

6.004 Worksheet - 1 of 4 - Compilation

compile_expr(expr)	⇒ Rx

• Constants: 1234 ⇒ Rx

– CMOVE(1234,Rx)

– LD(c1,Rx)
 …
 c1: LONG(123456)

• Variables: a ⇒ Rx

– LD(a,Rx)
 ...
 a: LONG(0)

• Variables: b[expr] ⇒ Rx

– compile_expr(expr)⇒Rx
 MULC(Rx,bsize,Rx)
 LD(Rx,b,Rx)
 …
 // reserve array space
 b: . = . + bsize*blen

• Operations: expr1 + expr2 ⇒ Rx
– compile_expr(expr1)⇒Rx
 compile_expr(expr2)⇒Ry
 ADD(Rx,Ry,Rx)

• Procedure call: f(e1, e2, …) ⇒ Rx
next lecture!

• Assignment: a=expr ⇒ Rx

– compile_expr(expr)⇒Rx
 ST(Rx,a)

compile_statement(…)

• Unconditional: expr;

– compile_expr(expr)

• Compound: { s1; s2; … }

– compile_statement(s1)
 compile_statement(s2)
…

• Conditional: if (expr) s1;

– compile_expr(expr)⇒Rx
 BF(Rx,Lendif)
compile_statement(s1)

Lendif:

• Conditional: if (expr) s1; else s2;

– compile_expr(expr)⇒Rx
 BF(Rx,Lelse)
compile_statement(s1)

 BR(Lendif)
Lelse:
 compile_statement(s1)
Lendif:

• Iteration: while (expr) s1;

– BR(Ltest)
Lwhile:
compile_statement(s1)

Ltest:
 compile_expr(expr)⇒Rx
 BT(Rx, Lwhile)

• Iteration: for (init; test; incr) s1;
init;
while (test) { s1; incr; }

Compilation Worksheet

6.004 Worksheet - 2 of 4 - Compilation

Problem 1.

Please hand-compile the following snippets of C code into equivalent Beta assembly language
statements. Assume that memory locations have been allocated for the all C variables with labels
that corresponds to the variable names. So to load the value of the C variable a into register R3,
the appropriate assembly language statement would be LD(R31,a,R3). And to store the value
in R17 to the C variable b, the appropriate assembly language statement would be
ST(R17,b,R31). Similarly, assume that memory locations have been allocated for each C
array, with a label defined whose value is the address of the 0th element of the array.

(A) a = 42;

(B) c = 5*x – 13;

(C) y = (x – 3)*(y + 123456);

(D) if (a == 3) b = b + 1;

(E) a[i] = a[i-1];

(F) x = y[3] + y[12];

(G) if (b == 0 || b < min) {

 min = b;
} else {
 too_big += 1;
}

(H) sum = 0;

i = 0;
while (i < 10) {
 sum = sum + i
 i = i + 1;
}

6.004 Worksheet - 3 of 4 - Compilation

Problem 2.

In block-structured languages such as C or Java, the scope of a variable declared locally within a
block extends only over that block, i.e., the value of the local variable cannot be accessed outside
the block. Conceptually, storage is allocated for the variable when the block is entered and
deallocated when the block is exited. In many cases, this means the compiler if free to use a
register to hold the value of the local variable instead of a memory location.

Consider the following C fragment:

int sum = 0;
{ int i;
 for (i = 0; i < 10; i = i+1) sum += i;
}

A. Hand-compile this loop into assembly language, using registers to hold
the values of the local variables "i" and "sum".

B. Define a memory access as any access to memory, i.e., instruction
fetch, data read (LD), or data write (ST). Compare the number of total
number of memory accesses generated by executing the optimized loop
with the total number of memory access for the unoptimized loop (part
G of the preceding problem).

C. Some optimizing compilers "unroll" small loops to amortize the
overhead of each loop iteration over more instructions in the body of
the loop. For example, one unrolling of the loop above would be
equivalent to rewriting the program as

int sum = 0;
{ int i;
 for (i = 0; i < 10; i = i+2) {
 sum += i; sum += i+1;
 }
}

Hand-compile this loop into Beta assembly language and compare the
total number of memory accesses generated when it executes to the
total number of memory accesses from part (1).

6.004 Worksheet - 4 of 4 - Compilation

Problem 3.

Which of the following Beta instruction sequences might have resulted from compiling the
following C statement? For each sequence describe the value that does end up as the value of y.

int x[20], y;
y = x[1] + 4;

A. LD (R31, x + 1, R0)
ADDC (R0, 4, R0)
ST (R0, y, R31)

B. CMOVE (4, R0)
ADDC (R0, x + 4, R0)
ST (R0, y, R31)

C. LD (R31, x + 4, R0)
ST (R0, y + 4, R31)

D. CMOVE (4, R0)
LD (R0, x, R1)
ST (R1, y, R0)

E. LD (R31, x + 4, R0)
ADDC (R0, 4, R0)
ST (R0, y, R31)

F. ADDC (R31, x + 1, R0)
ADDC (R0, 4, R0)
ST (R0, y, R31)

