
6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #1 

12. Procedures & Stacks 

6.004x Computation Structures 
Part 2 – Computer Architecture 

 
Copyright © 2015 MIT EECS 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #2 

Procedures: A Software Abstraction 

•  Procedure: Reusable code 
fragment that performs a 
specific task 
–  Single named entry point 

–  Zero or more formal parameters 

–  Local storage 
–  Returns control to the caller 

when finished 

•  Using multiple procedures 
enables abstraction and reuse 
–  Compose large programs from 

collections of simple procedures 

int	gcd(int	a,	int	b)	{	
		int	x	=	a;	
		int	y	=	b;	
		while	(x	!=	y)	{	
		if	(x	>	y)	{	

						x	=	x	–	y;	
				}	else	{	
						y	=	y	–	x;	
				}		
		}	
		return	x;	
}	
	
bool	coprimes(int	a,	int	b)	{	
		return	gcd(a,	b)	==	1;	
}	
	
coprimes(5,	10);	//	false	
coprimes(9,	10);	//	true	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #3 

Implementing Procedures 

•  Option 1: Inlining 
–  Compiler substitutes procedure call with body 

–  Problems? 
•  Code size 

•  Recursion 

 
 
 
 

•  Option 2: Linking 
–  Produce separate code for each procedure 

–  Caller evaluates input arguments, stores them and 
transfers control to the callee’s entry point 

–  Callee runs, stores result, transfers control to caller 

int	fact(int	n)	{	
		if	(n	>	0)	{	
				return	n*fact(n	-	1);	
		}	else	{	
				return	1;	
		}	
}	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #4 

Procedure Linkage: First Try 

•  Need calling convention: Uniform way to transfer 
data and control between procedures 

•  Proposed convention: 
–  Pass argument (value of n) in R1 
–  Pass return address in R28  

•  use BR(fact,r28)	to call and JMP(r28)	to return 

–  Return result in R0 

fact(3)	=	3*fact(2)	
fact(2)	=	2*fact(1)	
fact(1)	=	1*fact(0)	
fact(0)	=	1	

int	fact(int	n)	{	
		if	(n	>	0)	{	
				return	n*fact(n	-	1);	
		}	else	{	
				return	1;	
		}	
}	
	

fact(3);	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #5 

Procedure Linkage: First Try 

•  Proposed convention: 
–  Pass argument (value of n) in R1 
–  Pass return address in R28 

–  Return result in R0 

int	fact(int	n)	{	
		if	(n	>	0)	{	
				return	n*fact(n	-	1);	
		}	else	{	
				return	1;	
		}	
}	

	

fact(3);	

fact: 		
CMPLEC(r1,0,r0)	
BT(r0,else)	
MOVE(r1,r2)	//	save	n	
SUBC(r2,1,r1)	
BR(fact,r28)	
MUL(r0,r2,r0)	
BR(rtn)	

else:		CMOVE(1,r0)	
rtn: 	JMP(r28)	

	
main: 	CMOVE(3,r1)	

	 	BR(fact,r28)	
	 	HALT()	

OOPS!  



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #6 

Procedure Storage Needs 

•  Basic requirements for procedure calls: 
–  Input arguments 

–  Return address 

–  Results 

•  Local storage: 
–  Variables that compiler can’t fit in registers 

–  Space to save caller’s register values for registers that we 
overwrite 

Each of these is specific to a particular activation of a 
procedure.  We call them the procedure’s activation 
record 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #7 

Activation Records 

fact(3) 

TIME 

A procedure call creates a new 
activation record.  Caller’s record 
is preserved because we’ll need it 
when callee finally returns. 

Return to previous activation record 
when procedure finishes, permanently 
discarding activation record created by 
call we are returning from. 

fact(3) 

fact(2) 

fact(3) 

fact(2) 

fact(1) 

fact(3) 

fact(2) 

fact(1) 

fact(3) 

fact(2) 

fact(1) 

fact(0) 

fact(3) 

fact(2) 

fact(3) 

int	fact(int	n)	{	
		if	(n	>	0)	return	n*fact(n	-	1);	
		else	return	1;	

}	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #8 

Insight (ca. 1960): We Need a Stack! 

•  Need data structure to hold activation records 

•  Activation records are allocated and 
deallocated in last-in-first-out (LIFO) order 
 

      

•  Stack: push, pop, access to top element 
 
 
 

•  For C, we only need to access to the activation 
record of the currently executing procedure 

fact(3) 

fact(2) 

fact(1) 

fact(0) 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #9 

Stack Implementation 
CONVENTIONS: 

•  Dedicate a register for the Stack 
Pointer (SP = R29). 

•  Builds up (towards higher 
addresses) on PUSH 

•  SP points to first UNUSED 
location; locations with 
addresses lower than SP have 
been previously allocated. 

•  Discipline: can use stack at any 
time; but leave it as you found it! 

•  Reserve a large block of memory 
well away from our program 
and its data 

We use only software conventions to 
implement our stack (many 
architectures dedicate hardware) 

Other possible implementations 
include stacks that grow “down”, SP 
points to top of stack, etc. 

unused 
space 

stacked data 
stacked data 

stacked data 
stacked data 

unused location Reg[SP] 

PUSH 

LOWER ADDRESSES 

HIGHER ADDRESSES 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #10 

Stack Management Macros 

PUSH(RX):  Push Reg[x] onto stack 
Reg[SP]	ß	Reg[SP]	+	4;	
Mem[Reg[SP]-4]	ß	Reg[x]	

 
POP(RX): Pop value on top of the stack into Reg[x] 
			Reg[x]	ß	Mem[Reg[SP]-4]	

Reg[SP]	ß	Reg[SP]	-	4;	
 

ALLOCATE(k): Reserve k WORDS of stack 
			Reg[SP]	ß	Reg[SP]	+	4*k	
 
DEALLOCATE(k): Release k WORDS of stack 
			Reg[SP]	ß	Reg[SP]	-	4*k	
 

ADDC(R29,	4,	R29)	
ST(RX,-4,R29)	

LD(R29,	-4,	RX)	
SUBC(R29,4,R29)	

ADDC(R29,4*k,R29)	

SUBC(R29,4*k,R29)	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #11 

We can use stacks to save values we’ll need later. 
For instance, the following code fragment can be 
inserted anywhere within a program. 

 												
			 			//	Argh!!!	I’m	out	of	registers	Scotty!!	
			 			//	
			 			PUSH(R0) 	 	 		//	Frees	up	R0	
			 			PUSH(R1) 	 	 		//	Frees	up	R1	
			 			LD(dilithum_xtals,	R0)	
			 			LD(seconds_til_explosion,	R1)	

suspense:	SUBC(R1,	1,	R1)	
			 			BNE(R1,	suspense)	
			 			ST(R0,	warp_engines)	
			 			POP(R1)									 	//	Restores	R1	
			 			POP(R0) 	 			 	//	Restores	R0 

 
 

Fun with Stacks 

Data is popped off the stack 
in the opposite order that it 

is pushed on 

Next, we’ll use show how to use stacks for 
activation records.. 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #12 

Solving Procedure Linkage Problems 
Reminder: Procedure storage needs 

1)  We need a way to pass arguments to the procedure 

2)  Procedures need their own LOCAL storage 

3)  Procedures need to call other procedures; special case: 
recursive procedures that call themselves 

Plan for caller: 

•  Push argument values 
onto stack in reverse 
order for use by callee 

• Branch to callee, save 
return address in 
dedicated register (LP = 
R28) 

• Clean up stack after 
callee return 

C code: 
			proc(expr1,	…,	exprn)	
Beta assembly: 

compile_expr(exprn)⇒Rx 
PUSH(rx)	
…	
compile_expr(expr1)⇒Rx 
PUSH(rx)	
BR(proc,LP)	
DEALLOCATE(n) 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #13 

args 

Stack Frames as Activation Records 

BP is a convenience 
In theory it’s possible to use SP to access 
stack frame, but offsets will change due to 
PUSHs and POPs.  For convenience we use 
BP so we can use constant offsets to find, 
e.g., the first argument. 

unused 
space 

callee 
pushes 

caller 
pushes 

SP Saved LP 
SP Saved BP 
SP SP, BP Local vars 

SP 

BP 

CALLEE uses stack for all of the 
its storage needs: 
1.  Saving return address back to 

the caller (it’s in LP) 
2.  Saving BP of caller (pointer to 

caller’s activation record) 
3.  Allocating stack locations to 

hold local variables 
4.  Save any registers callee uses: 

“callee saves” convention 

Dedicate another register (BP = 
R27) to hold address of the 
activation record.  Use when 
accessing 

•  Arguments 
•  Other local storage 

Saved regs 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #14 

Stack Frame Details 

CALLER passes arguments 
to CALLEE on the stack in 
reverse order 
 
F(1,2,3,4) translates to: 

	CMOVE(4,R0)	
	PUSH(R0)	

	 	CMOVE(3,R0)	
	PUSH(R0)	
	CMOVE(2,R0)	
	PUSH(R0)	
	CMOVE(1,R0)	
	PUSH(R0)	
	BR(F,	LP)	

Why push args in REVERSE order? 

Saved LP 

BP 

arg 0 

SP unused 

Saved BP 

arg n-1 

Saved BP 
Saved LP 

Callers Local 0 
... 
... 

local 0 
local 1 
... 

temps 

CALLER’S 
FRAME 

CALLEE’S 
FRAME 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #15 

Argument Order & BP usage 

1) To access jth argument (j ≥ 0): 

LD(BP,	-4*(j+3),	rx)	
 or 

ST(rx,	-4*(j+3),	BP)	

 CALLEE can access the first few 
arguments without knowing how 
many arguments have been passed! 

Why push args in reverse order? It 
allows the BP to serve double duties 
when accessing the local frame 
 

Reg[BP] – 12 
Reg[BP] – 8 
Reg[BP] – 4 

Reg[BP] 
    – 4*(j+3) 

Reg[BP] + 4*k 

Saved LP 

BP 

arg 0 

SP unused 

Saved BP 

arg n-1 

... 

... 

local 0 

local k 

... 

temps 

arg j 

2) To access kth local variable (k ≥ 0) 

LD(BP,	k*4,	rx)	
 or 

ST(rx,	k*4,	BP)	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #16 

Procedure Linkage: The Contract 

The CALLER will: 

• Push args onto stack, in reverse order. 

• Branch to callee, putting return address into LP. 

• Remove args from stack on return. 

The CALLEE will: 

• Perform promised computation, leaving result in R0. 

• Branch to return address. 

• Leave stacked data intact, including stacked args. 

• Leave regs (except R0) unchanged. 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #17 

Procedure Linkage 
typical “boilerplate” templates 

Calling 
Sequence 

				PUSH(argn) 	//	push	args,	last	arg	first	
				... 		 		
				PUSH(arg1)		
				BR(f,	LP) 	//	Call	f.	
				DEALLOCATE(n) 	//	Clean	up!	
				... 	//	(f’s	return	value	in	r0)	

				//	return	value	in	R0…	
				(pop	other	regs) 	//	restore	regs	
				MOVE(BP,SP) 	//	strip	locals,	etc	
				POP(BP) 	//	restore	CALLER’s	linkage	
				POP(LP) 	//	(the	return	address)	
				JMP(LP) 	//	return.	

Exit 
Sequence 

Entry 
Sequence 

f:		PUSH(LP) 	//	Save	LP	and	BP	
				PUSH(BP) 	//	in	case	we	make	new	calls.	
				MOVE(SP,BP) 	//	set	BP=frame	base	
				ALLOCATE(nlocals) 	//	allocate	locals	
				(push	other	regs) 	//	preserve	any	regs	used	

Why no 
DEALLOCATE? 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #18 

Putting It All Together: Factorial 

int	fact(int	n)	{	
		if	(n	>	0)	{	
				return	n*fact(n-1);	
		}	else	{	
				return	1;	
		}	
}	

fact: 	PUSH(LP)	 	 	//	save	linkages	
PUSH(BP)	
MOVE(SP,BP)	 	//	new	frame	base	
PUSH(r1)	 	 	//	preserve	regs	
LD(BP,-12,r1) 	//	r1	ß	n	
CMPLEC(r1,0,r0) 	//	if	(n	>	0)	
BT(r0,else)	
	

	 	SUBC(r1,1,r1) 	//	r1	ß	(n-1)	
PUSH(r1)	 	 	//	push	arg1	
BR(fact,LP)	 	//	fact(n-1)	
DEALLOCATE(1) 	//	pop	arg1	
LD(BP,-12,r1) 	//	r1	ß	n	
MUL(r1,r0,r0) 	//	r0	ß	n*fact(n-1)	
BR(rtn)	

	
else: 	CMOVE(1,r0)	 	//	return	1	

	
rtn:	 	POP(r1)	 	 	//	restore	regs	

MOVE(BP,SP)	 	//	Why?	
POP(BP)	 	 	//	restore	links	
POP(LP)	
JMP(LP)	 	 	//	return	
	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #19 

Recursion? 

Of course! SP 

Saved BP 
Saved LP 

Saved R1 

3 

BP 
SP 

fact(3) 

BP 
Saved BP 
Saved LP 

Saved R1 
SP 

2 

fact(2) 

BP 
Saved BP 
Saved LP 

Saved R1 
SP 

1 

fact(1) 

BP 
Saved BP 
Saved LP 

Saved R1 
SP 

0 

fact(0) 

•  Frames allocated for each 
recursive call... 

•  Deallocated (in inverse order) 
as recursive calls return 

Debugging skill:  
 “stack crawling” 

•  Given code, stack snapshot – 
figure out what, where, how, 
who... 

•  Decode args, locals, return 
locations, etc etc etc 

Particularly useful on 6.004 quizzes! 

•  Follow old <BP> links to parse 
frames 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #20 

Stack Detective 
fact(n)	is called.  During the 
calculation, the computer is stopped 
with the PC at 0x40; the stack 
contents are shown (in hex). 

BP 

SP 

??? 
80 

??? 

6 

10C 
40 

5 

5 

11C 
40 

4 

4 

12C 
40 

3 

3 

2 

Saved BP 
Saved LP 

Saved R1 

arg n 

§  What’s the argument to the active 
call to fact? 

§  What’s the argument to the 
original call to fact? 

§  What’s the location of the original 
calling (BR) instruction? 

§  What instruction is about to be 
executed? 

§  What value is in BP? 

§  What value is in SP? 

§  What value is in R0? 

3 

6 

80 – 4 = 7C 

DEALLOCATE(1) 

13C 

13C+4+4=144 

fact(2) = 2 

main pgm 

fact 

fact(6) 

fact(5) 

fact(4) 

12C	
130	
134	
138	
13C	



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #21 

Summary of Dedicated Registers 

The Beta ISA has 32 registers.  But we’ve dedicated 
several of them to serve a specific purpose: 
 

•  R31 is always zero [ISA] 

•  R30 … reserved for future use... [next lecture] 

•  R29 = SP, stack pointer [software convention] 

•  R28 = LP, linkage pointer [software convention] 

•  R27 = BP, base pointer [software convention] 



6.004 Computation Structures L10: Beta ISA, Procedures and Stacks, Slide #22 

Summary 

•  Each procedure invocation has an activation record 
–  Created during procedure call/entry sequence 

–  Discarded when procedure returns 

–  Holds: 
•  Argument values (in reverse order) 

•  Saved LP, BP from caller (callee reuses those regs) 

•  Storage for local variables (if any) 
•  Other saved regs from caller (callee needs regs to use) 

–  BP points to activation record of active call 
•  Access arguments at offsets of -12, -16, -20, .. 

•  Access local variables at offsets of 0, 4, 8, … 

•  “Callee saves” convention: all reg values preserved 

•  Except for R0, which holds return value 


