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Interprocess Communication
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Interprocess Communication
Why have multiple processes?
– Concurrency
– Asynchrony
– Processes as a

programming primitive
– Data-/Event-driven

Classic Example:
“Producer-Consumer” Problem

P
PRODUCER

C
CONSUMER

loop:<xxx>;
send(c);
goto loop

loop:c = rcv();
<yyy>;
goto loop

P1 P2
Code
Stack
Data

Code
Stack
Data

Shared
Data

How to communicate?
− Shared Memory 

(overlapping contexts)...
− Synchronization instructions

(hardware support)
− Supervisor calls

Real-World Examples:
Compiler/Assembler,
Application Frontend/Backend,
UNIX pipeline
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PRODUCER

2<xxx>

3<xxx>

<xxx>1
send1

send2

send3

CONSUMER

<yyy>1

rcv1

<yyy>2

rcv2

<yyy>3

rcv3

loop: <xxx>;
send(c);
goto loop

loop: c = rcv();
<yyy>;
goto loop

rcvi ≺ sendi+1

sendi ≺ rcvi

•  Can’t consume data  
before it’s produced

a ≺ b

Precedence
Constraints:

“a precedes b”

•  Producer can’t 
“overwrite” data 
before it’s consumed

Synchronous Communication
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RELAXES  interprocess
synchronization constraints. 
Buffering relaxes the following 
OVERWRITE constraint to:

P CN-character
FIFO buffer 

<xxx>;
send(c0);

rcv(); //c0
<yyy>;

<xxx>;
send(c1);

rcv(); //c1
<yyy>;

<xxx>;
send(c2);

rcv(); //c2
<yyy>;

<xxx>;
send(c3);

time

c0 c1 c2 c0 c1 c2 c0 c1 c2 c0 c1 c2c3

rcvi ≺ sendi+N

c0 c1 c2c3c0 c1c0c0c0

Read index
(out)

Write index
(in)

c0

“Circular Buffer:”

FIFO Buffering
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send(char c){
buf[in] = c;
in = (in+1)% N;

}

char rcv(){
char c;
c = buf[out];
out = (out+1)% N;
return c;

}

PRODUCER: CONSUMER:

char buf[N];          /* The buffer */
int in=0, out=0;

SHARED MEMORY:

Problem:  Doesn’t enforce  precedence  constraints
(e.g. rcv( ) could be invoked prior to any send() )

Example: Bounded Buffer Problem
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Semaphores
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Programming construct for synchronization:
– NEW DATA TYPE:  semaphore,  an integer ≥ 0

semaphore s = K; // initialize s to K

– NEW OPERATIONS (defined on semaphores):
• wait(semaphore s)

wait until s > 0, then s = s – 1
• signal(semaphore s)

s = s + 1 (one WAITing process may now be able to proceed)

– SEMANTIC GUARANTEE: A semaphore s initialized to K
enforces the constraint:

Often you will see 
P(s) used for wait(s) 

and 
V(s) used for signal(s)!
P = “proberen”(test) or 
“pakken”(grab)

V= “verhogen”(increase)

Semaphores (Dijkstra)

signal(s)i ≺ wait(s)i+K

This is a precedence 
relationship: the ith

call to signal must 
complete before the 
the (i+K)th call to wait 
will succeed.
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Semaphores for Precedence

Process A

A1;

A2;

A3;

A4;

A5;

Process B

B1;

B2;

B3;

B4;

B5;

Goal:  want statement A2 
in process A to complete 
before statement B4 in 
Process B begins.

A2 ≺ B4

Recipe:
• Declare semaphore = 0
• signal(s) at start of arrow
• wait(s) at end of arrow

signal(s);

wait(s);

semaphore s = 0;
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Abstract problem:
•  POOL of K resources
•  Many processes, each needs resource for occasional 

uninterrupted period
•  MUST guarantee that at most K resources are in use at any time. 

Semaphore Solution:

In shared memory:
semaphore s = K;  // K resources

Using resources:
wait(s);    // Allocate a resource
…          // use it for a while

signal(s);  // return it to pool

Invariant: Semaphore value = number of resources left in pool

Semaphores for Resource Allocation
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send(char c)
{ 

buf[in] = c;
in = (in+1)%N;
signal(chars);

}

char rcv()
{  char c;

wait(chars);
c = buf[out];
out = (out+1)%N;
return c;

}

PRODUCER: CONSUMER:

char buf[N];          /* The buffer */
int in=0, out=0;
semaphore chars=0;

SHARED MEMORY:

PRECEDENCE managed by semaphore:  sendi ≺ rcvi
RESOURCE managed by semaphore chars: # of chars in buf

Bounded Buffer Problem
w/ Semaphores

Does 
this 
work?
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Q: What  keeps  PRODUCER  from  putting  N+1 characters 
into  the  N-character  buffer? 

P CN-character
FIFO buffer 

A:  Nothing.

sendi ≺ rcvi

WHAT we’ve got thus far:

Result:  OVERFLOW.

Flow Control Problems

WHAT we still need:

rcvi ≺ sendi+N
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Resources managed by semaphore:  characters in FIFO, 
spaces in FIFO. Works with single producer, consumer.   But 
what about multiple producers and consumers?

send(char c)
{

wait(space);
buf[in] = c;
in = (in+1)%N;
signal(chars);

}

char rcv()
{  

char c;
wait(chars);
c = buf[out];
out = (out+1)%N;
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N];          /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;

SHARED MEMORY:

Bounded Buffer Problem
w/ more Semaphores
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Atomic Transactions
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Suppose you and your friend 
visit the ATM at exactly the 
same time, and remove $50 
from your account. What 
happens?

Debit(int account, int amount) {
t = balance[account];
balance[account] = t – amount;

}

What is supposed to happen?

Withdraw(6004, 50) Withdraw(6004, 50)

Process # 1 Process #2
LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)
… …

LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)

NET:  You have $100, and your
bank balance is $100 less.

Simultaneous Transactions

ATM ATM
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Process # 1 Process #2
LD(R10, balance, R0)

…
LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)

…
SUB(R0, R1, R0)
ST(R0, balance, R10)
…

NET: You have $100 and your 
bank balance is $50 less!

We need to be careful when 
writing concurrent 
programs. In particular, 
when modifying shared data.

For certain code segments, 
called CRITICAL SECTIONS, 
we would like to ensure that 
no two executions overlap.

This constraint is called 
MUTUAL EXCLUSION.

Solution: embed critical 
sections in wrappers (e.g., 
“transactions”) that 
guarantee their atomicity, 
i.e., make them appear to be 
single, instantaneous 
operations.

But, What If…
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Debit(int account, int amount) {

t = balance[account];
balance[account] = t – amount;

}

RESOURCE managed by “lock” semaphore:
Access to critical section

ISSUES:
Granularity of lock

1 lock for whole balance database?
1 lock per account?
1 lock for all accounts ending in 004

“a precedes b
or

b precedes a”
(i.e., they don’t overlap)

a ≺≻ b

signal(lock); // Finished with lock

semaphore lock = 1;

wait(lock);   // Wait for exclusive access

Semaphores for Mutual Exclusion

Look up “database” 
on Wikipedia to 
learn about systems 
that support 
efficient 
transactions on 
shared data.
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Consider multiple PRODUCER processes:

P1 CN-character
FIFO buffer P2

... 

buf[in] = c; 

in = (in+1) % N; 

...

... 

buf[in] = c; 

in = (in+1) % N; 

...

P1 P2

BUG: Producers interfere with each other.

Producer/Consumer Atomicity Problems
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send(char c)
{

wait(space);
wait(lock);
buf[in] = c;
in = (in+1)%N;
signal(lock);
signal(chars);

}

char rcv()
{  char c;

wait(chars);
wait(lock);
c = buf[out];
out = (out+1)%N;
signal(lock);
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N];          /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;
semaphore lock=1;

SHARED MEMORY:

Bounded Buffer Problem
w/ even more Semaphores
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send(char c)
{

wait(space);
wait(lock)
buf[in] = c;
in = (in+1)%N;
signal(lock);
signal(chars);

}

char rcv()
{  char c;

wait(chars);
wait(lock);
c = buf[out];
out = (out+1)%N;
signal(lock);
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N];          /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;
semaphore lock=1;

SHARED MEMORY: A single 
synchronization 
primitive that 
enforces both:

Precedence 
relationships:

sendi ≺ rcvi
rcvi ≺ sendi+N

Mutual-exclusion 
relationships:

protect variables
in and out

The Power of Semaphores
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Semaphore Implementation
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Semaphores are themselves shared data and implementing 
WAIT and SIGNAL operations will require read/modify/write 
sequences that must executed as critical sections.   So how 
do we guarantee mutual exclusion in these particular 
critical sections without using semaphores?
Approaches:

– SVC implementation, using atomicity of kernel handlers.  
Works in timeshared processor sharing a single 
uninterruptable kernel.

– Implementation of a simple lock using a special instruction 
(e.g. “test and set”), depends on atomicity of single 
instruction execution.  Works with shared-bus 
multiprocessors supporting atomic read-modify-write bus 
transactions.  Using a simple lock to implement critical 
sections, we can use software to implement other 
semaphore functionality.

– Implementation using atomicity of individual read or write 
operations.  For example, see “Dekker’s Algorithm” on 
Wikipedia.

Semaphore Implementation
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wait_h( ) {
int *addr;
addr = VtoP(User.Regs[R0]);    // get arg
if (*addr <= 0) {

User.Regs[XP]  = User.Regs[XP] – 4;
sleep(addr);

} else
*addr = *addr - 1;

}

signal_h( ) {
int *addr;
addr = VtoP(User.Regs[R0]);    // get arg
*addr = *addr + 1;
wakeup(addr);

}

Calling sequence:

…
// put address of lock
// into R0
CMOVE(lock, R0)
SVC(WAIT) or SVC(SIGNAL)

SVC call is not 
interruptible since it is 
executed in kernel 
mode.

Semaphores as a Supervisor Call
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TCLR(RA, literal, RC) test and clear location
PC ← PC + 4
EA ← Reg[Ra] + literal
Reg[Rc] ← MEM[EA]
MEM[EA] ← 0

Executed ATOMICALLY (cannot be interrupted)
Can easily implement mutual exclusion using binary 
semaphore

wait: TCLR(R31, lock, R0)
BEQ(R0,wait)
… critical section …
CMOVE(1,R0)
ST(R0, lock, R31)

wait(lock)

signal(lock)

Hardware Support for Semaphores

Atomicity guaranteed by memory
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Deadlock
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The naïve use of synchronization constraints can introduce 
its own set of problems, particularly when a process requires 
access to more than one protected resource.

Transfer(int account1, int account2, int amount) {
wait(lock[account1]);
wait(lock[account2]);
balance[account1] = balance[account1] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[account2]);
signal(lock[account1]);

}

Transfer(6004, 6005, 50)

Transfer(6005, 6004, 50)

Synchronization: The Dark Side

DEADLOCK (aka “deadly embrace”)!

ATM

ATM
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•  Take (wait for) LEFT stick 
•  Take (wait for) RIGHT stick 
•  EAT until sated
•  Replace both sticks

PHILOSOPHER'S  ALGORITHM:

Philosophers think deep thoughts, 
but have simple secular needs.  
When hungry, a group of N 
philosophers will sit around a table 
with N chopsticks interspersed 
between them.  Food is served, and 
each philosopher enjoys a leisurely 
meal using the chopsticks on either 
side to eat.

They are exceedingly polite and 
patient, and each follows the 
following dining protocol:

Dining Philosophers

Shut up!!
Wait, I think I see a 

problem here...
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CONDITIONS:

1) Mutual exclusion -
only one process can 
hold a resource at a 
given time

2) Hold-and-wait - a 
process holds allocated 
resources while waiting 
for others 

3) No preemption - a 
resource can not be 
removed from a 
process holding it

4) Circular Wait
SOLUTIONS:
Avoidance  

-or-
Detection and Recovery

No one can make progress because they are all waiting for an 
unavailable resource

Deadlock!

He still doesn’t 
look too happy…

Cousin Tom is spared!
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•  Take LOW stick 
•  Take HIGH stick 
•  EAT 
•  Replace both sticks. 1

23

4
5

KEY: Assign a unique number 
to each chopstick, request 
resources in globally consistent 
order:

New Algorithm:

SIMPLE PROOF:

Deadlock means that each philosopher is waiting for a resource 
held by some other philosopher …

But, the philosopher holding the highest numbered chopstick 
can’t be waiting for any other philosopher (no hold-and-wait 
cycle) …

Thus, there can be no deadlock.

One Solution
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Cooperating processes:
– Establish a fixed ordering to shared resources and require 

all requests to be made in the prescribed order

Transfer(int account1, int account2, int amount) {
int a = min(account1, account2);
int b = max(account1, account2);
wait(lock[a]);
wait(lock[b]);
balance[account1] = balance[account1] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[b]);
signal(lock[a]);

}

Transfer(6004, 6005, 50)

Transfer(6005, 6004, 50)

Dealing With Deadlocks

ATM

ATM

Unconstrained processes:
- O/S discovers circular wait & kills waiting process
- Transaction model
- Hard problem
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Communication among asynchronous processes 
requires synchronization….
– Precedence constraints: a partial ordering among operations
– Semaphores as a mechanism for enforcing precedence 

constraints
– Mutual exclusion (critical sections, atomic transactions) as a 

common compound precedence constraint
– Solving Mutual Exclusion via binary semaphores
– Synchronization serializes operations, limits parallel 

execution.
Many alternative synchronization mechanisms exist!

Deadlocks:
– Consequence of undisciplined use of synchronization 

mechanism
– Can be avoided in special cases, detected and corrected in 

others.

Summary


