ns): tCD=__________ tPD=__________

(B) Can H be implemented as a single
CMOS gate (only PFETs in the pullup
circuit, only NFETs in the pulldown
circuit)? If so draw the MOSFET
schematic for H to the right, otherwise
write “NO”.

 Draw schematic or write “NO”

Problem 5.

A gate-level schematic is shown below. Using the tCD and tPD information for the gate
components shown in the table below, compute tCD and tPD for the circuit.

 Compute timing specs:

 tCD = ________ns

 tPD = ________ns

Gate tCD tPD
INV 0.1ns 1.0ns
NAND2 0.2ns 1.5ns
NAND3 0.3ns 1.8ns
XOR2 0.6ns 2.5ns

A B C H
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 tCD tPD
NOR2 0.01ns 0.05ns
NAND2 0.01ns 0.03ns

NAND2
NOR2

6.004 Worksheet - 5 of 7 - CMOS Technology

Problem 6.

A minority gate has three inputs (call them A, B, C) and one output (call it Y). The output will be
0 if two or more of the inputs are 1, and 1 if two or more of the inputs are 0.

In the space below, draw the pulldown circuit for a single CMOS gate that implements the
minority function, using the minimum number of NFETs. You needn’t draw the pullup circuit.

If you’re convinced that the function cannot be implemented as a single CMOS gate, give a brief,
convincing explanation.

 Can it be implemented as single CMOS gate? Circle one: YES can’t tell NO

6.004 Worksheet - 6 of 7 - CMOS Technology

Problem 7.

In his bid for the Lemelson Prize, Ben Bitdiddle has invented the
“flexible gate,” a single CMOS gate that implements different
functions depending how its inputs are wired up. The FlexGate®
(see figure at right) uses 6 PFETs in its pullup circuit and 6 NFETs
in its pulldown circuit..

Each of the FlexGate’s twelve inputs can connected to an input
signal (X, Y, …), GND (logical “0”) or VDD (logical “1”). To
show off its versatility, Ben has asked you to show how to hook up
the inputs so the FlexGate computes several different functions
whose Boolean equations are given below. Associated with each
equation is a table with 12 entries; in each cell of the table please
write an input name, GND or VDD as appropriate. Note that there
may be several possible implementations for each of the three
functions – any correct answer will be acceptable. Hint: there
should be an entry in each cell, i.e., a connection should be
specified each input!

If the desired function cannot be implemented, please draw a big
“X” through the table.

 Fill in tables below or mark with “X”

input LEFT RIGHT

A

B

C

D

E

F

input LEFT RIGHT

A

B

C

D

E

F

input LEFT RIGHT

A

B

C

D

E

F

OUT = X ⋅Y OUT = X +Y + Z OUT = X +Y ⋅Z

6.004 Worksheet - 7 of 7 - CMOS Technology

Problem 8.

The response of a combinational gate to a test input waveform is shown below. Each horizontal
division of the plot represents 10 ps.

(A) Based on the figure below, what is an appropriate choice for the contamination delay of the

gate?

(B) Based on the figure below, what is an appropriate choice for the propagation delay of the

gate?

6.004 Worksheet - 1 of 10 - Combinational Logic

Concept Inventory:

• Truth tables ↔ sum-of-products equations
• implementation using NOT/AND/OR
• Demorgan’s Law, implementation using NAND/NOR

• Simplification, truth tables w/ don’t cares
• Karnaugh maps
• Implementation using MUXes and ROMs

Combinational Logic Worksheet

6.004 Worksheet - 2 of 10 - Combinational Logic

Problem 1.

Given a function F defined by the truth table to the right, provide a minimal
sum-of-products expression for F. Hint: Use a Karnaugh Map.

Minimal Sum-of-products Expression for F: ________________

Problem 2.

(A)A correctly-formed CMOS gate implementing G(A,B,C) uses

the pulldown circuit shown on the right. Please give a
minimal sum-of-products expression for G(A,B,C). Hint: use
a Karnaugh map!

 Minimal sum-of-products expression for G(A,B,C): ___________________________

(B) Is the function G(A,B,C) from part (B) universal? In other words, can we implement any

Boolean function using combinational circuits built only from G gates and the Boolean
constants 0 and 1?

A B C D F

0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 1

1 1 0 1 0

1 1 1 0 1

1 1 1 1 0

6.004 Worksheet - 3 of 10 - Combinational Logic

Problem 3.

Consider the following truth table which defines two functions F and G of three input variables
(A, B, and C).

Give the minimal sum of products (minimal SOP) logic equation for each of the two functions.
Then determine if the minimum sum of products expression would result in a lenient
implementation of the function. If it does, then enter “SAME” for the lenient SOP expression. If
not, specify what sum of products expression would result in a lenient implementation. Hint: Use
Karnaugh maps above to determine the minimal sum of products.

Minimal sum of products F(A,B,C) = ___

Does minimal SOP for F result in a lenient circuit (circle one)? Yes No

If “No”, give lenient SOP expression for F(A,B,C) = __________________________________

Minimal sum of products G(A,B,C) = ___

Does minimal SOP for G result in a lenient circuit (circle one)? Yes No

If “No”, give lenient SOP expression for G(A,B,C) = _________________________________

A B C F G

0 0 0 1 1
0 0 1 1 1
0 1 0 0 1
0 1 1 1 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1

1 1 1 1 0

6.004 Worksheet - 4 of 10 - Combinational Logic

Problem 4.

You are trying to select pulldowns for several 3- and 4-input CMOS gate designs. The
Pulldowns-R-Us website offers seven different pulldowns, given names PD1 through PD7,
diagrammed below:

The web site explains that the customer can choose which inputs or constants (GND, VDD) are
connected to each NFET, allowing their pulldowns to be used in various ways to build gates with
various numbers of inputs. Since Pulldowns-R-Us charges by transistor, you are interested in
selecting pulldowns using the minimum number of transistors for each of the 3-input gates you
are designing.

For each of the following 3- and 4-input Boolean functions, choose the appropriate pulldown
design, i.e., the one which, properly connected, implements that gate’s pulldown using the
minimum number of transistors. This may require applying Demorgan’s Laws or minimizing the
logic equation first. If none of the above pulldowns meets this goal, write “NONE”.

(A) Choice or NONE: __________

(B) Choice or NONE: __________

(C) Choice or NONE: __________

(D) Choice or NONE: __________

F(A,B,C) = A+ (B ⋅C)

F(A,B,C) = A+B ⋅C

F(A,B,C) = (A ⋅B)+C

F(A,B,C,D) = A+C ⋅ (B+D)

6.004 Worksheet - 5 of 10 - Combinational Logic

Problem 5.

You are trying to select pullups for several 3-input CMOS gate designs. The Pullups Galore web
site offers seven different pullups, given names PU1 through PU7, diagrammed below:

The web site explains that the customer can choose which inputs are connected to each PFET,
allowing their pullups to be used in various ways to build gates with various numbers of inputs.
Since Pullups Galore charges by transistor, you are interested in selecting pullups using the
minimum number of transistors for each of the 3-input gates you are designing.

For each of the following 3-input Boolean functions, choose the appropriate pullup design, i.e.,
the one which, properly connected, implements that gate’s pullup using the minimum number of
transistors. This may require minimizing the logic equation first. If none of the above pullups
meets this goal, write “NONE”.

(A) Choice or NONE: __________

(B) Choice or NONE: __________

(C) Choice or NONE: __________

(D) Choice or NONE: __________

(E) Choice or NONE: __________

(F) Choice or NONE: __________

F(A,B,C) = A+B+C

F(A,B,C) = A+B ⋅C

F(A,B,C) = A+B ⋅C

F(A,B,C) = A+B ⋅C

F(A,B,C) = (A+B)+ (B+C)+ (A+C)

F(A,B,C) = (A+C) ⋅B

6.004 Worksheet - 6 of 10 - Combinational Logic

Problem 6.

Consider the Boolean function . Its truth table is shown
to the right and a possible implementation is shown in the schematic below.

(A) Give a minimal sum-of-products expression for H. A couple of scratch 3-input Karnaugh

map templates are provided for your convenience.

 minimal sum-of-products expression for H: ________________________

(B) What is the largest number of product terms possible in a minimal sum-of-products
expression for a 3-input, 1-output Boolean function?

 Largest number of product terms possible: __________

H (A,B,C) = A+B ⋅C + A ⋅B ⋅C A B C H
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 00 01 11 10
0
1

 00 01 11 10
0
1

 00 01 11 10
0
1

6.004 Worksheet - 7 of 10 - Combinational Logic

Problem 7.

A minority gate has three inputs (call them A, B, C) and one output (call it Y). The output will be
0 if two or more of the inputs are 1, and 1 if two or more of the inputs are 0.

(A) Give a minimal sum-of-products Boolean expression for the minority gates output Y, in

terms of its three inputs A, B, and C.

 Minimal SOP expression: Y = _________________________

(B) Is a minority gate universal, in the sense that using only minority gates (along with constants

0 and 1) its possible to implement arbitrary combinational logic functions?

 Universal? Circle one: YES can’t tell NO

6.004 Worksheet - 8 of 10 - Combinational Logic

Problem 8.

A 6.004 intern at Intel has designed the combinational circuit shown below. His boss can’t figure
out what it does and has asked for your help.

(A) Please fill in the truth table for F(A,B,C) above.

 Fill in truth table above

 (B) Express F(A,B,C) in minimal sum-of-products form. Hint: use a Karnaugh map!

 minimal sum-of-products expression for F(A,B,C) = _____________________

(C) The boss isn’t quite sure what it means but he knows his engineers are always impressed if
he asks “is the circuit universal?” Is it? Circle YES or NO.

 F(A,B,C) universal? YES … NO

A B C F(A,B,C)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

6.004 Worksheet - 9 of 10 - Combinational Logic

Problem 9.

The full subtractor (FS) implements a one-column binary subtraction of
two bits (X and Y) producing their difference (D), accepting a borrow-in
(BIN) from the previous column and producing a borrow-out (BOUT) for
the next column. Numerically FS computes X−Y−BIN and encodes the
possible answers (1, 0, −1, −2) using D and BOUT as shown in the truth
table to the right.

(A) (2 Points) Give a sum-of-products expression for BOUT.

 Sum of products expression: BOUT = __

(B) (1 Point) Is the FS(X,Y,BIN) circuit universal in the sense that 2-input NOR and 2-input
NAND are universal? In other words, using only acyclic networks of FS circuits (perhaps
with one or more of their inputs tied to “0” or “1”), can one implement any combinational
logic function?

 FS Universal: … YES … NO …

(C) (2 Points) You’re trying to build an implementation for the BOUT part of the FS circuit (see
truth table above) but discover that the NITGFOC supply room only has 4-to-1 multiplexors
in stock. In desperation, you call up your 6.004 TA who says “No problem! In fact, you
can produce BOUT with just a single 4-to-1 mux: connect X to S1 and Y to S0, then hook
each of the data inputs to the appropriate choice of ‘0’, ‘1’ or BIN.” Using this hint, finish
off the implementation shown below.

 Show connections for data inputs using only ‘0’, ‘1’ or BIN

X Y BIN D BOUT
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

6.004 Worksheet - 10 of 10 - Combinational Logic

Problem 10.

The 3-input Boolean function G(A,B,C) computes .

(A) How many 1’s are there in the output column of G’s 8-row truth table?

(B) Give a minimal sum-of-products expression for G.

(C) There’s good news and bad news: the bad news is that the stockroom only has G gates. The
good news is that it has as many as you need. Using only combinational circuits built from
G gates, one can implement (choose the best response)

(A) only inverting functions
(B) only non-inverting functions
(C) any function (G is universal)
(D) only functions with 3 inputs or less
(E) only functions with the same truth table as G

(D) Can a sum-of-products expression involving 3 input variables with greater than 4 product
terms always be simplified to a sum-of-products expression using fewer product terms?

A ⋅C + A ⋅B+B ⋅C

6.004 Worksheet - 1 of 6 - Sequential Logic

Concept Inventory:

• D-latch & the Dynamic Discipline
• D-register
• Timing constraints for sequential circuits
• Set-up and hold times for sequential circuits

Notes:

Sequential Logic Worksheet

6.004 Worksheet - 2 of 6 - Sequential Logic

Problem 1.

Consider the following sequential logic circuit. It consists of one input IN, a 2-bit register that
stores the current state, and some combinational logic that determines the state (next value to load
into the register) based on the current state and the input IN.

(A) Using the timing specifications shown below for the XOR and DREG components,

determine the shortest clock period, tCLK, that will allow the circuit to operate correctly or
write NONE if no choice for tCLK will allow the circuit to operate correctly and briefly
explain why.

 Minimum value for tCLK (ns): __________
 or explain why none exists

(B) Using the same timing specifications as in (A), determine the setup and hold times for IN

with respect to the rising edge of CLK.

 tSETUP for IN with respect to CLK↑ (ns): __________

 tHOLD for IN with respect to CLK↑ (ns): __________

(C) One of the engineers on the team suggests using a new, faster XOR2 gate whose tCD =
0.05ns and tPD = 0.7ns. Determine a new minimum value for tCLK or write NONE and
explain why no such value exists.

 Minimum value for tCLK (ns): __________
 or explain why none exists

Component tCD tPD tSETUP tHOLD
XOR2 0.15ns 2.1ns − −
DREG 0.1ns 1.6ns 0.4ns 0.2ns

6.004 Worksheet - 3 of 6 - Sequential Logic

Problem 2.

Consider the following sequential logic circuit. It consists of three D registers, three different
pieces of combinational logic (CL1, CL2, and CL3), one input IN, and one output OUT. The
propagation delay, contamination delay, and setup time of the registers are all the same and are
specified below each register. The hold time for the registers is NOT the same and is specified
in bold below each register. The timing specification for each combinational logic block is
shown below that logic.

(A) (1 point) What is the smallest value for the tCD of CL2 that will guarantee the dynamic

discipline is obeyed for all the registers in the circuit?

 Smallest value for tCD of CL2 (ns): __________

(B) (2 points) What is the smallest value for the period of CLK (i.e., tCLK) that will guarantee the

dynamic discipline is obeyed for all the registers in the circuit?

 Smallest value for tCLK (ns): __________

(C) (2 points) What are the smallest values for the setup and hold times for IN relative to the
rising edge of CLK that will guarantee the dynamic discipline is obeyed for all the registers
in the circuit?

 Setup time for IN (ns): __________

 Hold time for IN (ns): __________

(D) (2 points) What are the propagation delay and contamination delay of the output, OUT, of

this circuit relative to the rising edge of the clock?

tPD for OUT (ns): __________

tCD for OUT (ns): __________

6.004 Worksheet - 4 of 6 - Sequential Logic

Problem 3.

Here’s a schematic for a 3-bit loadable down-counter, which uses a ripple decrementer as a
building block:

(A) Using the contamination delays (tCD), propagation delays (tPD), setup times (tS), and hold

times (tH) shown in the table above, please compute the minimum value for the clock period
(tCLK) for which the circuit will work correctly.

 minimum value for tCLK (ns): __________

(B) What are the appropriate values for the setup (tS) and hold (tH) times for the LD input with
respect to the rising edge of the clock?

 setup time (tS) for LD: __________

 hold time (tH) for LD: __________

(C) What is the tPD for the Zero output with respect to the rising edge of CLK?

 tPD for Zero (ns): __________

component tCD (ns) tPD (ns) tS (ns) tH (ns)
XOR2 .03 .14 — —
NOR2 .01 .05 — —
NOR3 .02 .08 — —
INV .005 .02 — —

MUX2 .02 .12 — —
DREG .03 .19 .15 .05

6.004 Worksheet - 5 of 6 - Sequential Logic

Problem 4.

Consider the following sequential logic circuit. The timing specifications are shown below each
component. Note that the two registers do NOT have the same specifications.

(A) What are the smallest values for the setup and hold times for IN relative to the rising edge of

CLK that will guarantee the dynamic discipline is obeyed for all the registers in the circuit?

 Setup time for IN (ns): __________

 Hold time for IN (ns): __________

(B) What is the smallest value for the period of CLK (i.e., tCLK) that will guarantee the
dynamic discipline is obeyed for all the registers in the circuit?

 Smallest value for tCLK (ns): __________

(C) What is the smallest for the tCD of R1 that will guarantee the dynamic discipline is obeyed
for all the registers in the circuit?

 Smallest value for tCD of R1 (ns): __________

(D) Suppose two of these sequential circuits were connected in series, with the OUT signal of
the first circuit connected to the IN signal of the second circuit. The same CLK signal is
used for both circuits. Now what is the smallest value for the period of CLK (i.e., tCLK)
that will guarantee the dynamic discipline is obeyed for all the registers in the circuit?

 Smallest value for tCLK (ns): __________

6.004 Worksheet - 6 of 6 - Sequential Logic

Problem 5.

It is often useful to make clocked devices that count in binary, and a simple building
block for such binary counters is the toggle flipflop whose symbol is shown on the
right. It is a clocked device, hence the clock input indicated by the triangle on its
lower-left edge. The other input, T (for toggle), may be set to one to cause the TFlop
to flip its state (the Q output) from 0 to 1 or vice versa on the next active (positive)
clock edge. If T is zero at an active clock edge, the state of the TFlop remains unchanged. We
assume that the initial state of each TFlop at power-up is Q=0; more sophisticated versions might
feature a Reset input to force a Q=0 state.

A TFlop may be implemented using a D flipflop like the ones
developed in lecture together with an XOR2 gate, as shown to
the left.

As is our convention for clocked devices, we would like to
specify timing specs for the TFlop as tCD, tPD, tSETUP, and tHOLD,
all measured relative to the active (positive) clock edge.

(A) The timing specifications for the components are shown in the table below. Give

appropriate values for the timing specifications of the TFlop implementation shown
above.
 tCD: __________ps

 tPD: __________ps

 tSETUP: __________ps

 tHOLD: __________ps

(B) Suppose we connect the T input of a single TFlop to 1 (i.e., VDD) and try to clock it at its

maximum rate. What is the minimum clock period we can use and expect the TFlop to
perform properly?

 Minimum clock period for correct operation: __________ps

We next consider the use of four TFlops to make a 4-bit ripple-carry counter as shown
to the left. Assume that the TFlops share a common clock input (not shown) with an
appropriate period, and that all TFlops have an initial Q=0 state.

(C) Suppose we run this circuit for a large number, N, of clock cycles. For

approximately how many of the N active clock edges would you expect the T
input to the topmost TFlop to be 1?

Topmost T=1 occurrences in N cycles: __________

(D) If the AND2 gates have tPD =200ps and tCD =40ps, what is the minimum clock
period we can use for the 4-bit counter?

Minimum clock period for correct operation: __________ps

Component tCD tPD tSETUP tHOLD
XOR2 40ps 400ps − −
DREG 100ps 300ps 80ps 40ps

6.004 Worksheet - 1 of 7 - Finite State Machines

Concept Inventory:

• State transition diagrams & FSM truth tables
• Register & ROM implementation
• Equivalent FSMs; equivalent state reduction
• Metastability: causes and cures

Notes:

Arcs leaving a state must be (1) mutually
exclusive, and (2) collectively exhaustive.

FSMs are EQUIVALENT if and only if
every inputs sequence yields identical
output sequences.

Two states are equivalent if
1. both states have identical outputs, AND
2. every input transitions to equivalent

states.

Metastability:

Quarantine time reduces p(metastable)

Finite State Machines Worksheet

6.004 Worksheet - 2 of 7 - Finite State Machines

Problem 1.

(A) For each of the following FSMs please indicate if they are or are not well formed. Note that

the state names have been omitted for clarity; you may assume the state names are unique.

 (A) (B) (C)

 FSM A (circle one): Well Formed / Not Well Formed

 FSM B (circle one): Well Formed / Not Well Formed

 FSM C (circle one): Well Formed / Not Well Formed

(B) Given the partially completed truth table and FSM diagram below. Complete all the

missing entries in the truth table and the FSM diagram. The FSM is a Moore machine, i.e.,
the Out signal is determined only by the current state. In each state circle, the top entry is
S1S0 and the bottom entry is the value of Out. Make sure that you have labeled all missing
states, inputs, and outputs, and that you have added and labeled any missing transitions in
the FSM.

(C) If this FSM is implemented using a 2-bit state register and a ROM, what size ROM would be
needed? Please specify the number of locations (entries) of the ROM, and the width of each
entry.

Number of locations in ROM: ___________

Width of each ROM entry (bits): ___________

S1 S0 In S1’ S0’ Out
0 0 0 0
0 0 1 1 0
0 1 0
0 1 1 1 0
1 0 0 1 1 1
1 0 1
1 1 0 0 1 0
1 1 1 0 0 0

6.004 Worksheet - 3 of 7 - Finite State Machines

Problem 2.

Consider the sequential logic circuit to
the right, which implements an FSM
with a single data input IN and single
data output OUT. Assume that all
signal transitions are timed so that the
dynamic discipline is satisfied at each
register.

Please describe the operation of the FSM by filling in both the state transition diagram and the
truth table shown below. The two-digit state names in the state transition diagram are S0,S1, the
logic values present at the outputs of REG0 and REG1 after the rising edge of the clock. In the
truth table, S0’ and S1’ are the values that will loaded into REG0 and REG1 at the next rising
clock edge.
 Fill in state transition diagram and truth table

Problem 3.

A “Thingee” is a clocked device built out of 3 interconnected components, each of which is
known to be a 4-state FSM. What bound, if any, can you put on the number of states of a
Thingee?

Max # of states, or “Can’t Tell”: ________________

S0 S1 IN S0’ S1’ OUT
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

6.004 Worksheet - 4 of 7 - Finite State Machines

Problem 4.

Consider the 1-input, 1-output finite state machine with the state transition diagram shown below.
Note that the single output P only depends on the current state of the FSM.

(A) (1 Point) The FSM has been processing inputs for a while and we would like to determine its

current state. After entering three additional inputs “000”, we observe that we have reached
a state where P=0. Please circle the possible values for the state before the additional three
inputs were entered.

 Possible values for state before: S1 S2 S3 S4 S5

(B) (2 Points) Assume that the states are represented by the 3-bit binary values given on the left
below. Please fill in the appropriate entries for the partial truth table shown on the right
where S is the current state, I is the input value, S’ is the next state, P is the output value

 Fill in partial truth table

(C) Please identify which, if any, states are equivalent. For example, if states S1, S2, and S4 are

equivalent, please write “(S1,S2,S4)”. You may need multiple parenthesized lists if more
than one set of states is equivalent.

 Equivalent states: _____________________________

State Encoding
S1 001
S2 010
S3 011
S4 100
S5 101

S I S’ P

011 0

011 1

100 0

100 1

6.004 Worksheet - 5 of 7 - Finite State Machines

Problem 5.

Perfectly Perplexing Padlocks makes an entry-level electronic lock, the P3b, built from an FSM
with two bits of state. The P3b has two buttons (“0” and “1”) that when pressed cause the FSM
controlling the lock to advance to a new state. In addition to advancing the FSM, each button
press is encoded on the B signal (B=0 for button “0”, B=1 for button “1”). The padlock unlocks
when the FSM sets the UNLOCK output signal to 1, which it does whenever—and only
whenever—the last 3 button presses correspond to the 3-digit combination. The combination
is unique, and will open the lock independently of the starting state. Unfortunately the design
notes for the P3b are incomplete.

(A) (1 Point) What is the 3-bit combination for the lock?

 lock combination:_____________________

(B) (5 Points) Using the specification and clues from the partially completed diagrams above
fill in the information that is missing from the state transition diagram and its
accompanying truth table. When done:

• each state in the transition diagram should be assigned a 2-bit state name S1S0 (note

that in this design the state name is not derived from the combination that opens the
lock),

• the arcs leaving each state should be mutually exclusive and collectively exhaustive,
• the value for U should be specified for each state, and
• the truth table should be completed.

(complete above transition diagram and table)

0

0

1

00

U=
0

U=

U=

U=
1

0

S1 S0 B S’1 S’0 U
0 0 0 1 1 0
0 0 1 0 0 0
0 1 0 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 0
1 1 0 0
1 1 1 0

6.004 Worksheet - 6 of 7 - Finite State Machines

Problem 6.

Below is a state transition diagram for a 4-state FSM with a single binary input B. The FSM has
single output – a light that is “on” when the FSM is in states “E” or “S”. The starting state, “W”,
is marked by the heavy circle.

N

S

W E

B=0

B=0 B=0

B=0
B=1

B=1

B=1 B=1

(A) (1 Point) Does this FSM have a set or sets of equivalent states that can be merged to yield an

equivalent FSM with fewer states?

List set(s) of states that can be merged or write NONE:________________

(B) (5 Points) Please fill in as many entries as possible in the following truth table for the FSM.

The light output is a function of the current state and should be 1 when the light is “on” and
0 when it’s “off.”

S1 S0 B S1’ S0’ light

0 0 0
0 0 1
0 1 0 0 0 1
0 1 1 1 0 1
1 0 0
1 0 1
1 1 0
1 1 1

6.004 Worksheet - 7 of 7 - Finite State Machines

Problem 7.

The following circuit has two inputs (A, CLK) and four outputs (W, X, Y Z). The CLK signal is
square wave with a period tCLK=1us. The A signal makes a single 0→1 transition but the timing
of the transition is close to (within a few ns of) the active CLK edge, ignoring dynamic discipline.
All the devices are lenient and have the same propagation delay tPD=10ns.

In a test involving a large number of trials, the Z output has been examined 100ns after an active
CLK edge (and when both CLK and A have been stable for many propagation delays); at this
time, Z was found to be invalid P times. In the same test, what would you expect to observe at the
other outputs 100ns after the CLK edge? For each output, circle one of

LESS RELIABLE if you would expect the output to be invalid appreciably more than P times;
EQUALLY RELIABLE if you would expect the output to be invalid about P times; or
MORE RELIABLE if you would expect the output to be invalid appreciably less than P

W reliability: LESS EQUAL MORE

X reliability: LESS EQUAL MORE

Y reliability: LESS EQUAL MORE

Z was found to be invalid P times………….

6.004 Worksheet - 1 of 8 - Pipelined Circuits

Concept Inventory:

• Latency & throughput
• Pipelined circuits & conventions
• Pipeline diagrams
• Pipelining methodology: contours
• Pipelined components; interleaving

Notes:

Latency: the delay from when an input is established
until the output associated with the input becomes
valid.

• Combinational circuits: L = tPD
• K-pipeline: L = K*tCLK

Throughput: the rate at which inputs or outputs are
processed.

• Combinational circuits: T = 1/L
• K-pipeline: T = 1/tCLK

Unpipelined:
 L = 45ns, T = 1/L = 1/(45ns)
2-stage pipeline [tCLK=25ns]:
 L = 2*25 = 50 ns, T = 1/(25ns)

Pipelining methodology:
• Form 1-pipeline by adding registers to all

outputs
• To add a pipeline stage, draw contour across

all paths from inputs to outputs such that it
doesn’t cross other contours and all input-
output paths cross the contour in the same
direction. This ensures the pipeline is well-
formed (same # of registers on all input-
output paths). A K-pipeline has K registers
on all input-output paths.

• Contours must take into account pipelined
or interleaved components. An N-way
interleaved component behaves like N-
pipeline.

Pipelined Circuits Worksheet

6.004 Worksheet - 2 of 8 - Pipelined Circuits

Problem 1.

A simple combinational circuit is to be pipelined for maximum throughput using a minimal
number of registers. For each of the questions below, please create a valid K-stage pipeline.
Show your pipelining contours and place large black circles (●) on the signal arrows to indicate
the placement of ideal pipeline registers (tPD=0, tSETUP=0). Give the latency and throughput
for each design. Remember that our convention is to place a pipeline register on each output.

(A) (1 point). Show the maximum-throughput 1-stage

pipeline.

	 Latency (ns): __________

 Throughput (ns-1): __________

 

(B) (2 points). Show the maximum-throughput 2-stage
pipeline using a minimal number of registers. 	
	
	 Latency (ns): __________

 Throughput (ns-1): __________

(C) (2 points). Show the maximum-throughput 3-stage
pipeline using a minimal number of registers. 	
	
	 Latency (ns): __________

 Throughput (ns-1): __________

	

(D) (2 points). Show the maximum-throughput 4-stage
pipeline using a minimal number of registers.

 Latency (ns): __________

 Throughput (ns-1): __________

6.004 Worksheet - 3 of 8 - Pipelined Circuits

Problem 2.

The following 1-stage pipelined circuit computes Z from the four inputs A, B, C, and D. Each
component is annotated with its propagation delay in ns.

(A) Please pipeline the circuit above for maximum throughput with the minimum possible

latency using ideal pipeline registers (tPD = 0, tSETUP = 0). Show the location of pipeline
registers in the diagram above using filled-in circles, like the one shown on the Z output.
Please give the latency and throughput of the resulting pipelined circuit.

 Latency (ns)? __________

 Throughput (1/ns)? __________

(B) Now suppose the “3” component is replaced by a two-way interleaved component with a
minimum tCLK of 1.5ns. Recall that a two-way interleaved component behaves like a 2-stage
pipelined component. Again, please pipeline the circuit below for maximum throughput
with the minimum possible latency using ideal pipeline registers. Show the location of
pipeline registers in the diagram below using filled-in circles, like the one shown on the Z
output. Please give the latency and throughput of the resulting pipelined circuit.

 Latency (ns)? __________

 Throughput (1/ns)? __________

6.004 Worksheet - 4 of 8 - Pipelined Circuits

Problem 3.

An unidentified government agency has a design for a combinational device depicted below:

Although you don’t know the function of each of the component modules, they are each
combinational and marked with their respective propagation delays. You have been hired to
analyze and improve the performance of this device.

(A) (1 Point) What are the throughput and latency for the unpipelined combinational device?

 Latency: ________ns; Throughput: ____________ ns-1

(B) (4 Points) Show how to pipeline the above circuit for maximum throughput, by marking
locations in the diagram where registers are to be inserted. Use a minimum number of
registers, but be sure to include one on the output. Assume that the registers have 0 tPD
and tSETUP.

 (mark register locations in diagram above)

(C) (1 Point) What are the latency and throughput of your pipelined circuit?

 Latency: ________ns; Throughput: ____________ ns-1

 A
20ns

 B
20ns

 C
30ns

 D
20ns

 E
20ns

 F
30ns

 G
60ns

 H
30ns

 J
30ns

X

Y
Z

6.004 Worksheet - 5 of 8 - Pipelined Circuits

Problem 4.

The following circuit uses six full adder modules (as you’ve seen in lecture and lab) arranged in a
combinational circuit that computes a 3-bit value F=A+B+5 for 3-bit inputs A and B:

FA

A2 B2

FA

A1 B1

FA

A0 B0

FA FA FA

1 0 1

F2 F1 F0

0

0

The full adders have a tPD of 6ns.

(A) Give the latency and throughput of the combinational circuit.

 Latency: _______ns; Throughput: __________

(B) Indicate, on the above diagram, appropriate locations to place ideal (zero-delay) registers to

pipeline the circuit for maximum throughput using a minimum number of registers. Be sure
to include a register on each output.
 (mark circuit above)

(C) Give the latency and throughput of your pipelined circuit.

 Latency: _______ns; Throughput: __________

6.004 Worksheet - 6 of 8 - Pipelined Circuits

Problem 5.

(A) You are provided with the circuit shown below. Each box represents some combinational

logic. The number in each box is the tPD of that combinational logic. The circuit has two
inputs, X and Y, and one output Out. Pay close attention to the direction of the arrows
especially the arrows shown in bold. What is the latency and throughput of this
combinational circuit?

Latency (ns): ________________

Throughput (1/ns): ________________

(B) Draw contours through the circuit above to produce a valid pipelined circuit whose tCLK =

9ns with minimum latency. Extra copies of the diagram are included below. Please use a
large dot to indicate the location of each pipeline register. Assume that you have ideal
pipeline registers (tPD=tCD=tSetup=tHold=0 ns). Pay close attention to the direction of each
arrow to ensure that you produce a valid pipeline. What is the latency and throughput of this
pipelined circuit?

Latency (ns): ________________

Throughput (1/ns): ________________

6.004 Worksheet - 7 of 8 - Pipelined Circuits

(C) You are now asked to consider the performance of this circuit using different clock periods

while achieving the minimum latency. For each suggested tCLK, specify whether or not you
can create a valid pipelined circuit using that clock period. If you can, then provide the
latency and throughput of the resulting circuit and specify the number of registers at each
input. If it results in an invalid pipeline, enter NA for the rest of the row.

Extra copies of the circuit diagram are provided below.

tCLK Valid/Invalid Latency (ns) Throughput
(1/ns)

Pipeline
registers at

input X

Pipeline
registers at

input Y
6 ns
7 ns

Problem 6.

A complex combinational circuit is constructed entirely from 2-input NAND gates having a
propagation delay of 1 ns. If this circuit is pipelined for maximal throughput by adding (non-
ideal) registers whose setup time and propagation delay are each 1 ns, what is the throughput of
the resulting pipeline? Enter a number, a formula, or “CAN’T TELL”.

 Throughput (ns-1): ________________

6.004 Worksheet - 8 of 8 - Pipelined Circuits

Problem 7.

The following combinational circuit computes F(X,Y) and G(X,Y) from inputs X and Y. The tPD
(in ns) of each individual component is shown inside its box.

(A) Using ideal zero-delay registers, mark the location of the minimal number of registers

necessary to achieve maximum throughput. Give the latency and throughput of your
pipelined circuit.
 mark diagram above

 Latency: __________ (ns); Throughput: _________ (1/ns)

Rummaging through the stockroom you find a pipelined component with two pipeline stages that
can replace the “7” module. The minimum tCLK for the new component is 4ns. The updated
circuit is shown below.

(B) Using ideal zero-delay registers, mark the location of the minimal number of registers

necessary to achieve maximum throughput. Give the latency and throughput of your
pipelined circuit.
 mark diagram above

 Latency: __________ (ns); Throughput: _________ (1/ns)

6.004 Worksheet - 1 of 5 - Instruction Set Architecture

Revised 10/18/11

Summary of β Instruction Formats

Operate Class:

31 26 25 21 20 16 15 11 10 0

10xxxx Rc Ra Rb unused

 OP(Ra,Rb,Rc): Reg[Rc] ← Reg[Ra] op Reg[Rb]

 Opcodes: ADD (plus), SUB (minus), MUL (multiply), DIV (divided by)
 AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or), XNOR (bitwise exclusive nor),
 CMPEQ (equal), CMPLT (less than), CMPLE (less than or equal) [result = 1 if true, 0 if false]
 SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension)

31 26 25 21 20 16 15 0 0

11xxxx Rc Ra literal (two’s complement)

OPC(Ra,literal,Rc): Reg[Rc] ← Reg[Ra] op SEXT(literal)

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by)
 ANDC (bitwise and), ORC (bitwise or), XORC (bitwise exclusive or), XNORC (bitwise exclusive nor)
 CMPEQC (equal), CMPLTC (less than), CMPLEC (less than or equal) [result = 1 if true, 0 if false]
 SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension)

Other:

31 26 25 21 20 16 15 0 0

01xxxx Rc Ra literal (two’s complement)

 LD(Ra,literal,Rc): Reg[Rc] ← Mem[Reg[Ra] + SEXT(literal)]
 ST(Rc,literal,Ra): Mem[Reg[Ra] + SEXT(literal)] ← Reg[Rc]
 JMP(Ra,Rc): Reg[Rc] ← PC + 4; PC ← Reg[Ra]
 BEQ/BF(Ra,label,Rc): Reg[Rc] ← PC + 4; if Reg[Ra] = 0 then PC ← PC + 4 + 4*SEXT(literal)
 BNE/BT(Ra,label,Rc): Reg[Rc] ← PC + 4; if Reg[Ra] ≠ 0 then PC ← PC + 4 + 4*SEXT(literal)
 LDR(label,Rc): Reg[Rc] ← Mem[PC + 4 + 4*SEXT(literal)]

Opcode Table: (*optional opcodes)

2:0
5:3 000 001 010 011 100 101 110 111

000
001
010
011 LD ST JMP BEQ BNE LDR
100 ADD SUB MUL* DIV* CMPEQ CMPLT CMPLE
101 AND OR XOR XNOR SHL SHR SRA
110 ADDC SUBC MULC* DIVC* CMPEQC CMPLTC CMPLEC
111 ANDC ORC XORC XNORC SHLC SHRC SRAC

Register Symbol Usage
R31 R31 Always zero
R30 XP Exception pointer
R29 SP Stack pointer
R28 LP Linkage pointer
R27 BP Base of frame pointer

Instruction Set Architecture Worksheet

6.004 Worksheet - 2 of 5 - Instruction Set Architecture

Problem 1.

An unnamed associate of yours has broken into the computer (a Beta of course!) that 6.004 uses
for course administration. He has managed to grab the contents of the memory locations he
believes holds the Beta code responsible for checking access passwords and would like you to
help discover how the password code works. The memory contents are shown in the table below:

Addr Contents Opcode Rc Ra Rb Assembly

0x100 0xC05F0008 110000 00010 11111 _____ _________________________

0x104 0xC03F0000 110000 00001 11111 _____ _________________________

0x108 0xE060000F 111000 00011 00000 _____ _________________________

0x10C 0xF0210004 111100 00001 00001 _____ _________________________

0x110 0xA4230800 101001 00001 00011 _____ _________________________

0x114 0xF4000004 111101 00000 00000 _____ _________________________

0x118 0xC4420001 110001 00010 00010 _____ _________________________

0x11C 0x73E20002 011100 11111 00010 _____ _________________________

0x120 0x73FFFFF9 011100 11111 11111 _____ _________________________

0x124 0xA4230800 101001 00001 00011 _____ _________________________

0x128 0x605F0124 011000 00010 11111 _____ _________________________

0x12C 0x90211000 100100 00001 00001 _____ _________________________

Further investigation reveals that the password is just a 32-bit integer which is in R0 when the
code above is executed and that the system will grant access if R1 = 1 after the code has been
executed. What "passnumber" will gain entry to the system?

6.004 Worksheet - 3 of 5 - Instruction Set Architecture

Problem 2.

(A) What assembly instruction could a compiler use to implement y = x * 8 on the Beta assuming

that MUL and MULC are not available? Assume x is in R0 and y is in R1.

Equivalent assembly instruction: ____________

(B) Assume that the registers are initialized to: R0=8, R1=10, R2=12, R3=0x1234, R4=24 before
execution of each of the following assembly instructions. For each instruction, provide the
value of the specified register or memory location. If your answers are in hexadecimal,
make sure to prepend them with the prefix 0x.

1. SHL(R3, R4, R5) Value of R5: ____________

2. ADD(R2, R1, R6) Value of R6: ____________

3. ADD(R0, 2, R7) Value of R7: ____________

4. ST(R1, 4, R3) Value stored: ___________ at address: ____________

(C) A student tries to optimize his Beta assembly program by replacing a line

containing
 ADDC(R0, 3*4+5, R1)
by
 ADDC(R0, 17, R1)
Is the resulting binary program smaller? Does it run faster?

 (circle one) Binary program is SMALLER? yes … no

 (circle one) FASTER? yes … no

(D) A BR instruction at location 0x1000 branches to 0x2000. If the binary representation for
that BR were moved to location 0x1400 and executed there, where will the relocated
instruction branch to?

 Branch target for relocated BR (in hex): 0x ____________

(E) A line in an assembly-language program containing “ADDC(R1,2,R3)” is changed to
“ADDC(R1,R2,R3)”. Will the modified program behave differently when executed?

 Circle best answer: YES … NO … CAN’T TELL

6.004 Worksheet - 4 of 5 - Instruction Set Architecture

Problem 3.

Each of the following programs is loaded into a Beta’s main memory starting at location 0 and
execution is started with the Beta’s PC set to 0. Assume that all registers have been initialized to
0 before execution begins. Please determine the specified values after execution reaches the
HALT() instruction and the Beta stops. Write “CAN’T TELL” if the value cannot be determined.
Please write all values in hex.

(A)
 Value left in R1: 0x_______________

 Value left in R2: 0x_______________

(B)

 Value left in R0: 0x_______________

 Value left in R1: 0x_______________

 Value left in R2: 0x_______________

 Value assembler assigns to symbol X: 0x_______________

(C)

 Value left in R1: 0x_______________

 Value left in R2: 0x_______________

(D)

 Value left in R0: 0x_______________

 Value left in R1: 0x_______________

 Value left in R2: 0x_______________

 Value assembler assigns to symbol X: 0x_______________

 . = 0
 LD(R31,X,R0)
 CMOVE(0,R1)
L: CMPLTC(R0,0,R2)
 BNE(R2,DONE)
 ADDC(R1,1,R1)
 SHLC(R0,1,R0)
 BR(L)
DONE: HALT()
X: LONG(0x08306352)

 . = 0
 LD(R31,X+4,R1)
 SHLC(R1,2,R1)
 LD(R1,X,R2)
 HALT()
X: LONG(4)
 LONG(3)
 LONG(2)
 LONG(1)
 LONG(0)

 . = 0
 LD(R31,X,R0)
 CMOVE(0,R1)
L: ADDC(R1,1,R1)
 SHRC(R0,1,R0)
 BNE(R0,L,R2)
 HALT()

 . = 0x100
X: LONG(5)

 . = 0
 LD(R31,Z,R1)
 SHRC(R1,26,R1)
Z: CMPLTC(R1,0x3C,R2)
 HALT()

6.004 Worksheet - 5 of 5 - Instruction Set Architecture

(E)

 Value left in R0? 0x_______________

 Value left in R1? 0x_______________

 Value left in R2? 0x_______________

 Value assembler assigns to L1: 0x_______________

(F) Contents of R0 (in hex): 0x_______________

 Contents of R1 (in hex): 0x_______________

(G)

 . = 0 Value left in R1: 0x_______________
 LD(R31,Z,R1)
 SHRC(R1,16,R2)
Z: SUBC(R2,0x3C,R3) Value left in R3: 0x_______________
 HALT()

 Value assembler assigns to symbol Z: 0x_______________

(H) . = 0
 LD(R31,X,R0) Value left in R0: 0x_______________
 CMOVE(0,R1)

L: ADDC(R1,1,R1) Value left in R1: 0x_______________
 SHRC(R0,1,R0)
 BNE(R0,L,R2)
 HALT() Value left in R2: 0x_______________

X: LONG(0xDECAF)

 . = 0
 LD(r31, X, r0)
 CMPLE(r0, r31, r1)
 BNE(r1, L1, r1)
 ADDC(r31, 17, r2)
 BEQ(r31, L2, r31)
L1: SRAC(r0, 4, r2)
L2: HALT()

 . = 0x1CE8
X: LONG(0x87654321)

 . = 0

 LD(R31, i, R0)

 SHLC(R0, 2, R0)

 LD(R0, a-4, R1)

 HALT()

a: LONG(0xBADBABE)

 LONG(0xDEADBEEF)

 LONG(0xC0FFEE)

 LONG(0x8BADF00D)

i: LONG(3)

6.004 Worksheet - 1 of 4 - Compilation

compile_expr(expr)	⇒ Rx

• Constants: 1234 ⇒ Rx

– CMOVE(1234,Rx)

– LD(c1,Rx)
 …
 c1: LONG(123456)

• Variables: a ⇒ Rx

– LD(a,Rx)
 ...
 a: LONG(0)

• Variables: b[expr] ⇒ Rx

– compile_expr(expr)⇒Rx
 MULC(Rx,bsize,Rx)
 LD(Rx,b,Rx)
 …
 // reserve array space
 b: . = . + bsize*blen

• Operations: expr1 + expr2 ⇒ Rx
– compile_expr(expr1)⇒Rx
 compile_expr(expr2)⇒Ry
 ADD(Rx,Ry,Rx)

• Procedure call: f(e1, e2, …) ⇒ Rx
next lecture!

• Assignment: a=expr ⇒ Rx

– compile_expr(expr)⇒Rx
 ST(Rx,a)

compile_statement(…)

• Unconditional: expr;

– compile_expr(expr)

• Compound: { s1; s2; … }

– compile_statement(s1)
 compile_statement(s2)
…

• Conditional: if (expr) s1;

– compile_expr(expr)⇒Rx
 BF(Rx,Lendif)
compile_statement(s1)

Lendif:

• Conditional: if (expr) s1; else s2;

– compile_expr(expr)⇒Rx
 BF(Rx,Lelse)
compile_statement(s1)

 BR(Lendif)
Lelse:
 compile_statement(s1)
Lendif:

• Iteration: while (expr) s1;

– BR(Ltest)
Lwhile:
compile_statement(s1)

Ltest:
 compile_expr(expr)⇒Rx
 BT(Rx, Lwhile)

• Iteration: for (init; test; incr) s1;
init;
while (test) { s1; incr; }

Compilation Worksheet

6.004 Worksheet - 2 of 4 - Compilation

Problem 1.

Please hand-compile the following snippets of C code into equivalent Beta assembly language
statements. Assume that memory locations have been allocated for the all C variables with labels
that corresponds to the variable names. So to load the value of the C variable a into register R3,
the appropriate assembly language statement would be LD(R31,a,R3). And to store the value
in R17 to the C variable b, the appropriate assembly language statement would be
ST(R17,b,R31). Similarly, assume that memory locations have been allocated for each C
array, with a label defined whose value is the address of the 0th element of the array.

(A) a = 42;

(B) c = 5*x – 13;

(C) y = (x – 3)*(y + 123456);

(D) if (a == 3) b = b + 1;

(E) a[i] = a[i-1];

(F) x = y[3] + y[12];

(G) if (b == 0 || b < min) {

 min = b;
} else {
 too_big += 1;
}

(H) sum = 0;

i = 0;
while (i < 10) {
 sum = sum + i
 i = i + 1;
}

6.004 Worksheet - 3 of 4 - Compilation

Problem 2.

In block-structured languages such as C or Java, the scope of a variable declared locally within a
block extends only over that block, i.e., the value of the local variable cannot be accessed outside
the block. Conceptually, storage is allocated for the variable when the block is entered and
deallocated when the block is exited. In many cases, this means the compiler if free to use a
register to hold the value of the local variable instead of a memory location.

Consider the following C fragment:

int sum = 0;
{ int i;
 for (i = 0; i < 10; i = i+1) sum += i;
}

A. Hand-compile this loop into assembly language, using registers to hold
the values of the local variables "i" and "sum".

B. Define a memory access as any access to memory, i.e., instruction
fetch, data read (LD), or data write (ST). Compare the number of total
number of memory accesses generated by executing the optimized loop
with the total number of memory access for the unoptimized loop (part
G of the preceding problem).

C. Some optimizing compilers "unroll" small loops to amortize the
overhead of each loop iteration over more instructions in the body of
the loop. For example, one unrolling of the loop above would be
equivalent to rewriting the program as

int sum = 0;
{ int i;
 for (i = 0; i < 10; i = i+2) {
 sum += i; sum += i+1;
 }
}

Hand-compile this loop into Beta assembly language and compare the
total number of memory accesses generated when it executes to the
total number of memory accesses from part (1).

6.004 Worksheet - 4 of 4 - Compilation

Problem 3.

Which of the following Beta instruction sequences might have resulted from compiling the
following C statement? For each sequence describe the value that does end up as the value of y.

int x[20], y;
y = x[1] + 4;

A. LD (R31, x + 1, R0)
ADDC (R0, 4, R0)
ST (R0, y, R31)

B. CMOVE (4, R0)
ADDC (R0, x + 4, R0)
ST (R0, y, R31)

C. LD (R31, x + 4, R0)
ST (R0, y + 4, R31)

D. CMOVE (4, R0)
LD (R0, x, R1)
ST (R1, y, R0)

E. LD (R31, x + 4, R0)
ADDC (R0, 4, R0)
ST (R0, y, R31)

F. ADDC (R31, x + 1, R0)
ADDC (R0, 4, R0)
ST (R0, y, R31)

6.004 Worksheet - 1 of 6 - Procedures and Stacks

 PUSH(X): Push Reg[x] onto stack

 ADDC(SP,4,SP)
 ST(Rx,-4,SP)

POP(X): Pop value at top of stack into Reg[x]
 LD(SP,-4,RX)
 SUBC(SP,4,SP)

ALLOCATE(k): Reserve k words of stack
 ADDC(SP,4*k,SP)

DEALLOCATE(k): Release k words of stack
 SUBC(SP,4*k,SP)

Stack discipline: leave stack the way you found
it => for every PUSH(), there’s a corresponding
POP() or DEALLOCATE()

CALLING SEQUENCE

 PUSH(argn) // push args, last arg first
 …
 PUSH(arg1)
 BR(f, LP) // call f, return addr in LP
 DEALLOCATE(n) // remove args from stack

ENTRY SEQUENCE

f: PUSH(LP) // save return addr
 PUSH(BP) // save old frame pointer
 MOVE(SP,BP) // initialize new frame pointer
 ALLOCATE(nlocals) // make room for locals
 (push other regs) // preserve old reg vals

EXIT SEQUENCE

 // return value in R0
 MOVE(BP,SP) // remove locals
 POP(BP) // restore old frame pointer
 POP(LP) // recover return address
 JMP(LP) // resume execution in caller

Activation record layout on the
stack (aka stack frame):

Procedures & Stacks Worksheet

6.004 Worksheet - 2 of 6 - Procedures and Stacks

fn: PUSH(LP)
 PUSH(BP)
 MOVE(SP,BP)
 ALLOCATE(2)
 PUSH(R1)
 LD(BP,-12,R0)
 ANDC(R0,1,R1)
xx: ST(R1,0,BP)
 SHRC(R0,1,R1)
 ST(R1,4,BP)
yy: BEQ(R0,rtn)
 LD(BP,4,R1)
 PUSH(R1)
 BR(fn,LP)
 DEALLOCATE(1)
 LD(BP,0,R1)
 ADD(R1,R0,R0)
rtn:POP(R1)
zz: MOVE(BP,SP)
 POP(BP)
 POP(LP)
 JMP(LP)

Problem 1.

You are given an incomplete listing of a C program (shown
below) and its translation to Beta assembly code (shown on the
right):

int fn(int x) {
 int lowbit = x & 1;
 int rest = x >> 1;
 if (x == 0) return 0;
 else return ???;
}

(A) What is the missing C source corresponding to ??? in the

above program?

 C source code: _________________________________

(B) Suppose the instruction bearing the tag ‘zz:’ were
eliminated from the assembly language program. Would
the modified procedure work the same as the original
procedure (circle one)?

 Work the same? YES … NO

(C) In the space below, fill in the binary representation for the instruction stored at the location

tagged ‘xx:’ in the above program.

 (fill in missing 1s and 0s for instruction at xx:)

6.004 Worksheet - 3 of 6 - Procedures and Stacks

184: 4

188: 7

18C: 47

190: C4

194: 170

198: 1

19C: 23

1A0: 22

1A4: 23

1A8: 4C

1AC: 198

1B0: 1

1B4: 11

1B8: 23

1BC: 11

1C0: 4C

1C4: 1B0

1C8: 1 ←BP

1CC: 8

1D0: ???

1D4: 0 ←SP

The procedure fn is called from an external procedure and its execution is interrupted just prior
to the execution of the instruction tagged ‘yy:’. The contents of a region of memory are shown
on the left below.

NB: All addresses and data values are shown in hex. The contents of BP are 0x1C8 and SP
contains 0x1D4.

(D) What was the argument to the most recent call to fn?

Most recent argument (HEX): x=_______

(E) What is the missing value marked ??? for the contents of location 1D0?

Contents of 1D0 (HEX): _______

(F) What is the hex address of the instruction tagged rtn:?

Address of rtn (HEX): _______

(G) What was the argument to the original call to fn?

Original argument (HEX): x=_______

(H) What is the hex address of the BR instruction that called fn originally?

Address of original call (HEX): _______

(I) What were the contents of R1 at the time of the original call?

Original R1 contents (HEX): _______

(J) What value will be returned to the original caller?

Return value for original call (HEX): _______

6.004 Worksheet - 4 of 6 - Procedures and Stacks

Problem 2.

You are given an incomplete listing of a C program (shown below) and
its translation to Beta assembly code (shown on the right):

int f(int x, int y) {
 x = (x >> 1) + y;
 if (y == 0) return x;
 else return ???;
}

(A) What is the missing C source corresponding to ??? in the above program?

 C source code: _________________________________

(B) Suppose the instruction bearing the tag ‘zz:’ were eliminated from the

assembly language program. Would the modified procedure work the
same as the original procedure?
 Work the same (circle one)? YES … NO

The procedure f is called from an external procedure and then execution is stopped
just prior to one of the executions of the instruction labeled ‘rtn:’. The addresses
and contents of a region of memory are shown in the table on the right; all
addresses and data values in the table are in hex. When execution is stopped BP
contains the value 0x14C and SP contains the value 0x150.

(C) What are the arguments to the currently active call to f?

 Most recent arguments (in hex): x = 0x_______, y = 0x_______

(D) If you can tell from the information provided, specify the arguments to the

original call to f, otherwise select CAN’T TELL.

Original arguments (in hex) : x = 0x_____, y = 0x_____, or CAN’T TELL

(E) What is the missing value in location 0x12C?

 Contents of location 0x12C (in hex): 0x_______

(F) What is the hex address of the instruction labeled rtn:?

 Address of instruction labeled rtn: (in hex): 0x_______

(G) What is the hex address of the BR instruction that called f originally?

 Address of original call (in hex): 0x_______, or CAN’T TELL

(H) What value will be returned to the original caller?

 Return value for original call (in hex): 0x_______

108 7

10C 320

110 104

114 3

118 A

11C 2C4

120 104

124 3

128 2

12C

130 348

134 124

138 2

13C 1

140 6

144 348

148 138

14C 1

150 0

154 4

158 348

15C 14C

160 0

f: PUSH(LP)
 PUSH(BP)
 MOVE(SP,BP)
 PUSH(R1)
 LD(BP,-12,R0)
 SHRC(R0,1,R0)
 LD(BP,-16,R1)
 ADD(R0,R1,R0)
 BEQ(R1,rtn)
 SUBC(R1,1,R1)
 PUSH(R1)
 PUSH(R0)
 BR(f,LP)
 DEALLOCATE(2)
rtn: POP(R1)
zz: MOVE(BP,SP)
 POP(BP)
 POP(LP)
 JMP(LP)

6.004 Worksheet - 5 of 6 - Procedures and Stacks

Problem 3.

The following C program implements a function H(x,y) of two arguments,
which returns an integer result. The assembly code for the procedure is
shown on the right.

The execution of the procedure call H(0x68,0x20) has been suspended just as
the Beta is about to execute the instruction labeled “rtn:” during one of the
recursive calls to H. A partial trace of the stack at the time execution was
suspended is shown to the right below.

(A) Examining the assembly language for H, what is the appropriate C code

for ??? in the C representation for H?

 C code for ???: _____________________________________

(B) Please fill in the values for the blank locations in the stack dump shown
on the right. Express the values in hex or write “---“ if value can’t be
determined. Hint: Figure out the layout of H’s activation record and use
it to identify and label the stack frames in the stack dump.

 Fill in the blank locations with values (in hex!) or “---“

(C) Determine the specified values at the time execution was suspended.

Please express each value in hex or write “CAN’T TELL” if the value
cannot be determined.

 Value in R0 or “CANT TELL”: 0x_______________

 Value in R1 or “CANT TELL”: 0x_______________

 Value in BP or “CANT TELL”: 0x_______________

 Value in LP or “CANT TELL”: 0x_______________

 Value in SP or “CANT TELL”: 0x_______________

 0x0024

 0x0070

 0x0048

 0x0068

 0x0020

 0x0020

 0x0028

 0x007C

 0x00C8

BP→ 0x0008

 0x0020

 0x0020

int H(int x, int y) {
 int a = x - y;
 if (a < 0) return x;
 else return ???;
}

H: PUSH(LP)
 PUSH(BP)
 MOVE(SP, BP)
 ALLOCATE(1)
 PUSH(R1)

 LD(BP,-12,R0)
 LD(BP,-16,R1)
 SUB(R0,R1,R1)
 ST(R1,0,BP)

 CMPLTC(R1,0,R1)
 BT(R1,rtn)

 LD(BP,-16,R1)
 PUSH(R1)
 LD(BP,0,R0)
 PUSH(R0)
 BR(H,LP)
 DEALLOCATE(2)

rtn: POP(R1)
 MOVE(BP,SP)
 POP(BP)
 POP(LP)
 JMP(LP)

6.004 Worksheet - 6 of 6 - Procedures and Stacks

Problem 4.

The following C program computes the log base 2 of its argument. The
assembly code for the procedure is shown on the right, along with a stack
trace showing the execution of ilog2(10). The execution has been halted just
as it’s about to execute the instruction labeled “rtn:”

 /* compute log base 2 of arg */
int ilog2(unsigned x) {
 unsigned y;
 if (x == 0) return 0;
 else {
 /* shift x right by 1 bit */
 y = x >> 1;
 return ilog2(y) + 1;
 }
}

(A) What are the values in R0, SP, BP and LP at the time execution was

halted? Please express the values in hex or write “CAN’T TELL”.

 Value in R0: 0x_______________ in SP: 0x_______________

 Value in BP: 0x_______________ in LP: 0x_______________

(B) Please fill in the values for the five blank locations in the stack trace

shown on the right. Please express the values in hex.

 Fill in values (in hex!) for 5 blank locations

(C) In the assembly language code for ilog2 there is the instruction “LD(BP,-

12,R0)”. If this instruction were rewritten as “LD(SP,NNN,R0)” what is
correct value to use for NNN?

 Correct value for NNN: _______________

(D) In the assembly language code for ilog2, what is the address of the

memory location labeled “xxx:”? Please express the value in hex.

 Address of location labeled “xxx:”: 0x_______________

Va
lu

es
 a

re
 in

 h
ex

!

5

1A8

208

2

5

1

1A8

230

BP→ 0

 1
 0

ilog2: PUSH(LP)
 PUSH(BP)
 MOVE(SP,BP)
 ALLOCATE(1)
 PUSH(R1)

 LD(BP,-12,R0)
 BEQ(R0,rtn,R31)

 LD(BP,-12,R1)
 SHRC(R1,1,R1)
 ST(R1,0,BP)

 LD(BP,0,R1)
 PUSH(R1)
 BR(ilog2,LP)
 DEALLOCATE(1)
 ADDC(R0,1,R0)

rtn: POP(R1)
xxx: DEALLOCATE(1)
 MOVE(BP,SP)
 POP(BP)
 POP(LP)
 JMP(LP)

6.004 Worksheet - 1 of 8 - Beta Implementation

PC+4+4*SXT(C)

ASEL 0 1

Data
Memory

RD
WD

Adr
WE

W D S E L 0 1 2

WA Rc: <25:21> 0 1 XP

 PC

JT

+4
Instruction
Memory A

D
Rb: <15:11>Ra: <20:16>

RA2SEL Rc: <25:21>

+
Register

File
RA1 RA2
RD1 RD2

BSEL 0 1
C: SXT(<15:0>)

Z

ALU A B

JT
WA WD

WE

ALUFN

Control Logic
Z

ASEL
BSEL

PCSEL
RA2SEL

WDSEL

ALUFN

PC+4

0 1

MWR

0 1 2 3 4
XAdr ILL

OP

WASEL

WASEL

IRQ

W E R F

WERF

00

PCSEL

Unpipelined Beta

Control logic

ALUFN[5:0] Operation Output value Y[31:0]
000011 CMPEQ Y = (A == B)
000101 CMPLT Y = (A < B)
000111 CMPLE Y = (A ≤ B)
010000 ADD Y = A+B
010001 SUB Y = A−B
101000 AND Y[i] = A[i] · B[i]
101110 OR Y[i] = A[i] + B[i]
100110 XOR Y[i] = A[i] ⊕ B[i]

101001 XNOR Y[i] = ~(A[i] ⊕ B[i])
101010 “A” Y = A
110000 SHL Y = A << B
110001 SHR Y = A >> B
110011 SRA Y = A >> B (sign extended)

Reset: 0x80000000
Illop: 0x80000004
XAdr: 0x80000008

OE MOE
MOE
MWR

R
E
S
E
T

I
R
Q

O
P

O
P
C

L
D

L
D
R

S
T

J
M
P

B
E
Q

B
N
E

I
L
L
O
P

ALUFN[5:0] -- -- F(op) F(op) "+" "A" "+" -- -- -- --

ASEL -- -- 0 0 0 1 0 -- -- -- --

BSEL -- -- 0 1 1 -- 1 -- -- -- --

MOE -- -- -- -- 1 1 0 -- -- -- --

MWR 0 0 0 0 0 0 1 0 0 0 0

PCSEL[2:0] -- 4 0 0 0 0 0 2 Z ? 1 : 0 Z ? 0 : 1 3

RA2SEL -- -- 0 -- -- -- 1 -- -- -- --

WASEL -- 1 0 0 0 0 -- 0 0 0 1

WDSEL[1:0] -- 0 1 1 2 2 -- 0 0 0 0

WERF -- 1 1 1 1 1 0 1 1 1 1

4*SXT(C)

PC+4

RESET 0 1 Reset

RESET

MWD

MRD

MA

IA

ID

Beta Implementation Worksheet

6.004 Worksheet - 2 of 8 - Beta Implementation

Problem 1.

For this problem assume that each register has been initialized to the value 0x0000??00 where
“??” is the register number as a two-digit hex number. So R0 is initialized to 0x00000000, R1 to
0x00000100, …, and R30 to 0x00001E00. R31 of course always reads as 0.

For each instruction below, please indicate the values that will be found in the unpipelined Beta
datapath just before the end of the clock cycle in which the instruction is executed. If the value
doesn’t matter since it’s not used during the execution of the instruction or can’t be determined,
write “−”.

. = 0x100
SHLC(R30,8,R16)

. = 0x100
SUB(R5,R3,R7)

6.004 Worksheet - 3 of 8 - Beta Implementation

. = 0x100
LD(R3,-0x200,R7)

// hex for instruction
0x60E3FE00

. = 0x100
ST(R3,-0x200,R7)

6.004 Worksheet - 4 of 8 - Beta Implementation

. = 0x100
JMP(LP)

. = 0x100
BEQ(R31,.+0x80,LP)

6.004 Worksheet - 5 of 8 - Beta Implementation

Problem 2.

Consider adding the following instructions to the Beta instruction set, for implementation on the
Beta hardware shown in lecture (see diagram included in the reference material at the end of this
quiz). You’re allowed to change how the control signals are generated but no modifications to
the datapath are permitted.

For each instruction either fill in the appropriate values for the control signals in the table below
or put a line through the whole row if the instruction cannot be implemented using the
existing Beta datapath. Use “—“ to indicate a “don’t care” value for a control signal. The values
can be a function of Z (which is 1 when Reg[Ra] is zero).

LDX(Ra, Rb, Rc) // Load indexed
 EA ← Reg[Ra] + Reg[Rb]
 Reg[Rc] ← Mem[EA]
 PC ← PC + 4

STX(Ra, Rb, Rc) // Store indexed
 EA ← Reg[Ra] + Reg[Rb]
 Mem[EA] ← Reg[Rc]
 PC ← PC + 4

MVZC(Ra, literal, Rc) // Move constant if zero

 If Reg[Ra] == 0 then Reg[Rc] ← SXT(literal)
 PC ← PC + 4

SOB(Ra, literal, Rc) // Subtract one and branch
PC ← PC + 4
EA ← PC + 4*SEXT(literal)
tmp ← Reg[Ra]
Reg[Rc] ← Reg[Ra] – 1
if tmp != 0 then PC ← EA

ARA(Ra, literal, Rc) // Add Relative Address
 Reg[Rc] ← Reg[Rc] + PC + 4 + 4*SEXT(literal)
 PC ← PC + 4

(FILL IN TABLE BELOW)

Instr ALUFN WERF BSEL WDSEL MOE MWR RA2SEL PCSEL ASEL WASEL

LDX

STX

MVZC

SOB

ARA

6.004 Worksheet - 6 of 8 - Beta Implementation

Problem 3.

Ben Bitdiddle is proposing the short assembly language program shown to
the right as a manufacturing test to ensure the correct operation of the
Control ROM. He is assuming – and you may too – that the Beta datapath
components (e.g., Memories, ALU, muxes, register file, adders) are working
correctly and that any errors in execution are due to faulty signals from the
Control ROM. Ben’s plan is to run the program then look at the value in the
memory location labeled ANS. If the value is 0x6004, the test passes,
otherwise the Beta being tested is declared faulty and discarded.

For each of the following faults, indicate the value that the faulty Beta will
store into ANS.

(A) RA2SEL is stuck at the value 0.

 Value stored in ANS by faulty Beta: _______________

(B) WDSEL[1:0] is stuck at the binary value 00.

 Value stored in ANS by faulty Beta: _______________

(C) PCSEL[2:0] is stuck at the binary value 000.

 Value stored in ANS by faulty Beta: _______________

Problem 4. Beta Implementation

Consider the assembly language program shown to the right.
Assume that all register values are initialized to 0, execution starts
at PC=0 and halts when HALT() is executed.

This program is run on 4 different broken Betas, where each Beta
has a specified control signal stuck at the specified value, i.e., the
control signal value is fixed and is not affected by the value
produced by the Beta’s CTL module. For each broken Beta,
please give the value in registers R1, R2, R3, and the location X:
after the programs halts. Assume that any don’t care control
signal values are 0.

Broken control signal
Final value in

R1 R2 R3 Location X:

RA2SEL stuck at 0

WDSEL stuck at 0b00

WASEL stuck at 1

WERF stuck at 1

.=0
Test: LD(R31,X,R0)
 ADDC(R0,1,R1)
 BNE(R1,L1,R31)
 ADDC(R1,1,R1)
L1: ST(R1,ANS,R31)
 HALT()
X: .LONG(0x6003)
ANS: .LONG(0)

 . = 0
 LD(R31,X,R1)
 CMPLTC(R1,0,R2)
 BF(R2,end,R3)
 SUB(R31,R1,R1)
 ST(R1,X,R31)
END: HALT()
X: LONG(-42)

6.004 Worksheet - 7 of 8 - Beta Implementation

Problem 5.

In this problem, you will consider a number of plausible hardware faults in an otherwise working
Beta processor; you may want to consult the diagram and documentation on the backs of pages of
this quiz. Each of the faults involves changing a particular output of the control logic to some
new (incorrect) constant value. In each case, you are to evaluate the impact of the fault on each
of the following Beta instructions:

I1: ST(R0, 0x100, R1)
I2: JMP(LP, R31)
I3: BEQ(R31, .+4, R0)
I4: SUB(R1, R0, R0)

For each of the following faults, identify which (if any) of the above instructions will fail to work
properly – that is, if the fault might effect the processor state (register and PC values) after the
execution of the instruction. Be careful: some of these are tricky!

(A) ALUFN stuck at code for “-” (32-bit SUBTRACT)

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(B) RA2SEL stuck at 1

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(C) WERF stuck at 0

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

(D) BSEL stuck at 0

Which instruction(s) fail? Circle all applicable, or NONE: I1 I2 I3 I4 NONE

Problem 6.

(A) The Beta executes the assembly program below starting at location 0 and stopping when it

reaches the HALT() instruction. Please give the values in the indicated registers after the
Beta stops. Write the values in hex or write “CAN’T TELL” if the values cannot be
determined.

 . = 0
 LD(r31, X, r0)
 CMPLE(r0, r31, r1)
 BNE(r1, L1, r2)
 ADDC(r31, 1, r0)
 L1: HALT()

 X: LONG(0x87654321)

Value left in R0 or “CAN’T TELL”: 0x_______________

Value left in R1 or “CAN’T TELL”: 0x_______________

Value left in R2 or “CAN’T TELL”: 0x_______________

6.004 Worksheet - 8 of 8 - Beta Implementation

(B) Redo part (A) but this time assume that all the control signals going to the datapath from the
control logic are stuck at logic 0, except for WERF which operates as expected. Note that
when ALUFN[4:0] = 0b00000, the ALU computes A+B.

 . = 0
 LD(r31, X, r0)
 CMPLE(r0, r31, r1)
 BNE(r1, L1, r2)
 ADDC(r31, 1, r0)
 L1: HALT()

 X: LONG(0x87654321)

Value left in R0 or “CAN’T TELL”: 0x_______________

Value left in R1 or “CAN’T TELL”: 0x_______________

Value left in R2 or “CAN’T TELL”: 0x_______________

(C) Bettah Beta Inc. (you can tell they’re based in Boston!) is proposing a new Beta instruction

TCLR that sets Rc to the current value of a memory location whose address is in Ra and
writes a zero to that location, all in a single cycle. They are assuming that main memory
works as it does in JSim: its read ports are combinational and the write port takes a CLK
signal and performs the write at the end of the current cycle – so the same memory location
can be read and written in the same clock cycle.

 Here’s their draft entry for the Beta reference manual:

Usage: TCLR(Ra,Rc)
Opcode: 011010 Rc Ra 11111 unused
Operation: PC ¬ PC + 4

EA ¬ Reg[Ra]
Reg[Rc] ¬ Mem[EA]
Mem[EA] ¬ 0

 The contents of register Rc are set to the contents of the memory location whose address is

in Ra. Then, at the end of the cycle, that memory location is set to 0.

Please fill in the appropriate values for the control signals that will cause the datapath to
implement the correct operations OR briefly explain why TCLR cannot be implemented
with the existing Beta datapath in a single cycle.

 Fill in table:

Instr ALUFN WERF BSEL WDSEL MOE MWR RA2SEL PCSEL ASEL WASEL

TCLR

6.004 Worksheet - 1 of 11 - Memory Hierarchy & Caches

Keep the most often-used data in a small, fast SRAM (often local
to CPU chip). The reason this strategy works: LOCALITY.

Locality of reference: Access to address X at time t implies that
access to address X+ΔX at time t+Δt becomes more probable as
ΔX and Δt approach zero.

AMAT = HitTime + MissRatio * MissPenalty

Example: 2-way set-associative cache, 8 sets, 4-word block size, write-back

Replacement strategy choices: least-recently used (LRU); first in, first out (FIFO); random
Write-policy choices: write-through, write-behind, write-back

Memory Hierarchy & Caches Worksheet

6.004 Worksheet - 2 of 11 - Memory Hierarchy & Caches

Problem 1.

(A) The timing for a particular cache is as follows: checking the cache takes 1 cycle. If there’s a

hit the data is returned to the CPU at the end of the first cycle. If there’s a miss, it takes 10
additional cycles to retrieve the word from main memory, store it in the cache, and return it
to the CPU. If we want an average memory access time of 1.4 cycles, what is the minimum
possible value for the cache’s hit ratio?

 Minimum possible value of hit ratio: __________

(B) If the cache block size, i.e., words/cache line, is doubled but the total number of data words
in the cache is unchanged, how will the following cache parameters change? Please circle
the best answer.

 # of offset bits: UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

 # of tag bits: UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

 # of cache lines: UNCHANGED … +1 … -1 … 2x … 0.5x … CAN’T TELL

Consider a direct-mapped cache with 64 total data words with 1 word/cache line, which uses a
LRU replacement strategy and a write-back write strategy. This cache architecture is used for
parts (C) through (F).

(C) If cache line number 5 is valid and its tag field has the value 0x1234, what is the address in

main memory of the data word currently residing in cache line 5?

 Main memory address of data word in cache line 5: 0x_______________

The program shown on the right
repeatedly executes an inner loop that
sums the 16 elements of an array that is
stored starting in location 0x310.

The program is executed for many
iterations, then a measurement of the
cache statistics is made during one
iteration through all the code, i.e.,
starting with the execution of the
instruction labeled outer_loop: until
just before the next time that
instruction is executed.

 . = 0
outer_loop:
 CMOVE(16,R0) // initialize loop index J
 CMOVE(0,R1)

loop: // add up elements in array
 SUBC(R0,1,R0) // decrement index
 MULC(R0,4,R2) // convert to byte offset
 LD(R2,0x310,R3)// load value from A[J]
 ADD(R3,R1,R1) // add to sum
 BNE(R0,loop) // loop until all words are summed

 BR(outer_loop) // perform test again!

6.004 Worksheet - 3 of 11 - Memory Hierarchy & Caches

(D) In total, how many instruction fetches occur during one complete iteration of the outer loop?
How many data reads?

 Number of instruction fetches: __________

 Number of data reads: __________

(E) How many instruction fetch misses occur during one complete iteration of the outer loop?
How many data read misses? Hint: remember that the array starts at address 0x310.

 Number of instruction fetch misses: __________

 Number of data read misses: __________

(F) What is the hit ratio measured after one complete iteration of the outer loop?

 Hit ratio: __________

Problem 2.

The Beta Engineering Team is working on the design of a cache. They’ve decided that the cache
will have a total of 210 = 1024 data words, but are still thinking about the other aspects of the
cache architecture.

First assume the team chooses to build a direct-mapped write-back cache with a block size of 4
words.

(A) Please answer the following questions:

 Number of lines in the cache: ____________

 Number of bits in the tag field for each cache entry: ____________

(B) This cache takes 2 clock cycles to determine if a memory access is a hit or a miss and, if it’s a
hit, return data to the Beta. If the access is a miss, the cache takes 20 additional clock cycles
to fill the cache line and return the requested word to the Beta. If the hit rate is 90%, what is
the Beta’s average memory access time in clock cycles?

 Average memory access time assuming 90% hit rate (clock cycles): _____________

6.004 Worksheet - 4 of 11 - Memory Hierarchy & Caches

Now assume the team chooses to build a 2-way set-associative write-back cache with a block size
of 4 words. The total number of data words in the entire cache is still 1024. The cache uses a
LRU replacement strategy.

(C) Please answer the following questions:

 Address bits used as offset (including byte offset): A[_____ : _____]

 Address bits used as cache line index: A[_____ : _____]

 Address bits used for tag comparison: A[_____ : _____]

(D) To implement the LRU replacement strategy this cache requires some additional state for
each set. How many state bits are required for each set?

 Number of state bits needed for each set for LRU: ____________

To test this set-associative cache, the team runs the benchmark code shown on
the right. The code sums the elements of a 16-element array. The first
instruction of the code is at location 0x0 and the first element of the array is at
location 0x10000. Assume that the cache is empty when execution starts and
remember the cache has a block size of 4 words.

(E) How many instruction misses will occur when running the benchmark?

Number of instruction misses when running the benchmark: _________

(F) How many data misses (i.e., misses caused by the memory access from
the LD instruction) will occur when running the benchmark?

 Number of data misses when running the benchmark: _________

(g) What’s the exact hit rate when the complete benchmark is executed?

 Benchmark hit rate: _________

. = 0x0
 CMOVE(0,R0)
 CMOVE(0,R1)
L: LD(R0,A,R2)
 ADD(R2,R1,R1)
 ADDC(R0,4,R0)
 CMPLTC(R0,64,R2)
 BT(R2,L)
 HALT()

. = 0x10000
A: LONG(1)
 LONG(2)
 …
 LONG(15)
 LONG(16)

6.004 Worksheet - 5 of 11 - Memory Hierarchy & Caches

Problem 3.

The program from the Cache performance lab
is shown at the right. Assume the program is
being run on a Beta with a cache with the
following parameters:

• 2-way set-associative
• block size of 2, i.e., 2 data words are stored

in each cache line
• total number of data words in the cache is 32
• LRU replacement strategy

(A) The cache will divide the 32-bit address

supplied by the Beta into three fields: B
bits of block offset (including byte offset
bits), L bits of cache line index, and T bits
of tag field. Based on the cache
parameters given above, what are the
appropriate values for B, L, and T?

 value for B: __________

 value for L: __________

 value for T: __________

(B) If the MULC instruction is resident in a cache line, what will be its cache line index? the
value of the tag field for the cache?

 Cache line index for MULC when resident in cache: ____________

 Tag field for MULC when resident in cache: 0x____________

(C) With the values of I, A, and N as shown, list all the values j (0 £ j < N) where the location

holding the value A[j] will map to the same cache line index as the MULC instruction in the
program.

 List all j where A[j] have the same cache line index as MULC: ________________

(D) If the outer loop is run many times, give the steady-state hit ratio for the cache, i.e., assume
that the number of compulsory misses as the cache is first filled are insignificant compared
to the number of hits and misses during execution.

 Steady-state hit ratio (%): ____________

I = 0x240 // location of program
A = 0x420 // location of array A
N = 16 // size of array (in words)

. = I // start program here
test:
 CMOVE(N,R0) // initialize loop index J
 CMOVE(0,R1)

loop: // add up elements in array
 SUBC(R0,1,R0) // decrement index
 MULC(R0,4,R2) // convert to byte offset
 LD(R2,A,R3) // load value from A[J]
 ADD(R3,R1,R1) // add to sum
 BNE(R0,loop) // loop N times

 BR(test) // perform test again!

// allocate space to hold array
. = A
 STORAGE(N) // N words

6.004 Worksheet - 6 of 11 - Memory Hierarchy & Caches

Way: 0
Cache line index: 3
Valid bit (V): 1
Dirty bit (D): 1
Tag field: 0x123

Problem 4.

Consider a 2-way set-associative cache where each way has 4 cache lines with a block size of 2
words. Each cache line includes a valid bit (V) and a dirty bit (D), which is used to implement a
write-back strategy. The replacement policy is least-recently-used (LRU). The cache is used for
both instruction fetch and data (LD,ST) accesses. Please use this cache when answering
questions (A) through (D).

(A) Using this cache, a particular benchmark program experiences an average memory access

time (AMAT) of 1.3 cycles. The access time on a cache hit is 1 cycle; the miss penalty (i.e.,
additional access time) is 10 cycles. What is the hit ratio when running the benchmark
program? You can express your answer as a formula if you wish:

 Hit ratio for benchmark program: ____________________

(B) The circuitry for this cache uses various address bits as the block offset, cache line index and
tag field. Please indicate which address bits A[31:0] are used for each purpose by placing a
“B” in each address bit used for the block offset, “L” in each address bit used for the cache
line index, and “T” in each address bit used for the tag field.

 Fill in each box with “B”, “L”, or “T”

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0

(C) This cache needs room to store new data and based on the LRU replacement
policy has chosen the cache line whose information is shown to the right for
replacement. Since the current contents of that line are marked as dirty (D
= 1), the cache must write some information back to main memory. What is
the address of each memory location to be written? Please give each
address in hex.

 Addresses of each location to be written (in hex): ___________________________

6.004 Worksheet - 7 of 11 - Memory Hierarchy & Caches

(D) This cache is used to run the following benchmark program. The code starts at memory
address 0; the array referenced by the code has its first element at memory address 0x2000.
First determine the number of memory accesses (both instruction and data) made during
each iteration through the loop. Then estimate the steady-state average hit ratio for the
program, i.e., the average hit ratio after many iterations through the loop.

. = 0
 CMOVE(0,R0) // byte index into array
 CMOVE(0,R1) // initialize checksum accumulator
loop:
 LD(R0,array,R2) // load next element of array
 SHLC(R1,1,R1) // shift checksum
 ADDC(1,R1,R1) // increment checksum
 ADD(R2,R1,R1) // include data value in checksum
 ADDC(R0,4,R0) // byte index of next array element
 CMPLTC(R0,1000,R2) // process 250 entries
 BT(R2,loop)
 HALT()

. = 0x2000
array:
 … array contents here …

 Number of memory accesses made during each iteration of the loop: __________

 Estimated steady-state average hit ratio: __________

Problem 5.

Consider the diagram to the right for a 2-way set
associative cache to be used with our Beta design.
Each cache line holds a single 32-bit word of data along
with its associated tag and valid bit (0 when the cache
line is invalid, 1 when the cache line is valid).

(A) The Beta produces 32-bit byte addresses, A[31:0].
To ensure the best cache performance, which
address bits should be used for the cache index? For
the tag field?

address bits used for cache index: A[_____:_____]

address bits used for tag field: A[_____:_____]

Data[31:0] Tag

Valid bit

 =?

Cache index

Tag field

Data[31:0] Tag

Valid bit

 =?

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Data to CPU

Hit?

A B

6.004 Worksheet - 8 of 11 - Memory Hierarchy & Caches

(B) Suppose the Beta does a read of location 0x5678. Identify which cache location(s) would be
checked to see if that location is in the cache. For each location specify the cache section (A
or B) and row number (0 through 7). E.g., 3A for row 3, section A. If there is a cache hit on
this access what would be the contents of the tag data for the cache line that holds the data for
this location?

 cache location(s) checked on access to 0x5678:_________________________

 cache tag data on hit for location 0x5678 (hex): 0x_______________

(C) Assume that checking the cache on each read takes 1 cycle and that refilling the cache on a
miss takes an additional 8 cycles. If we wanted the average access time over many reads to
be 1.1 cycles, what is the minimum hit ratio the cache must achieve during that period of
time? You needn’t simplify your answer.

 minimum hit ratio for 1.1 cycle average access time:_______________

(D) Estimate the approximate cache hit ratio for the following program. Assume the cache is
empty before execution begins (all the valid bits are 0) and that an LRU replacement
strategy is used. Remember the cache is used for both instruction and data (LD) accesses.

 . = 0
 CMOVE(source,R0)
 CMOVE(0,R1)
 CMOVE(0x1000,R2)
loop: LD(R0,0,R3)
 ADDC(R0,4,R0)
 ADD(R3,R1,R1)
 SUBC(R2,1,R2)
 BNE(R2,loop)
 ST(R1,source)
 HALT()

 . = 0x100
source:
 . = . + 0x4000 // Set source to 0x100, reserve 1000 words

 approximate hit ratio:_______________

(E) After the program of part (D) has finished execution what information is stored in row 4 of the cache?
Give the addresses for the two locations that are cached (one in each of the sections) or briefly explain
why that information can’t be determined.

 Addresses whose data is cached in “Row 4”: __________ and __________

6.004 Worksheet - 9 of 11 - Memory Hierarchy & Caches

Problem 6.

A standard unpipelined Beta is connected to a 2-way set-associative cache containing 8 sets, with
a block size of 4 32-bit words. The cache uses a LRU replacement strategy. At a particular point
during execution, a snapshot is taken of the cache contents, which are shown below. All values
are in hex; assume that any hex digits not shown are 0.

(A) The cache uses bits from the 32-bit byte address produced by the Beta to select the

appropriate set (L), as input to the tag comparisons (T) and to select the appropriate word
from the data block (B). For correct and optimal performance what are the appropriate
portions of the address to use for L, T and B? Express your answer in the form “A[N:M]”
for N and M in the range 0 to 31, or write “CAN’T TELL”.

 Address bits to use for L: __________

 Address bits to use for T: __________

 Address bits to use for B: __________

(B) For the following addresses, if the contents of the specified location appear in the cache,
give the location’s 32-bit contents in hex (determined by using the appropriate value from
the cache). If the contents of the specified location are NOT in the cache, write “MISS”.

 Contents of location 0xA1100 (in hex) or “MISS”: 0x_______________

 Contents of location 0x548 (in hex) or “MISS”: 0x_______________

(C) Ignoring the current contents of the cache, is it possible for the contents of locations 0x0 and
0x1000 to both be present in the cache simultaneously?

 Locations 0x0 and 0x1000 present simultaneously (circle one): YES … NO

6.004 Worksheet - 10 of 11 - Memory Hierarchy & Caches

(D) (Give a one-sentence explanation of how the D bit got set to 1 for Line #7 of Way #1.
 One sentence explanation

(E) The following code snippet sums the elements of the 32-element integer array X. Assume
this code is executing on a Beta with a cache architecture as described above and that,
initially, the cache is empty, i.e., all the V bits have been set to 0. Compute the hit ratio as
this program runs until it executes the HALT() instruction, a total of 2 + (6*32) + 1 = 195
instruction fetches and 32 data accesses.

 Hit ratio: _________

 . = 0

 CMOVE(0, R0) // loop counter

 CMOVE(0, R1) // accumulated sum

loop:

 SHLC(R0, 2, R2) // convert loop counter to byte offset

 LD(R2, X, R3) // load next value from array

 ADD(R3, R1, R1) // add value to sum

 ADDC(R0, 1, R0) // increment loop counter

 CMPLTC(R0, 32, R2) // finished with all 32 elements?

 BT(R2,loop) // nope, keep going

 HALT() // all done, sum in R1

X: LONG(1) // the 32-element integer array X

 LONG(2)

 …

 LONG(32)

6.004 Worksheet - 11 of 11 - Memory Hierarchy & Caches

Problem 7.

After his geek hit single I Hit the Line, renegade singer Johnny Cache has decided he’d better
actually learn how a cache works. He bought three Beta processors, identical except for their
cache architectures:

• Beta1 has a 64-line direct-mapped cache
• Beta2 has a 2-way set associative cache, LRU, with a total of 64 lines
• Beta3 has a 4-way set associative cache, LRU, with a total of 64 lines

Note that each cache has the same total capacity: 64 lines, each holding a single 32-bit word of
data or instruction. All three machines use the same cache for data and instructions fetched from
main memory.

Johnny has written a simple test program:

Johnny runs his program on each Beta, and finds that one Beta model outperforms the other two.

(A) (2 points) Which Beta gets the highest hit ratio on the above benchmark?

Circle one: Beta1 Beta2 Beta3

(B) (2 points) Johnny changes the value of B in his program to 0x2000 (same as A), and
finds a substantial improvement in the hit rate attained by one of the Beta models
(approaching 100%). Which model shows this marked improvement?

Circle one: Beta1 Beta2 Beta3

(C) (3 points) Finally, Johnny sets I, A, and B each to 0x0, and sets N to 64. What is the
TOTAL number of cache misses that will occur executing this version of the program on
each of the Beta models?

TOTAL cache misses running on Beta1: ______; Beta2: ______; Beta3: ______

// Try a little cache benchmark
I = 0x1000 // where program lives
A = 0x2000 // data region 1
B = 0x3000 // data region 2
N = 16 // size of data regions (BYTES!)

. = I // start program here
P: CMOVE(1000, R6) // outer loop count
Q: CMOVE(N, R0) // Loop index I (array offset)
R: SUBC(R0, 4, R0) // I = I-1

LD(R0, A, R1) // read A[I]
 LD(R0, B, R2) // read B[I]
 BNE(R0, R)
 SUBC(R6,1, R6) // repeat many times
 BNE(R6, Q)
 HALT()

6.004 Worksheet - 1 of 8 - Pipelining the Beta

+4

Instruction
Memory A

D

PCSEL

JT XAdr
ILL
OP

Rb:<15:11> Ra:<20:16> Rc:<25:21>

Instruction
Fetch

Register
File

WA
W D

W E

YMEM

ALU A B

Register
File

ALU

Write
Back

Memory

Rc:<25:21>

Register
File RA1 RA2

RD1 RD2
PCRF+4+4*SXT(C)

Data
Memory

RD

 Y

PCSEL 00

RA2SEL

 IRRF

+

WDSEL 0 1 2

0 1 BSEL

A, B BYPASS

Z
JT

ALUFN

WERF

0 1 IRSrcIF

NOP

BNE(R31,0,XP)

0 1 2 3 4

W D Adr WE

DALU B IRALU A

0 1

DMEM IRMEM

PCRF

PCALU

PCMEM

YWB

A, B BYPASS

A, B BYPASS

IRWB PCWB

BYPASSES BYPASSES

SXT(C)

0 1 ASEL 0 1 IRSrcRF

NOP

PCRF+4+4*SXT(C)

2

A, B BYPASS

A, B BYPASS

BNE(R31,0,XP)
0 1 IRSrcALU

NOP

2

BNE(R31,0,XP)

0 1 IRSrcMEM

NOP

2

2 BNE(R31,0,XP)

5-stage Pipelined Beta
STALL

MWR

STALL STALL

OE MOE

IF

RF

ALU

MEM

WB

Options for dealing with data and control hazards: stall, bypass, speculate

Pipelining the Beta Worksheet

6.004 Worksheet - 2 of 8 - Pipelining the Beta

Problem 1.

The program shown on the right is executed
on a 5-stage pipelined Beta with full
bypassing and annulment of instructions
following taken branches.

The program has been running for a while
and execution is halted at the end of cycle
108.

The pipeline diagram shown below shows
the history of execution at the time the
program was halted.

 Please indicate on which cycle(s), 100 through 108, each of the following actions occurred. If
the action did not occur in any cycle, write “NONE”. You may wish to refer to the signal names
in the 5-stage Pipelined Beta Diagram included in the reference material.

 Register value used from Register File: _______________

 Register value bypassed from ALU stage to RF stage: _______________

 Register value bypassed from MEM stage to RF stage: _______________

 Register value bypassed from WB stage to RF stage: _______________

 IRSrcIF was 1: _______________

 IRSrcIF was 2: _______________

 STALL was 1: _______________

 PCSEL was 1: _______________

 WDSEL was 2: _______________

cycle 100 101 102 103 104 105 106 107 108

IF MULC LD ADD BNE BNE BNE BR SUBC MULC

RF SUBC MULC LD ADD ADD ADD BNE NOP SUBC

ALU NOP SUBC MULC LD NOP NOP ADD BNE NOP

MEM BNE NOP SUBC MULC LD NOP NOP ADD BNE

WB ADDC BNE NOP SUBC MULC LD NOP NOP ADD

 . = 0
outer_loop:
 CMOVE(16,R0) // initialize loop index J
 CMOVE(0,R1)

loop: // add up elements in array
 SUBC(R0,1,R0) // decrement index
 MULC(R0,4,R2) // convert to byte offset
 LD(R2,0x310,R3)// load value from A[J]
 ADD(R3,R1,R1) // add to sum
 BNE(R0,loop) // loop until all words are summed

 BR(outer_loop) // perform test again!

6.004 Worksheet - 3 of 8 - Pipelining the Beta

Problem 2.

The following program fragments are being executed on the 5-stage pipelined Beta described in
lecture with full bypassing, stall logic to deal with LD data hazards, and speculation for JMPs and
taken branches (i.e., IF-stage instruction is replaced with a NOP if necessary). The execution
pipeline diagram is shown for cycle 1000 of execution. Please fill in the diagram for cycle 1001;
use “?” if you cannot tell what opcode to write into a stage. Then for both cycles use arrows to
indicate any bypassing from the ALU/MEM/WB stages back to the RF stage (see example for
cycle 1000 in part A).

(A) (2 points) Assume BNE is taken.

(B) (2 points)

(C) (2 points)

(D) (2 points) Assume during cycle 1000 the DIV
instruction in the RF stage triggers an
ILLEGAL OPCODE (ILLOP) exception.

 …
 ADDC(R1,5,R1)
L: SUBC(R1,1,R1)
 SHRC(R0,1,R0)
 BNE(R1,L)
 ST(R1,data)
 …

Cycle 1000 1001
IF ST

RF BNE

ALU SHRC

MEM SUBC

WB NOP

…
ST(R31,0,BP)
LD(BP,-12,R17)
ADDC(SP,4,SP)
SHLC(R17,2,R1)
ST(R1,-4,SP)
BEQ(R31,fact,LP)
…

Cycle 1000 1001
IF ST

RF SHLC

ALU ADDC

MEM LD

WB ST

Cycle 1000 1001
IF ADD

RF AND

ALU SUB

MEM MULC

WB XOR

Cycle 1000 1001
IF ADDC

RF DIV

ALU SHLC

MEM NOP

WB LD

…
XOR(R1,R2,R1)
MULC(R2,3,R2)
SUB(R2,R1,R3)
AND(R3,R1,R2)
ADD(R3,R2,R3)
ST(R3,x)
…

…
LD(x,R1)
LD(y,R2)
SHLC(R1,3,R1)
DIV(R2,R1,R3)
ADDC(R3,17,R3)
ST(R3,z)
…

6.004 Worksheet - 4 of 8 - Pipelining the Beta

Problem 3.

In answering this question, you may wish to refer to the diagram of the
5-stage pipelined beta provided with the reference material.

The loop on the right has been executing for a while on our standard 5-
stage pipelined Beta with branch annulment and full bypassing. The
pipeline diagram below shows the opcode of the instruction in each
pipeline stage during 10 consecutive cycles of execution.

Cycle

300 301 302 303 304 305 306 307 308 309

IF SUBC CMPLTC BF LD LD ST BNE BNE BNE ADDC

RF SUBC CMPLTC BF NOP LD ST ST ST BNE

ALU SUBC CMPLTC BF NOP LD NOP NOP ST

MEM SUBC CMPLTC BF NOP LD NOP NOP

WB SUBC CMPLTC BF NOP LD NOP

(A) (4 Points) Indicate which bypass/forwarding paths are active in each cycle by drawing a

vertical arrow in the pipeline diagram from pipeline stage X in a column to the RF stage in
the same column if an operand would be bypassed from stage X back to the RF stage that
cycle. Note that there may be more than one vertical arrow in a column.

 Draw bypass arrows in pipeline diagram above

(B) (2 Points) Assume that the previous iteration of the loop executed the same instructions as

the iteration show here. Please complete the pipeline diagram for cycle 300 by filling in the
OPCODEs for the instructions in the RF, ALU, MEM, and WB stages.
 Fill in OPCODEs for Cycle 300

For the following questions think carefully about when a signal would be asserted in order to
produce the effect you see in the pipeline diagram.

(C) (2 Points) During which cycle(s), if any, would the IRSrcIF signal be 1?

 Cycle number(s) or NONE: _______________

(D) (2 Points) During which cycle(s), if any, would the IRSrcRF signal be 1?

 Cycle number(s) or NONE: _______________

 (E) (2 Points) During which cycle(s), if any, would the STALL signal be 1, i.e., cycle(s) when
the IF and RF stages would be stalled?

 Cycle number(s) or NONE: _______________

 …
L1: SUBC(R0,4,R0)
 CMPLTC(R0,10,R1)
 BF(R1,L2)
 LD(R0,A,R2)
 BR(L3)
L2: LD(R0,B,R2)
L3: ST(R2,C,R31)
 BNE(R0,L1)
 ADDC(R2,1,R2)
 …

6.004 Worksheet - 5 of 8 - Pipelining the Beta

Problem 4.

You’ve discovered a secret room in the basement of the Stata center full of discarded 5-stage
pipelined Betas. Unfortunately, many have certain defects. You discover that they fall into four
categories:

C1: Completely functional 5-stage Betas with working bypass paths, annulment, and other
components.

C2: Betas with a bad register file: all data read from the register file is zero.
C3: Betas without bypass paths: all source operands come from the register file.
C4: Betas without annulment of instructions following branches.

To help sort the Beta chips into the above classes, you write the following small test program:

. = 0x0
// Start at 0x0, with ZERO in all registers…

ADDC(R31, 4, R0)
 BEQ(R31, X, R2)
 MULC(R2, 2, R2)
X: SUBC(R2, 4, R2)
 ADD(R0, R2, R3)
 JMP(R3)

Your plan is to single-step through the program using each Beta chip, carefully noting the address
the final JMP loads into the PC. Your goal is to determine which of the above four classes a chip
falls into by this JMP address.

For each class of Beta processor described above, specify the value that will be loaded into the
PC by the final JMP instruction.

C1: JMP goes to address: __________

C2: JMP goes to address: __________

C3: JMP goes to address: __________

C4: JMP goes to address: __________

Pipeline diagram showing first 7 cycles of test program
executing on C1:

cycle 0 1 2 3 4 5 6
IF ADDC BEQ MULC SUBC ADD JMP
RF ADDC BEQ NOP SUBC ADD JMP
ALU ADDC BEQ NOP SUBC ADD
MEM ADDC BEQ NOP SUBC
WB ADDC BEQ NOP

6.004 Worksheet - 6 of 8 - Pipelining the Beta

Problem 5.

Recall the code for gcd that we saw in lecture, and the assembly code for the while loop:

 C code Corresponding Beta assembly for while loop

Assume a 5-stage pipelined Beta as presented in lecture, with full bypass paths, and which
predicts branches by assuming they are not taken to resolve control (i.e., the instruction
following the branch is fetched in the IF stage on the cycle after the branch is in the IF stage).

First, find the number of cycles per iteration in steady state (do not worry about the first or last
iterations). Note that the BF(R2, else) branch is not taken if x > y and taken if x < y, so you
should consider these two cases separately.

(A) Fill in the following table:

 Iterations where x > y Iterations where x < y

Instructions per iteration _________ _________

+ Cycles lost to data hazards _________ _________

+ Cycles lost to annulments _________ _________

= Total cycles per iteration _________ _________

 0 1 2 3 4 5 6 7 8 9 10 11 12 13
IF

RF

ALU

MEM

WB

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

IF

RF

ALU

MEM

WB

int gcd(int x, int y) {
 while (x != y) {
 if (x > y) {
 x = x – y;
 } else {
 y = y – x;
 }
 }
 return x;
}

// x in R0, y in R1
 CMPEQ(R0, R1, R2) // R2 ß (x == y)
 BT(R2, end)
loop: CMPLT(R1, R0, R2) // R2 ß (x > y)
 BF(R2, else)
 SUB(R0, R1, R0) // x ß x - y
 BR(cond)
else: SUB(R1, R0, R1) // y ß y - x
cond: CMPEQ(R1, R0, R2) // R2 ß (x == y)
 BF(R2, loop)
end: …

6.004 Worksheet - 7 of 8 - Pipelining the Beta

To make this code faster, we modify the Beta ISA and pipeline to implement a technique called
predication to reduce the number of branches.

First, all the compare instructions (CMPEQ, CMPLT, CMPLE, and their C variants) write their
result into a special 1-bit register, called the predicate register, in addition to their normal
destination register.

Second, we change the format of ALU instructions with two register source operands to use their
lower two bits, which were previously unused:

• If PredBits == 10, the instruction only executes if the predicate register is false (0)
• If PredBits == 11, the instruction only executes if the predicate register is true (1)
• If PredBits == 0X, the instruction always executes and writes its result, as before

We say that instructions that depend on the predicate register are predicated. We denote
predicated instructions in assembly as follows:

• If PredBits == 10, OP(Ra, Rb, Rc) [predFalse]
• If PredBits == 11, OP(Ra, Rb, Rc) [predTrue]
• If PredBits == 0X, OP(Ra, Rb, Rc), as before

For example, consider the following instruction sequence:

CMPLT(R1, R2, R3)
MUL(R3, R4, R5)
ADD(R4, R5, R6) [predTrue]
SUB(R5, R6, R7)

If the CMPLT instruction evaluates to true (i.e., writes 1 to R3), this sequence is equivalent to:

CMPLT(R1, R2, R3)
MUL(R3, R4, R5)
ADD(R4, R5, R6)
SUB(R5, R6, R7)

If the CMPLT instruction evaluates to false (i.e., writes 0 to R3), this sequence is equivalent to:

CMPLT(R1, R2, R3)
MUL(R3, R4, R5)
SUB(R5, R6, R7)

6.004 Worksheet - 8 of 8 - Pipelining the Beta

Original code Code with predication

(B) Modify the code to use predication, minimizing the number of instructions per loop iteration.

We implement predication in the pipelined Beta with minor changes to the ALU stage:

Comparison instructions write the 1-bit predicate register (the PredWr control signal ensures that
only comparison instructions update the register). The PredSel mux annuls ALU instructions if
they are predicated and should not execute according to the value of the predicate register.

(C) Write the Boolean expression for the PredSel control signal. You can use AND, OR, NOT,

Predicate, and comparisons with PredBits (e.g., PredBits == 0b10).

PredSel = (IRALU[31:30] == 0b10) AND _____________________________________

(D) How fast is this modified code? Fill in the following table:

 Iterations where x > y Iterations where x < y

Instructions per iteration _________ _________

+ Cycles lost to data hazards _________ _________

+ Cycles lost to annulments _________ _________

= Total cycles per iteration _________ _________

// x in R0, y in R1
 CMPEQ(R0, R1, R2)
 BT(R2, end)
loop: CMPLT(R1, R0, R2)
 BF(R2, else)
 SUB(R0, R1, R0)
 BR(cond)
else: SUB(R1, R0, R1)
cond: CMPEQ(R1, R0, R2)
 BF(R2, loop)
end: …

// x in R0, y in R1
 CMPEQ(R0, R1, R2)
 BT(R2, end)
loop: CMPLT(R1, R0, R2)

end: …

6.004 Worksheet - 1 of 8 - Virtual Memory

(v + p) bits in virtual address
(m + p) bits in physical address
2v number of virtual pages
2m number of physical pages
2p

bytes per physical page

2v+p bytes in virtual memory
2m+p bytes in physical memory
(m+2)2v bits in the page map

Virtual Memory Worksheet

6.004 Worksheet - 2 of 8 - Virtual Memory

Problem 1.

The micro-Beta has a 12-bit virtual address, an 11-bit physical
address and uses a page size of 256 (= 28) bytes. The micro-Beta
has been running for a while and at the current time the page map
has the contents shown on the right.

(A) Assuming each page map entry contains the usual dirty (D)

and resident (R) bits, what it is the total size of the page map in
bits?

 Size of page map (bits): __________

(B) (The following instruction, located at virtual address 0x0BA, is
about to be executed.

LD(R31, 0x2C8, R0)

When the instruction is executed, what main memory locations
are accessed by the instruction fetch and then the memory
access initiated by the LD? Use the page map shown to the
right. Assume the LRU page is virtual page 0xE.

 Physical address for instruction fetch: 0x__________

Physical addr for data read by LD instruction: 0x ________

(C) A few instructions later, the following instruction, located at virtual address 0x0CC, is
executed:

ST(BP, -4, SP) // current value of SP = 0x604

Please mark up the page map to show its contents after the ST has been executed. Use the
page map shown to the right. Assume the LRU page is virtual page 0xE.

Remember to show any changes to the dirty and resident control bits as well as updates to
the physical page numbers. If an entry in the page map no longer matters, please indicate
that by replacing it with “— 0 — “ for the D, R and PPN entries.

 Show updated contents of page map

VPN	 D	 R	 PPN	
0	 0	 1	 2	
1	 —	 0	 —	
2	 0	 1	 4	
3	 —	 0	 —	
4	 1	 1	 0	
5	 1	 1	 1	
6	 —	 0	 —	
7	 —	 0	 —	
8	 —	 0	 —	
9	 —	 0	 —	
A	 —	 0	 —	
B	 —	 0	 —	
C	 1	 1	 7	
D	 1	 1	 6	

LRU→E	 1	 1	 5	
F	 0	 1	 3	

6.004 Worksheet - 3 of 8 - Virtual Memory

Problem 2.

Consider a Beta processor that includes a 40-bit virtual address, an MMU that supports 4096 (212)
bytes per page, 232 bytes of physical memory, and a large Flash memory that serves as a disk.
The MMU and the page fault handler implement an LRU replacement strategy.

(A) What is the size of the page map for this processor? Assuming the page map includes the

standard dirty and resident bits, specify the width of each page map entry in bits, and
number of entries in the page map.

 Size of page map entry in bits:__________

 Number of entries in the page map:__________

(B) The following test program is running on this Beta processor. The first 8 locations of the
page table, just before executing this test program, are shown below; the least-recently-used
page (“LRU”) and next least-recently-used page (“next LRU”) are as indicated. This Beta
processor also has a 4 element, fully associative, Translation Lookaside Buffer (TLB) that
caches page map translations from VPN to PPN.

For each virtual page that is accessed by this program, specify the VPN, whether or not it
results in a TLB hit on the first access to that page, whether or not it results in a page fault,
and the PPN that the page ultimately maps to. You may not need to use all rows of the table.

VPN TLB Hit (Yes/No) Page Fault (Yes/No) PPN

VPN D R PPN
0 1 1 0x7
1 0 1 0x5
2 0 1 0x3

LRU→ 3 1 1 0x1
4 -- 0 --
5 0 1 0x0
6 0 1 0x2

Next LRU→ 7 0 1 0x6

 Tag (VPN) D R PPN
LRU→ 0x3 1 1 0x1

 0x2 0 1 0x3
 0x6 0 1 0x2

Next LRU→ 0x1 0 1 0x5

TLB

Page Map
. = 0x0
ADDC(R31,0x2800,R3)
LD(R3,0,R5)
ST(R5,0x4100,R31)

6.004 Worksheet - 4 of 8 - Virtual Memory

 (C) Which physical pages, if any, need to be written to disk during the execution of the test

program in part B?

 Physical page numbers written to disk or NONE: _________

(D) What is the physical address of the LD instruction?

 Physical address of LD instruction: 0x_________

Problem 3.

Consider a Beta processor that includes a 32-bit virtual address, an MMU that supports 4096 (212)
bytes per page, 224 bytes of physical memory, and a large Flash memory that serves as a disk.
The MMU and the page fault handler implement an LRU replacement strategy.

(A) The designers are thinking about implementing the page map using a separate SRAM

memory with L entries, where each entry has B bits. If the page map includes the standard
dirty and resident bits, what are the appropriate values for the parameters L and B?

 Appropriate value for the parameter L: __________

 Appropriate value for the parameter B: __________

(B) If the designers decide to decrease the page size to 2048 (211) bytes but keep the same size

virtual and physical addresses, what affect will the change have on the following
architectural parameters? Use a letter “a” through “e” to indicate how the new value of the
parameter compares to the old value of the parameter:

(a) doubled (b) increased by 1 (c) stays the same (d) decreased by 1 (e) halved

 Size of page map entry in bits: _____

 Number of entries in the page map: _____

 Maximum percentage of virtual memory that can be resident at any given time: _____

6.004 Worksheet - 5 of 8 - Virtual Memory

(D) (4 points) A test program has been running on the Beta with a

page size of 212 bytes and has been halted just before
execution of the following instruction at location 0x1234:

 ST(R1,0x34C8,R31) | PC = 0x1234

The first 8 locations of the page table at the time execution
was halted are shown below; the least-recently-used page
(“LRU”) and next least-recently-used page (“next LRU”) are
as indicated. Assume that all the pages in physical memory
are in use. Execution resumes and the ST instruction is
executed.

Please show the contents of the page table after the ST instruction has completed
execution by crossing out any values that changed and writing in their new values. Note that
the D and PPN fields for a non-resident page do not need to be specified.

(E) (1 point) Which physical pages, if any, need to be written to disk during the execution of the
ST instruction in part (D)?

 Physical page numbers written to disk or NONE: _________

Problem 4.

Consider a virtual memory system that uses a single-level page map to translate virtual addresses
into physical addresses. Each of the questions below asks you to consider what happens when
just ONE of the design parameters (page size, virtual memory size, physical memory size) of
the original system is changed. Circle the correct answer.

(A) If the physical memory size (in bytes) is

doubled, the number of entries in the
page table
(a) stays the same
(b) doubles
(c) is reduced by half
(d) increases by one
(e) decreases by one

(B) If the page size (in bytes) is halved, the

number of entries in the page table
(a) stays the same
(b) doubles
(c) is reduced by half
(d) increases by one
(e) decreases by one

(C) If the virtual memory size (in bytes) is
doubled, the number of bits in each entry
of the page table
(a) stays the same
(b) doubles
(c) is reduced by half
(d) increases by one
(e) decreases by one

(D) If the page size (in bytes) is doubled, the
number of bits in each entry of the page
table
(a) stays the same
(b) doubles
(c) is reduced by half
(d) increases by one
(e) decreases by one

VPN D R PPN
0 1 1 0x1
1 0 1 0x0
2 1 1 0x6
3 -- 0 --

Next LRU→ 4 0 1 0x4
5 0 1 0x2

LRU→ 6 1 1 0x7
7 0 1 0x3

6.004 Worksheet - 6 of 8 - Virtual Memory

Consider a virtual memory system for the Gamma processor with 4096 (212) virtual pages and
16384 (214) physical pages where each page contains 1024 (210) bytes. The first 8 entries of the
current page map are shown below:

index D R PPN
0 1 1 0x22
1 0 1 0x01
2 -- 0 --
3 0 1 0x02
4 1 1 0x03
5 -- 0 --
6 1 1 0x15
7 0 1

…

(E) What is the total number of bits in the page map?

 Total number of bits in the page map: __________

(F) Which address bits from the CPU are used to choose an entry from the page table?

 Address bits used to choose page table entry: A[_____ : _____]

(G) What is the physical address for the word at virtual location 0x1234? Write “not resident” if
the location is not currently present in physical memory.

 Physical address for byte at virtual address 0x1234 or “not resident”: __________

(H) Briefly explain what action caused the D bit for page 6 to be 1.

 Briefly explain.

6.004 Worksheet - 7 of 8 - Virtual Memory

Problem 5.

(A) A particular Beta implementation has 32-bit virtual addresses, 32-bit physical addresses and

a page size of 212 bytes. A test program has been running on this Beta and has been halted
just before execution of the following instruction at location 0x1FFC:

 LD(R31,0x34C8,R1) | PC = 0x1FFC
 ST(R1,0x6004,R31) | PC = 0x2000

The first 8 locations of the page table at the time execution was halted are shown below; the
least recently used page (“LRU”) and next least recently used page (“next LRU”) are as
indicated. Assume that all the pages in physical memory are in use. Execution resumes and
the LD and ST instructions are executed.

Please show the contents of the page table after the ST instruction has completed
execution by crossing out any values that changed and writing in their new values.

VPN D R PPN
0 1 1 0x1
1 0 1 0x0

LRU→ 2 1 1 0x6
3 -- 0 --

Next LRU→ 4 0 1 0x4
5 0 1 0x2
6 0 1 0x7
7 0 1 0x3

(B) Which physical pages, if any, needed to be written to disk during the execution of the LD

and ST instructions?

 Physical page numbers written to disk or NONE: _____________

(C) Please give the 32-bit physical memory addresses used for the four memory accesses

associated with the execution of the LD and ST instruction.

 32-bit physical memory address of LD instruction: 0x___________________

 32-bit physical memory address of data read by LD: 0x___________________

 32-bit physical memory address of ST instruction: 0x___________________

 32-bit physical memory address of data written by ST: 0x___________________

6.004 Worksheet - 8 of 8 - Virtual Memory

Problem 6.

Consider a system with 40-bit virtual addresses, 36-bit physical addresses, and 64 KB (216 bytes)
pages. The system uses a page map to translate virtual addresses to physical addresses; each page
map entry include dirty (D) and resident (R) bits.

(A) (2 points) Assuming a flat page map, what is the size of each page map entry, and how many

entries does the page map have?

Size of page map entry in bits: ____________

Number of entries in the page map: ____________

(B) (1 point) If changed the system to use 16 KB (214 bytes) pages instead of 64 KB pages, how

would the number of entries in the page map change? Please give the ratio of the new size to
the old size.

(# entries with 16 KB pages) / (# entries with 64 KB pages): ____________

Assume 64 KB pages for the rest of this exercise.

(C) (6 points) The contents of the page map and TLB are shown to

the right. The page map uses an LRU replacement policy, and
the LRU page (shown below) will be chosen for replacement.
For each of these four accesses, compute its corresponding
physical address and indicate whether the access causes a TLB
miss and/or a page fault. Assume each access starts with the
TLB and Page Map state shown to the right.

 Fill in table below

 Virt Addr PPN
(in hex)

Phys Addr
(in hex)

TLB
Miss?

Page
Fault?

1. 0x06004 ______ ___________ Y / N Y / N

2. 0x30286 ______ ___________ Y / N Y / N

3. 0x68030 ______ ___________ Y / N Y / N

4. 0x4BEEF ______ ___________ Y / N Y / N

TLB
VPN
(tag)

V

D

PPN

0x0 1 0 0xBE7A
0x3 0 0 0x7
0x5 1 1 0xFF
0x2 1 0 0x900

 Page Map
VPN R D PPN

0 1 0 0xBE7A
1 0 0 ---
2 1 0 0x900
3 1 0 0x8
4 0 0 ---
5 1 1 0xFF
6 1 0 0x70

 ...

LRU
PAGE

6.004 Worksheet - 1 of 7 - Virtualizing the Processor

Virtualizing the Processor Worksheet

6.004 Worksheet - 2 of 7 - Virtualizing the Processor

Problem 1.

In lecture we arrived at the following implementation for the ReadKey supervisor call, which
waits until there is a character available in the keyboard buffer, then returns it to the user in R0.
Three lines in the handler have been labeled [A], [B], and [C].

Below we’ll consider the effect of removing each labeled line in turn. Please choose one of the
following as the best characterization of the effect of removing the line:

1. Execution appears to halt as there is now a loop in Kernel mode.
2. Both the requesting process and other processes run as before.
3. The requesting process runs as before; other processes receive a smaller percentage of the

CPU time.
4. The requesting process runs as before; other processes receive a larger percentage of the

CPU time.
5. The requesting process receives an incorrect character.

(A) Line [A] is removed from the handler.

 Effect on execution? (circle one) 1 … 2 … 3 … 4 … 5

(B) Line [B] is removed from the handler.

 Effect on execution? (circle one) 1 … 2 … 3 … 4 … 5

(C) Line [C] is removed from the handler.

 Effect on execution? (circle one) 1 … 2 … 3 … 4 … 5

(D) A summer intern decides that if a process is waiting for a character it should be scheduled

for execution half as often, so he adds a second call to Scheduler(), i.e., he duplicates line
[B]. Briefly describe the actual effect of this change. To be concrete assume there are N
processes and that it’s process 0 that executes the ReadKey SVC.

 Brief description

 ReadKey_h() {
 int kbdnum = ProcTbl[Cur].DPYNum;
 if (BufferEmpty(kbdnum)) {
[A] User.Regs[XP] = User.Regs[XP]-4;
[B] Scheduler();
 } else {
[C] User.Regs[0] = ReadInputBuffer(kbdnum);
 }
 }

6.004 Worksheet - 3 of 7 - Virtualizing the Processor

Problem 2.

A Beta running the OS from lab 8 is running two processes:

// Process 0: // Process 1:
P0: GetKey() P1: ADDC(R0, 1, R0)
 WrCh()
 BR(P0) BR(P1)

You type a few characters and see them echoed.

(A) What can you say about the value in the XP register on return from the GetKey() SVC?

It may have different values on consecutive returns: TRUE FALSE

It always has a high-order 0 bit: TRUE FALSE

It is always a multiple of 4: TRUE FALSE

It always has the value P0+4: TRUE FALSE

You notice that Process 1 increments R0, whose value increases at some fairly constant rate R
increments/second. You experiment with several changes below, not typing but monitoring the
rate at which the count in Process 1’s R0 increases. For each of the experiments below, you are
asked to estimate its effect on the R0 counting rate, relative to R; choose among

 +LOTS: the rate increases considerably, e.g., twice R.
 SAME: the rate is about the same as R
 -LOTS: the rate is much lower, e.g., R/2 or lower.

(B) As an experiment, you eliminate Process 0 (so that only Process 1 is running). How does the

rate of increase of Process 1’s R0 change? Assume the scheduler time slice for each process
is long compared to one iteration of either loop.

Circle one: +LOTS SAME -LOTS

You restore both processes and eliminate the Scheduler() call invoked by the GetKey() SVC
when no character is ready to be returned.

(C) How does this effect the rate at which R0 increases, relative to the original counting rate R?

Circle one: +LOTS SAME -LOTS

(D) Again running both Process 0 and Process 1, you now replace the single Scheduler() call
invoked by GetKey() by two consecutive Scheduler() calls. How does the rate at which
Process 1 counts change, relative to the original rate R?

 Circle one: +LOTS SAME -LOTS

6.004 Worksheet - 4 of 7 - Virtualizing the Processor

Problem 3.

Real Virtuality, Inc. markets three different computers, each with its own operating system. The
systems are:

Model A: A timeshared Beta system whose OS kernel is uninterruptable.
Model B: A timeshared Beta system which enables device interrupts during handling of

SVC traps.
Model C: A single-process (not timeshared) system which runs dedicated application

code.

Each system runs an operating system that supports concurrent I/O on several devices, including
an operator's console with a keyboard. Les N. Dowd, RVI's newly-hired OS expert, is in a jam: he
has dropped the shoebox containing the master copies of OS source for all three systems.
Unfortunately, three disks containing handlers for the ReadKey SVC trap, which reads and
returns the ASCII code for the next key struck on the keyboard, have gotten confused. Of course,
they are unlabeled, and Les isn't sure which handler goes into the OS for which machine. The
handler sources are

ReadCh_h() { /* VERSION R1 */
 if (BufferEmpty(0)) /* Has a key been typed? */
 User->Regs[XP] = User->Regs[XP]-4; /* Nope, wait. */
 else
 User->Regs[0] = ReadInputBuffer(0); /* Yup, return it. */
}

ReadCh_h() { /* VERSION R2 */
 int kbdnum=ProcTbl[Cur].KbdNum;
 while (BufferEmpty(kbdnum)) ; /* Wait for a key to be hit*/
 User->Regs[0] = ReadInputBuffer(kbdnum); /*...then return it. */
}

ReadCh_h() { /* VERSION R3 */
 int kbdnum=ProcTbl[Cur].KbdNum;
 if (BufferEmpty(kbdnum)) { /* Has a key been typed? */
 User->Regs[XP] = User->Regs[XP]-4; /* Nope, wait. */
 Scheduler();
 } else
 User->Regs[0] = ReadInputBuffer(kbdnum); /* Yup, return it. */
}

(A) Show that you're cleverer than Les by figuring out which handler goes with each OS, i.e., for

each operating system (A, B and C) indicate the proper handler (R1, R2 or R3).

Model A goes with handler (circle one): R1 … R2 … R3

Model B goes with handler (circle one): R1 … R2 … R3

Model C goes with handler (circle one): R1 … R2 … R3

6.004 Worksheet - 5 of 7 - Virtualizing the Processor

But Les isn't that smart. In order to figure out which handler code goes with each OS version, Les
makes copies of each disk and distributes them as "updates" to beta-test teams for each OS. Les
figures that if each handler version is tried by some beta tester in each OS, the comments of the
testers will allow him to determine the proper OS for each handler.

Les sends out the alleged source code updates, routing each handler source to testers for each OS.
In response, he gets a barrage of complaints from many of the testers. Of course, he's forgotten
which disk he sent to each tester. He asks your help to figure out which combination of system
and hander causes each of the complaints.
For each complaint below, explain which handler and which OS the complainer is trying to use.

(B) Complaint: "I get compile-time errors; Scheduler and ProcTbl are undefined!"

User has handler _____ on system _____

(C) Complaint: "Hey, now the system always reads everybody's input from keyboard 0. Besides

that, it seems to waste a lot more CPU cycles than it used to."

User has handler _____ on system _____

(D) (Complaint: "Neat, the new system seems to work fine. It even seems to waste less CPU time

than it used to!"

User has handler _____ on system _____

Problem 4.

The Yield() SVC can be used in user-mode programs on a time-sharing system to give up the
remainder of their current time slice. The kernel implementation of the Yield simply calls the
kernel Scheduler() routine to choose another process to execute. When the yielding process is
next scheduled, user-mode execution resumes with the instruction following the Yield() SVC.

Complete the code for the handler for a new SVC, YieldN(), which expects a numeric value, N,
in the user’s R0 and behaves as if the user program had contained N consecutive Yield() SVCs.
When execution resumes following the completion YieldN(), R0 should contain 0.

YieldN_h() {
 if (User.Regs[0] > 0) {

 } else {

 }
}

6.004 Worksheet - 6 of 7 - Virtualizing the Processor

Problem 5.

BetaSoft, Inc, the leading provider of Beta OS software, sells an operating system for the Beta
similar to that described in lecture. It uses a simple round-robin scheduler, and has no virtual
memory -- all processes share a single address space with the kernel, much like the OS of lab 8.
The OS timeshares the Beta CPU among N processes using a simple, familiar scheduler shown
below.

struct MState { int Regs[31]; } User;

struct PCB { // Process Descriptor Block
 struct MState State; // Saved process state
 ...; // Possible other stuff
} ProcTbl[N]; // One PCB per process

int Cur = 0;

Scheduler() {
 ProcTbl[Cur].State = User;
 Cur = (Cur+1) % N;
 User = ProcTbl[Cur].State;
}

Several of Betasoft’s customers use the Beta for long, compute-bound applications, and have
asked for a tool to help them find where their programs are spending most of their time. To
accommodate these requests, BetaSoft has implemented a supervisor call, SamplePC, which
allows a diagnostic program running in one process to sample the values in the PC of another.
Betasoft proposes to write such a program, called a profiler, that takes many samples of PC
values from a running program and produces a revealing histogram.

The SamplePC SVC takes a process number p in R0, and returns in R1 the value currently in the
program counter of process p. The C portion of the SVC handler is given below:

SamplePC_h() {
 int p = User.Regs[0];
 int pc = ProcTbl[p].State.Regs[XP];
 ??? = pc; // incomplete code!
}

(A) Give the missing code fragment shown above as ???.

(write missing fragment of C code)

BetaSoft writes a simple profiler using the above SVC and uses it to measure a compute-bound
process consisting of a single 10000-instruction loop. Noticing a surprisingly large number of
repeated values in the sampled PC data, they cleverly deduce that their profiler is making many
SamplePC calls during each time quanta for which the profiling process is scheduled,

6.004 Worksheet - 7 of 7 - Virtualizing the Processor

returning redundant samples from the process being measured.

(B) Suggest a simple change to the SamplePC_h code that eliminates the observed problem. Be
specific.

(Describe simple modification to SamplePC_h code)

BetaSoft ignores your solution (keeping the original SamplePC_h code), arguing that they’ll
just collect enough samples that the redundant values won’t affect the histogram significantly.
They produce a working profiler program that takes many samples of another process’s PC and
produces a histogram showing code “hot spots”. Although the profiler proves useful on compute-
intensive application code, BetaSoft tries running it on a simple echo loop running in a process:

| echo loop, as a test for profiler tool:
.=0x100 | Test program starts at hex 100
loop: GetKey() | SVC: read char into R0
 WrCh() | SVC: type char from R0
 BR(loop) | ... and keep doing it!

(C) When run on the above process, what does the profiler report as the most common value of

the PC? Answer “None” if you can’t tell.

Often-reported PC value, or “None”: 0x_________________

The final BetaSoft profiler program itself is mostly a big loop, consisting of a single SamplePC
SVC instruction located at 0x1000, plus lots of compute-intensive additional code to
appropriately format the collected data and write it into a file. Out of curiosity, BetaSoft
engineers run the profiler in process 0, and ask it to generate a histogram of sampled PC values
for process 0 itself.

(D) Which of the following best summaries their findings?

(1) All of the sampled PC values point to kernel OS code.
(2) The sampled PC is always 0x1004.
(3) The SamplePC call never returns.
(4) None of the above.

 Give number of best answer: _______

6.004 Worksheet - 1 of 7 - Interrupts and Real Time

Latency (L) = elapsed time before handler code starts to execute
Service time (S) = time required to execute handler code
Deadline (D) = maximum time after request by when handler execution must be complete
Maximum allowable latency (Lmax) = largest L such that Lmax + S = D.

Handler priority: when choosing which handler to run, choose the handler with the highest
priority. Priorities are chosen to ensure that the deadlines for all handlers will be met.

Recurring requests: often requests will occur at some fixed interval ≥ deadline.

Earliest deadline is a strategy for assigning priorities that is guaranteed to meet the deadlines if
any priority assignment can meet the deadlines:

1. Sort the requests by their deadlines
2. Assign the highest priority to the earliest deadline, second priority to the next deadline, and

so on.

Weak (non-preemptive) priorities: after current handler completes, look through the pending
requests and execute the handler with the highest priority. Latencies with weak priorities: service
of each device might be delayed by (1) service of one other (arbitrary) device whose request was
just honored, and (2) service of all higher-priority tasks.

Strong (preemptive) priorities: always run the pending handler with the highest priority,
possibly interrupting the execution of a lower-priority handler to do so. Latencies with weak
priorities: service of each device might be delayed by service of all (possibly recurring) higher-
priority tasks.

Interrupts and Real Time Worksheet

6.004 Worksheet - 2 of 7 - Complex Pipelines

Problem 1.

Ben Bitdiddle has designed a wrist device called the BenBit to measure how long you’ve been
tooling away without getting up and moving around. The BenBit runs a real-time operating
system supporting three tasks whose handlers are executed in response to periodic requests.
Each task has a period (time between requests), a service time (time it takes to run its handler),
and a deadline (maximum time allowed to elapse between request and completion of the handler).

Task Period (ms) Service time (ms) Deadline (ms)
Check Accelerometer (CA) 80 20 40
Update Display (UD) 200 ? 200
Determine heart rate (DHR) 60 10 50

Ben is trying to figure out whether to use a weak or strong priority system to manage task
execution. For each of the questions below, please fill the answers for both types of priority
system. For both the weak and strong priority system assume the task priority is CA > DHR >
UD, i.e., CA has the highest priority and UD the lowest. If a calculation requires the service time
for UD, use your answer for part (A).

 Using Weak
Priorities

Using Strong
Priorities

(A) What is the maximum service time
for UD handler that still allows all
deadlines to be met (in ms)?

(B). What fraction of the time will the
processor spend idle? (%)

(C) What is the worst-case completion
time for the CA task (in ms)?

(D) What is the worst-case completion
time for the UD task (in ms)?

(E) What is the worst-case completion
time for the DHR task (in ms)?

6.004 Worksheet - 3 of 7 - Complex Pipelines

Problem 2.

A particular real-time system has three interrupt handlers. The following table shows the
maximum rate at which each interrupt occurs (rate), the time taken to execute each handler
(service time), and the maximum allowable interval between the interrupt and completion of the
handler (deadline). In your analysis, assume that A, B, and C interrupts can arrive at any time.

Task Rate Service time Deadline
A 1/20ms 10ms 20ms
B 1/80ms 10ms 80ms
C 1/25ms 5ms 25ms

(A) What is the percentage idle time for this system?

Percentage Idle Time (%): __________

(B) Assuming a weak priority system. Can the priority ordering C > A > B satisfy all the
constraints of the system?

C > A > B (Yes/No): __________

(C) Assuming a strong priority system with priority C > A > B, what is the worst-case delay

between the task’s interrupt and completion of the task’s interrupt handler?

 Worst-case delay for task A (ms): __________

 Worst-case delay for task B (ms): __________

 Worst-case delay for task C (ms): __________

6.004 Worksheet - 4 of 7 - Complex Pipelines

Problem 3.

A particular real-time system has three interrupt handlers. The following table shows the
maximum rate at which each interrupt occurs (rate), the time taken to execute each handler
(service time), and the maximum allowable interval between the interrupt and completion of the
handler (deadline). In your analysis, assume that A, B, and C interrupts can arrive at any time.

Task Rate Service time Deadline
A 1/40ms 5ms 30ms
B 1/100ms ?ms 100ms
C 1/50ms 10ms 25ms

Please answer the following two questions assuming the system has a weak priority system.

(A) (1 point) What is the maximum service time for task B that still allows all constraints to be

met?

 Maximum service time for task B (ms): __________

(B) (1 point) Assuming a suitable service time for B, give a weak priority order for the tasks that
meets the constraints. List the task with the highest priority first, the task with the lowest
priority last.

 Weak priority order for the tasks: _______________

Please answer the following two questions assuming the system has a strong priority system
where task C has the highest priority and task B has the lowest priority.

(C) (2 points) What is the maximum service time for task B that still allows all constraints to be

met?

 Maximum service time for task B (ms): __________

(D) (3 points) Assume B’s sevice time is 10ms. For each task, what is the worst-case delay
between the task’s interrupt and completion of the task’s interrupt handler?

 Worst-case delay for task A (ms): __________

 Worst-case delay for task B (ms): __________

 Worst-case delay for task C (ms): __________

6.004 Worksheet - 5 of 7 - Complex Pipelines

Problem 4.

A computer system has three devices whose characteristics are summarized in the following
table:

Device Service time Interrupt Frequency Deadline
D1 400us 1/(800us) 800us
D2 250us 1/(1000us) 300us
D3 100us 1/(800us) 400us

Service time indicates how long it takes to run the interrupt handler for each device. The
maximum time allowed to elapse between an interrupt request and the end of the execution of the
interrupt handler is indicated by the deadline.

A. If a user-mode program P takes 100 seconds to execute when interrupts are disabled,
approximately how long will P take to run when interrupts are enabled?

 Approximate time for P to run with interrupts enabled (seconds): __________

B. Can the requirements given in the table above be met using a weak priority ordering among
the interrupt requests? If so give priority ordering for D1, D2, D3 or list device(s) whose
deadlines cannot be met.

 Weak priority ordering or list device(s) with missed deadlines: ____________________

(C) Can the requirements given in the table above be met using a strong priority ordering among
the interrupt requests? If so give priority ordering for D1, D2, D3 or list device(s) whose
deadlines cannot be met.

Strong priority ordering or list device(s) with missed deadlines: ____________________

6.004 Worksheet - 6 of 7 - Complex Pipelines

Problem 5.

A real-time operating system with priority interrupts has three interrupt handlers – A, B, C – each
running at a different priority level. The handlers are invoked by the A, B, and C interrupts,
marked as ↑ in the execution timelines. For example, the following execution timeline shows the
A handler running to completion after an A interrupt request, followed by execution of the B
handler, which is interrupted by execution of the C handler.

For each of the following execution timelines, please indicate whether the system is using a
WEAK or STRONG priority scheme, or CAN’T TELL if the timeline is consistent with either
WEAK or STRONG. Also, if WEAK or STRONG, indicate any relative priorities that can be
deduced from the timeline (there may be more than one), expressed as inequalities. For example,
A > B indicates A has a higher priority than B.

(A)

Circle one: STRONG … WEAK … CAN’T TELL, Priorities: _______________________

(B)

Circle one: STRONG … WEAK … CAN’T TELL, Priorities: _______________________

(C)

Circle one: STRONG … WEAK … CAN’T TELL, Priorities: _______________________

(D)

Circle one: STRONG … WEAK … CAN’T TELL, Priorities: _______________________

6.004 Worksheet - 7 of 7 - Complex Pipelines

Problem 6.

A real-time operating system with priority interrupt has three interrupt handlers (A, B, C), each of
which, when invoked by the appropriate interrupt request (marked as ↑ in the execution
timelines), takes 11 time units to execute. For example, the following execution timeline shows
the A handler running to completion after an A interrupt request, followed by execution of the B
handler, which is itself interrupted by execution of the C handler.

(A) The execution timeline below shows the arrival times of interrupt requests for A, B, and C.

Diagram the execution of the A, B, and C handlers assuming a weak priority system with
the priorities C > B > A. Remember to show the complete execution (all 11 time units) for
each handler, labeling each block with the handler that is running.

 Fill in execution timeline

(B) The execution timeline below shows the arrival times of interrupt requests for A, B, and C.
Diagram the execution of the A, B, and C handlers assuming a strong priority system with
the priorities C > B > A. Remember to show the complete execution (all 11 time units) for
each handler, labeling each block with the handler that is running.

 Fill in execution timeline

6.004 Worksheet - 1 of 8 - Synchronization

Synchronization Worksheet

6.004 Worksheet - 2 of 8 - Synchronization

Problem 1.

Schro Dinger has a company that produces pairs of entangled particles, which are then packaged
and sent to manufacturers of quantum computers. Since it’s a complicated process, there are
multiple machines that produce particle pairs; each machine runs the Producer code shown below.

The completed particle pairs are placed in the particle buffer, where they take up 2 of the buffer
locations. There’s a single packaging machine that takes a particle pair from the particle buffer
and prepares it for shipment; the packing machine runs the Consumer code shown below.

To prevent any violations of the boundary conditions the following rules must be followed:

1. A production machine can only place a particle pair in the buffer if there are two spaces
available.

2. The particle pair must be stored in consecutive buffer locations, i.e., a particle from some
other production machine can’t appear between the particles that make up the pair.

3. The capacity of the buffer (100 particles, or 50 particle pairs) can’t be exceeded.
4. The packaging machine breaks if it accesses the buffer and finds it empty – it should only

proceed when there are at least two particles in the buffer.

Schro has heard of semaphores but is unsure how to use them to ensure the rules are followed.

• Please insert the appropriate semaphores, WAITs, and SIGNALs into the Producer and
Consumer code to ensure correct operation and to prevent deadlock.

• Be sure to indicate initial values for any semaphores you use.
• Remember: there are multiple producers and a single consumer!
• For full credit, use a minimum number of semaphores and don’t introduce unnecessary

precedence constraints.

Shared Memory
particle buffer[100]; // holds 100 particles

Semaphores and initial values: _________________________

Producer
PLoop:

 Produce pair P1, P2

 Place P1 in buffer

 Place P2 in buffer

 Go to PLoop

Consumer
CLoop:

 Fetch P1 from buffer

 Fetch P2 from buffer

 Package and ship

 Go to CLoop

6.004 Worksheet - 3 of 8 - Synchronization

Problem 2.

The following three processes are run on a shared processor. They can coordinate their execution
via shared semaphores that respond to the standard signal(S) and wait(S) procedures. Their intent
is to print the word HELLO. Assume that execution may switch between any of the three
processes at any point in time.

(A) Assuming that no semaphores are being used, for each of the following sequences of
characters, specify whether or not this system could produce that output.

 LEHO (YES/NO): ______ HLOE (YES/NO): ______ LOL (YES/NO): _______

(B) You would like to ensure that only the sequence HELLO can be printed and that it will be

printed exactly once. Add any missing wait(S) and signal(S) calls to the code below (where
S is one of a, b or c) to ensure that the three processes can only print HELLO exactly once.
Remember to specify the initial value for each of your semaphores. Recall that semaphores
cannot be initialized to negative numbers.

Process 1 Process 2 Process 3

Loop1: print(“H”) Loop2: print(“L”) Loop3: print(“O”)
 print(“E”) goto Loop2 goto Loop3
 goto Loop1

Semaphores: a = ___; b = ___; c = ___;

Process 1 Process 2 Process 3

Loop1: Loop2: Loop3:

 wait(a) wait(b) wait(c)

 print(“H”) print(“L”) print(“O”)

 print(“E”)

 signal(b)

 goto Loop1 goto Loop2 goto Loop3

6.004 Worksheet - 4 of 8 - Synchronization

Problem 3.

The following pair of processes share the variable counter, which has been given an initial
value of 10 before execution of either process begins:

(A) If Processes A and B are run on a timesharing system, there are six possible orders in which

the LD and ST instructions might be executed. For each of the orderings, please give the
final value of the counter variable.

 A1 A2 B1 B2: counter = __________ B1 A1 B2 A2: counter = __________

 A1 B1 A2 B2: counter = __________ B1 A1 A2 B2: counter = __________

 A1 B1 B2 A2: counter = __________ B1 B2 A1 A2: counter = __________

In the following two questions you are asked to modify the original programs for processes A and
B by adding the minimum number of semaphores and signal and wait operations to guarantee that
the final result of executing the two processes will be a specific value for counter. Give the initial
values for every semaphore you introduce. For full credit, your solution should allow all
execution orders that result in the required value.

(B) Add semaphores (with initial values) so that the final value of counter is 12.

(C) Add semaphores (with initial values), so that the final value of counter is not 13.

Process A Process B
… …
A1: LD(counter,R0) B1: LD(counter,R0)
 ADDC(R0,1,R0) ADDC(R0,2,R0)
A2: ST(R0,counter) B2: ST(R0,counter)
… …

Semaphores: __________________________

Process A Process B
… …
A1: LD(counter,R0) B1: LD(counter,R0)

 ADDC(R0,1,R0) ADDC(R0,2,R0)

A2: ST(R0,counter) B2: ST(R0,counter)
… …

Semaphores: __________________________

Process A Process B
… …
A1: LD(counter,R0) B1: LD(counter,R0)

 ADDC(R0,1,R0) ADDC(R0,2,R0)

A2: ST(R0,counter) B2: ST(R0,counter)
… …

6.004 Worksheet - 5 of 8 - Synchronization

Problem 4.

P1 and P2 are processes that run concurrently. P1 has two sections of code where section A is
followed by section B. Similarly, P2 has two sections: C followed by D. Within each process
execution proceeds sequentially, so we are guaranteed that A ⪯ B, i.e., A precedes B. Similarly,
we know that C ⪯ D. There is no looping; each process runs exactly once. You will be asked to
add semaphores to the programs – you may need to use more than one semaphore. Please give
the initial values of any semaphores you use. For full credit use a minimum number of
semaphores and don’t introduce any unnecessary precedence constraints.

(A) Please add WAIT(…) and SIGNAL(…) statements as needed in the spaces below so that the

precedence constraint B ⪯ C is satisfied, i.e., execution of P1 finishes before execution of
P2 begins.
 Add WAIT and SIGNAL statements so that B ⪯ C

Semaphore initial values: _______________

Process P1 Process P2

…Section A code… … Section C code…

…Section B code… …Section D code…

(B) Please add WAIT(…) and SIGNAL(…) statements as needed in the spaces below so that D ⪯

A or B ⪯ C, i.e., executions of P1 and P2 cannot overlap, but are allowed to occur in either
order.
 Add WAIT and SIGNAL statements so that D ⪯ A or B ⪯ C

Semaphore initial values: _______________

Process P1 Process P2

…Section A code… … Section C code…

…Section B code… …Section D code…

6.004 Worksheet - 6 of 8 - Synchronization

(C) Please add WAIT(…) and SIGNAL(…) statements as needed in the spaces below so that A ⪯

D and C ⪯ B, i.e., the first section (A and C) of both processes completes execution before
the second section (B or D) of either process begins execution.

 Add WAIT and SIGNAL statements so that A ⪯ D and C ⪯ B

Semaphore initial values: _______________

Process P1 Process P2

…Section A code… … Section C code…

…Section B code… …Section D code…

6.004 Worksheet - 7 of 8 - Synchronization

Problem 5.

The MIT Safety Office is worried about congestion on stairs
and has decided to implement a semaphore-based traffic-
control system. Most connections between floors have two
flights of stairs with an intermediate landing (see figure).
The constraints the Safety Office wishes to enforce are

• Only 1 person at a time on each flight of stairs
• A maximum of 3 persons on a landing
• As a few traffic constraints as possible
• No deadlock (a particular concern if there’s bidirectional travel)

Assume stair traffic is unidirectional: once on a flight of stairs, people continue up or down until
they’ve reached their destination floor (no backing up!), although they may pause at the landing.

There are three semaphores: they control the upper flight of stairs (SU), the landing (L), and the
lower flight of stairs (SL). Please provide appropriate initial values for these semaphores and
add the necessary wait() and signal() calls to the Down() and Up() procedures below. Note that
the Down() and Up() routines will be executed by many students simultaneously and the
semaphores are the only way their code has of interacting with other instances of the Down() and
Up() routines. To get full credit your code must avoid deadlock and enforce the stair and landing
occupancy constraints. Hint: for half credit, implement a solution where only 1 person at time is
in-between floors (but be careful of deadlock here too!).

// Semaphores shared by all students, provide initial values

semaphore SU = ________, SL = __________, L = __________;

// code for going downstairs
Down() {

 Enter SU;

 Exit SU/enter landing;

 Exit landing/enter SL;

 Exit SL;

}

// code for going upstairs
Up() {

 Enter SL;

 Exit SL/enter landing;

 Exit landing/enter SU;

 Exit SU;

}

6.004 Worksheet - 8 of 8 - Synchronization

Problem 6.

(A) Semaphore S is used to implement mutual exclusion on accesses to a shared buffer. No other

semaphores are used. What should its initial value be?

 Initial value for S: __________

(B) Indicate whether each of the following sets of semaphore-synchronized processes can

deadlock. The last two cases are variants of the first one; differences are underlined.

 Circle answers below

Initial semaphore values: s1 = 1, s2 = 1, s3 = 1
P1: P2: P3:
wait(s1); wait(s2); wait(s1);
wait(s2); wait(s3); wait(s2);
print(“1”); print(“2”); wait(s3);
signal(s2); signal(s3); print(“3”);
signal(s1); signal(s2); signal(s3);
 signal(s2);
 signal(s1);

Initial semaphore values: s1 = 1, s2 = 1, s3 = 1
P1: P2: P3:
wait(s1); wait(s2); wait(s2);
wait(s2); wait(s3); wait(s3);
print(“1”); print(“2”); wait(s1);
signal(s2); signal(s3); print(“3”);
signal(s1); signal(s2); signal(s1);
 signal(s3);
 signal(s2);

Initial semaphore values: s1 = 2, s2 = 1, s3 = 1
P1: P2: P3:
wait(s1); wait(s2); wait(s2);
wait(s2); wait(s3); wait(s3);
print(“1”); print(“2”); wait(s1);
signal(s2); signal(s3); print(“3”);
signal(s1); signal(s2); signal(s1);
 signal(s3);
 signal(s2);

Can it deadlock?

YES NO Can’t tell

Can it deadlock?

YES NO Can’t tell

Can it deadlock?

YES NO Can’t tell

