
6.004 Computation Structures L19: Concurrency & Synchronization, Slide #1

19. Concurrency & Synchronization

6.004x Computation Structures
Part 3 – Computer Organization

Copyright © 2016 MIT EECS

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #2

Interprocess Communication

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #3

Interprocess Communication
Why have multiple processes?
– Concurrency
– Asynchrony
– Processes as a

programming primitive
– Data-/Event-driven

Classic Example:
“Producer-Consumer” Problem

P
PRODUCER

C
CONSUMER

loop:<xxx>;
send(c);
goto loop

loop:c = rcv();
<yyy>;
goto loop

P1 P2
Code
Stack
Data

Code
Stack
Data

Shared
Data

How to communicate?
− Shared Memory

(overlapping contexts)...
− Synchronization instructions

(hardware support)
− Supervisor calls

Real-World Examples:
Compiler/Assembler,
Application Frontend/Backend,
UNIX pipeline

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #4

PRODUCER

2<xxx>

3<xxx>

<xxx>1
send1

send2

send3

CONSUMER

<yyy>1

rcv1

<yyy>2

rcv2

<yyy>3

rcv3

loop: <xxx>;
send(c);
goto loop

loop: c = rcv();
<yyy>;
goto loop

rcvi ≺ sendi+1

sendi ≺ rcvi

• Can’t consume data
before it’s produced

a ≺ b

Precedence
Constraints:

“a precedes b”

• Producer can’t
“overwrite” data
before it’s consumed

Synchronous Communication

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #5

RELAXES interprocess
synchronization constraints.
Buffering relaxes the following
OVERWRITE constraint to:

P CN-character
FIFO buffer

<xxx>;
send(c0);

rcv(); //c0
<yyy>;

<xxx>;
send(c1);

rcv(); //c1
<yyy>;

<xxx>;
send(c2);

rcv(); //c2
<yyy>;

<xxx>;
send(c3);

time

c0 c1 c2 c0 c1 c2 c0 c1 c2 c0 c1 c2c3

rcvi ≺ sendi+N

c0 c1 c2c3c0 c1c0c0c0

Read index
(out)

Write index
(in)

c0

“Circular Buffer:”

FIFO Buffering

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #6

send(char c){
buf[in] = c;
in = (in+1)% N;

}

char rcv(){
char c;
c = buf[out];
out = (out+1)% N;
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;

SHARED MEMORY:

Problem: Doesn’t enforce precedence constraints
(e.g. rcv() could be invoked prior to any send())

Example: Bounded Buffer Problem

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #7

Semaphores

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #8

Programming construct for synchronization:
– NEW DATA TYPE: semaphore, an integer ≥ 0

semaphore s = K; // initialize s to K

– NEW OPERATIONS (defined on semaphores):
• wait(semaphore s)

wait until s > 0, then s = s – 1
• signal(semaphore s)

s = s + 1 (one WAITing process may now be able to proceed)

– SEMANTIC GUARANTEE: A semaphore s initialized to K
enforces the constraint:

Often you will see
P(s) used for wait(s)

and
V(s) used for signal(s)!
P = “proberen”(test) or
“pakken”(grab)

V= “verhogen”(increase)

Semaphores (Dijkstra)

signal(s)i ≺ wait(s)i+K

This is a precedence
relationship: the ith

call to signal must
complete before the
the (i+K)th call to wait
will succeed.

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #9

Semaphores for Precedence

Process A

A1;

A2;

A3;

A4;

A5;

Process B

B1;

B2;

B3;

B4;

B5;

Goal: want statement A2
in process A to complete
before statement B4 in
Process B begins.

A2 ≺ B4

Recipe:
• Declare semaphore = 0
• signal(s) at start of arrow
• wait(s) at end of arrow

signal(s);

wait(s);

semaphore s = 0;

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #10

Abstract problem:
• POOL of K resources
• Many processes, each needs resource for occasional

uninterrupted period
• MUST guarantee that at most K resources are in use at any time.

Semaphore Solution:

In shared memory:
semaphore s = K; // K resources

Using resources:
wait(s); // Allocate a resource
… // use it for a while

signal(s); // return it to pool

Invariant: Semaphore value = number of resources left in pool

Semaphores for Resource Allocation

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #11

send(char c)
{

buf[in] = c;
in = (in+1)%N;
signal(chars);

}

char rcv()
{ char c;

wait(chars);
c = buf[out];
out = (out+1)%N;
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0;

SHARED MEMORY:

PRECEDENCE managed by semaphore: sendi ≺ rcvi
RESOURCE managed by semaphore chars: # of chars in buf

Bounded Buffer Problem
w/ Semaphores

Does
this
work?

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #12

Q: What keeps PRODUCER from putting N+1 characters
into the N-character buffer?

P CN-character
FIFO buffer

A: Nothing.

sendi ≺ rcvi

WHAT we’ve got thus far:

Result: OVERFLOW.

Flow Control Problems

WHAT we still need:

rcvi ≺ sendi+N

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #13

Resources managed by semaphore: characters in FIFO,
spaces in FIFO. Works with single producer, consumer. But
what about multiple producers and consumers?

send(char c)
{

wait(space);
buf[in] = c;
in = (in+1)%N;
signal(chars);

}

char rcv()
{

char c;
wait(chars);
c = buf[out];
out = (out+1)%N;
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;

SHARED MEMORY:

Bounded Buffer Problem
w/ more Semaphores

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #14

Atomic Transactions

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #15

Suppose you and your friend
visit the ATM at exactly the
same time, and remove $50
from your account. What
happens?

Debit(int account, int amount) {
t = balance[account];
balance[account] = t – amount;

}

What is supposed to happen?

Withdraw(6004, 50) Withdraw(6004, 50)

Process # 1 Process #2
LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)
… …

LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)

NET: You have $100, and your
bank balance is $100 less.

Simultaneous Transactions

ATM ATM

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #16

Process # 1 Process #2
LD(R10, balance, R0)

…
LD(R10, balance, R0)
SUB(R0, R1, R0)
ST(R0, balance, R10)

…
SUB(R0, R1, R0)
ST(R0, balance, R10)
…

NET: You have $100 and your
bank balance is $50 less!

We need to be careful when
writing concurrent
programs. In particular,
when modifying shared data.

For certain code segments,
called CRITICAL SECTIONS,
we would like to ensure that
no two executions overlap.

This constraint is called
MUTUAL EXCLUSION.

Solution: embed critical
sections in wrappers (e.g.,
“transactions”) that
guarantee their atomicity,
i.e., make them appear to be
single, instantaneous
operations.

But, What If…

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #17

Debit(int account, int amount) {

t = balance[account];
balance[account] = t – amount;

}

RESOURCE managed by “lock” semaphore:
Access to critical section

ISSUES:
Granularity of lock

1 lock for whole balance database?
1 lock per account?
1 lock for all accounts ending in 004

“a precedes b
or

b precedes a”
(i.e., they don’t overlap)

a ≺≻ b

signal(lock); // Finished with lock

semaphore lock = 1;

wait(lock); // Wait for exclusive access

Semaphores for Mutual Exclusion

Look up “database”
on Wikipedia to
learn about systems
that support
efficient
transactions on
shared data.

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #18

Consider multiple PRODUCER processes:

P1 CN-character
FIFO buffer P2

...

buf[in] = c;

in = (in+1) % N;

...

...

buf[in] = c;

in = (in+1) % N;

...

P1 P2

BUG: Producers interfere with each other.

Producer/Consumer Atomicity Problems

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #19

send(char c)
{

wait(space);
wait(lock);
buf[in] = c;
in = (in+1)%N;
signal(lock);
signal(chars);

}

char rcv()
{ char c;

wait(chars);
wait(lock);
c = buf[out];
out = (out+1)%N;
signal(lock);
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;
semaphore lock=1;

SHARED MEMORY:

Bounded Buffer Problem
w/ even more Semaphores

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #20

send(char c)
{

wait(space);
wait(lock)
buf[in] = c;
in = (in+1)%N;
signal(lock);
signal(chars);

}

char rcv()
{ char c;

wait(chars);
wait(lock);
c = buf[out];
out = (out+1)%N;
signal(lock);
signal(space);
return c;

}

PRODUCER: CONSUMER:

char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;
semaphore lock=1;

SHARED MEMORY: A single
synchronization
primitive that
enforces both:

Precedence
relationships:

sendi ≺ rcvi
rcvi ≺ sendi+N

Mutual-exclusion
relationships:

protect variables
in and out

The Power of Semaphores

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #21

Semaphore Implementation

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #22

Semaphores are themselves shared data and implementing
WAIT and SIGNAL operations will require read/modify/write
sequences that must executed as critical sections. So how
do we guarantee mutual exclusion in these particular
critical sections without using semaphores?
Approaches:

– SVC implementation, using atomicity of kernel handlers.
Works in timeshared processor sharing a single
uninterruptable kernel.

– Implementation of a simple lock using a special instruction
(e.g. “test and set”), depends on atomicity of single
instruction execution. Works with shared-bus
multiprocessors supporting atomic read-modify-write bus
transactions. Using a simple lock to implement critical
sections, we can use software to implement other
semaphore functionality.

– Implementation using atomicity of individual read or write
operations. For example, see “Dekker’s Algorithm” on
Wikipedia.

Semaphore Implementation

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #23

wait_h() {
int *addr;
addr = VtoP(User.Regs[R0]); // get arg
if (*addr <= 0) {

User.Regs[XP] = User.Regs[XP] – 4;
sleep(addr);

} else
*addr = *addr - 1;

}

signal_h() {
int *addr;
addr = VtoP(User.Regs[R0]); // get arg
*addr = *addr + 1;
wakeup(addr);

}

Calling sequence:

…
// put address of lock
// into R0
CMOVE(lock, R0)
SVC(WAIT) or SVC(SIGNAL)

SVC call is not
interruptible since it is
executed in kernel
mode.

Semaphores as a Supervisor Call

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #24

TCLR(RA, literal, RC) test and clear location
PC ← PC + 4
EA ← Reg[Ra] + literal
Reg[Rc] ← MEM[EA]
MEM[EA] ← 0

Executed ATOMICALLY (cannot be interrupted)
Can easily implement mutual exclusion using binary
semaphore

wait: TCLR(R31, lock, R0)
BEQ(R0,wait)
… critical section …
CMOVE(1,R0)
ST(R0, lock, R31)

wait(lock)

signal(lock)

Hardware Support for Semaphores

Atomicity guaranteed by memory

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #25

Deadlock

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #26

The naïve use of synchronization constraints can introduce
its own set of problems, particularly when a process requires
access to more than one protected resource.

Transfer(int account1, int account2, int amount) {
wait(lock[account1]);
wait(lock[account2]);
balance[account1] = balance[account1] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[account2]);
signal(lock[account1]);

}

Transfer(6004, 6005, 50)

Transfer(6005, 6004, 50)

Synchronization: The Dark Side

DEADLOCK (aka “deadly embrace”)!

ATM

ATM

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #27

• Take (wait for) LEFT stick
• Take (wait for) RIGHT stick
• EAT until sated
• Replace both sticks

PHILOSOPHER'S ALGORITHM:

Philosophers think deep thoughts,
but have simple secular needs.
When hungry, a group of N
philosophers will sit around a table
with N chopsticks interspersed
between them. Food is served, and
each philosopher enjoys a leisurely
meal using the chopsticks on either
side to eat.

They are exceedingly polite and
patient, and each follows the
following dining protocol:

Dining Philosophers

Shut up!!
Wait, I think I see a

problem here...

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #28

CONDITIONS:

1) Mutual exclusion -
only one process can
hold a resource at a
given time

2) Hold-and-wait - a
process holds allocated
resources while waiting
for others

3) No preemption - a
resource can not be
removed from a
process holding it

4) Circular Wait
SOLUTIONS:
Avoidance

-or-
Detection and Recovery

No one can make progress because they are all waiting for an
unavailable resource

Deadlock!

He still doesn’t
look too happy…

Cousin Tom is spared!

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #29

• Take LOW stick
• Take HIGH stick
• EAT
• Replace both sticks. 1

23

4
5

KEY: Assign a unique number
to each chopstick, request
resources in globally consistent
order:

New Algorithm:

SIMPLE PROOF:

Deadlock means that each philosopher is waiting for a resource
held by some other philosopher …

But, the philosopher holding the highest numbered chopstick
can’t be waiting for any other philosopher (no hold-and-wait
cycle) …

Thus, there can be no deadlock.

One Solution

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #30

Cooperating processes:
– Establish a fixed ordering to shared resources and require

all requests to be made in the prescribed order

Transfer(int account1, int account2, int amount) {
int a = min(account1, account2);
int b = max(account1, account2);
wait(lock[a]);
wait(lock[b]);
balance[account1] = balance[account1] - amount;
balance[account2] = balance[account2] + amount;
signal(lock[b]);
signal(lock[a]);

}

Transfer(6004, 6005, 50)

Transfer(6005, 6004, 50)

Dealing With Deadlocks

ATM

ATM

Unconstrained processes:
- O/S discovers circular wait & kills waiting process
- Transaction model
- Hard problem

6.004 Computation Structures L19: Concurrency & Synchronization, Slide #31

Communication among asynchronous processes
requires synchronization….
– Precedence constraints: a partial ordering among operations
– Semaphores as a mechanism for enforcing precedence

constraints
– Mutual exclusion (critical sections, atomic transactions) as a

common compound precedence constraint
– Solving Mutual Exclusion via binary semaphores
– Synchronization serializes operations, limits parallel

execution.
Many alternative synchronization mechanisms exist!

Deadlocks:
– Consequence of undisciplined use of synchronization

mechanism
– Can be avoided in special cases, detected and corrected in

others.

Summary

