5. Sequential Logic

6.004x Computation Structures
Part 1 — Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L5: Sequential Logic, Slide #1

Something We Can’t Build (Yet)

What if you were given the following design specification:

@#1

@#2

When the button is pushed:
1) Turn the light on if it is off
button 2) Turn the light off if it is on light

\ 4
v

The light should change
state within a second
of the button press

What makes this device different
from those we’ve discussed before?

1.“State” —1i.e., the device has memory

2. The output was changed by a input
“event” (pushing a button) rather
than an input “level”

Digital State: What We’d Like to Build

Trigger

=

periodically

W\

=

Memory
Device

LOAD

Input

Sequence of values
Next
NN State
Current
State Combinational
Logic
» Output

Plan: Build a Sequential Circuit with stored digital STATE —

e Memory stores CURRENT state, produced at output

« Combinational Logic computes

e NEXT state (from input, current state)

e OUTPUT bits (from input, current state)

e State changes on LOAD control input

Memory: Using Capacitors

We’ve chosen to encode information using voltages and
we know from physics that we can “store” a voltage as
charge on a capacitor:

| , Pros:
- word line _ « compact — low cost/bit
bit line — (on BIG memories)
/‘ Cons:
NFET serves as T C » complex interface

« stable? (noise, ...)

access switch Vier .
* it leaks! = refresh

To write: L

Drive bit line, turn on access fet, Vel Suppose we use

/

force storage cap to new voltage feedback to
- 4 refresh

0 read. continuously?

precharge bit line, turn on access fet,
detect (small) change in bit line voltage

Memory: Using Feedback

IDEA: use positive feedback to maintain storage indefinitely.
Our logic gates are built to restore marginal signal levels, so
noise shouldn’t be a problem!

s
Result: a bistable
() Q () storage element
Vin Vour
Not affected
VICjor — peedback constraint: by noise
inverter pair Viy = Vour
\Y% :
ouf \ Three solutions: \

* two end-points are stable
* middle point is metastable

;

" VN We’ll get back to this!

Settable Memory Element

It’s easy to build a settable storage element (called a
latch) using a lenient MUX:

Here's a feedback path, “state” signal

~ 50 it's no longer a
combinational circuit. appears as both
input and output

| ¢$ GDQ | Q
Q
" Q 0 -0 0]
D ;y 0 —- 1 1 j Q stable
‘S 1 0-| 0°"
= Q follows D
G 1 1 -- 1 |

D: data input
G: gate input
Q: state output

New Device: D Latch
G=1: G=0:
Q follows D Q holds
Q|0
Circuit: D —l1 —Q D X __ vi X v2 XXX
G AT G \\l'
Q X vi X XCOvo Il
Schematic D Q— <T_P; <T_P;

Symbol:

G=1: Q Follows D, independently of Q

G=0: Q Holds stable Q’, independently of D

/

BUT... A change in D
or G contaminates
Q, hence Q’ ... how
can this possibly
work?

A Plea for Lenience

G D QfQ
1 0 X|o
’ R 1 1 X1
Q 19 X 0 ofo
— Q
X 1 11
D —1
] 0O X ofo
G 0 X 11

Assume LENIENT Mux,
propagation delay of Ty

Then output valid when

1. G=1, D stable for Typ,
independently of Q’; or

2. Q=D stable for Tpp,
independently of G; or

3. G=0, Q stable for Tpp,
independently of D

1. 2. 3.
X vi X V2 XX
\
X vi X X vo

Does lenience guarantee a
working latch?

What if D and &
change at about
the same time...

..With a Little Discipline

D Stable
Q 0 .5 w2
D—1 G \

L

To reliably latch V2:
e Apply V2 to D, holding G=1

X_V
4+“— 4> <+——>
TorTon (Tod

“—r <>

, Tserup ThoLp
e After Tpp, V2 appears at Q=Q
e After another Tpp, Q' & D /Dynamic Discipline for our latch: \
both valid for Tyn; will hold _ L :
Q=V2V' d dPD ty of G Teprup = 2Tpp: interval prior to G
inaependentty o transition for which D must
e Set G=0, while Q" & D hold Q=D be stable & valid

* After another Tpp, G=0 and Tuowp = Tpp: interval following G
’ fficient to hold e '
Q are su transition for which D must

Q=V2 independently of D \ be stable & valid /

Let’s Try It Out!

New

State
| | Current . .

> G State Combinational
Logic
Input \/ Output
When G=1, latch is Transparent... Looks like a stupid

... provides a combinational path from D to Q. GPP;Oach to me..

Can’t work without tricky timing constraints on G=1
pulse:

e Must fit within contamination delay of logic
 Must accommodate latch setup, hold times
Want to signal an INSTANT, not an INTERVAL...

Flakey Control Systems
‘.v‘
- How do we

\ ensure
: only one
car gets
VAN through?
Sequence
of values

Gate closed Gate open

Solution: Escapement Strategy (2 gates)

Sequence
of values

Key: at no
Gate 1: open time is there a Gate 1: closed
Gate 2: closed path through Gate 2: open
both gates

(Edge-Triggered) D Register

The gate of this
latch is open
when the clock

lS low *

What d. .
fha:onzejo? D Q D Q o Q

master slave
g’ G > G
The gate of this
CLK latch is open

when the clock
is high

Observations:
* only one latch “transparent” at any time:
 master closed when slave is open
« slave closed when master is open
= no combinational path through register

(the feedback path in one of the master or slave latches is always active)

D-Register Waveforms

D——{D Q* D Q— Q D— D
master slave —
—O G ~ G — CLK—>
CLK
O i | |
p_ LI T1
CLK___ A I
\ &\ =
w I LI
Q f i / i
\ A) '
Y Y

master closed < “ master open
slave open slave closed

Um, about that hold time...

D—D Q ¢ D Q—~Q
master slave
—QO G - G
CLK
D__]
CLK____ | -

| The master’s contamination
delay must meet the hold time
of the slave: top 2 ty s

Slave latch is closing = % must meet setup/hold times
but master latch is opening so ¥ may change

D-Register Timing 1

2tep— +—

Q N
D—D Q—Q
CLK—> CLK

D
tpp: maximum propagation delay, CLK—Q

top: minimum contamination delay, CLK—Q

»d »
| | | o

2tsetrur Zthorp

tsprup: S€tup time

guarantee that D has propagated through feedback path before master
closes
tuoLp: hold time

guarantee master is closed and data is stable before allowing D to
change

Single-clock Synchronous Circuits

S We’ll use registers in a highly constrained way to build
digital systems:

Does that
~~ symbol
register?
K ! Single-clock Synchronous Discipline
 No combinational cycles
l » Single periodic clock signal
C\v shared among all clocked
NG devices

e Only care about value of
register data inputs just before

v rising edge of clock
C\ e Period greater than every
-/ combinational delay + setup time

e Change saved state after
noise-inducing logic

transitions have stopped!

Y

Timing in a Single-clock System

D Q

regl

Qg

D Q

>reg2

CLK

tSETUP,reg2

t; = tepregr t tep,L 2 tHOLD reg2

Questions for register-based
designs:

 how much time for useful work
(i.e. for combinational logic
delay)?

 what happens if there’s no

L combinational logic between

two registers?

 what happens if CLK signal
doesn’t arrive at the two
registers at exactly the
same time (a phenomenon

= (14 2

Model: Discrete Time

State updated every rising clock edge

. Next
/\/ /\ 1 state
> DREG o e >
t
Memo urren .)
Yl state Combinational
ﬁ_h Clock g Logic
Input Output

Active Clock Edges punctuate time ---
e Discrete Clock periods

* Sequences of states

 Simple rules — eg truth tables — relating outputs to

inputs and the current state)

« ABSTRACTION: Finite State Machines (next lecture!)

Sequential Circuit Timing

tepr = 108 A lgf;te
tppr = 3ns P
tsr =208 | 0% /
’ urrent . .
_ ombinational
R 2ns State .
n = Logie
Clock _
tecpL =7 .
t = S5ns !
Input PD,L Output
Questions:

tepr (1 n8) + tep 1(?) 2 ty R(2 nS)
e Constraints on t. for the logic? tepp 2 1 ns

e Minimum clock period? teix 2 tpprttpp Lt tsgr = 100S
e Setup, Hold times for Inputs? Input oL J
tsmpur = tepL * tsr = 7 nS Next State

tymveur = thr - tep = 1 S clk tsRr ‘—'I'—h t
: | "HR

Summary

Basic memory elements: < Se 5

* Feedback, detailed analysis D XXXX XXX
=> basic level-sensitive
devices (eg, latch) Clk

2 Latches => Register 0 XXX

* Dynamic Discipline: <TCD>
constraints on mput timing W

Synchronous 1-clock logic:
 Simple rules for sequential

circuits 1 s — o
. . . . n . —
* Yields clocked circuit with T, - Com'tig;i;clonal s
Ty constraints on input timing

Finite State Machines Cli
Next Lecture Topic!

;E."/\]

