
6.004 Computation Structures L5: Sequential Logic, Slide #1

5. Sequential Logic

6.004x Computation Structures
Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

6.004 Computation Structures L5: Sequential Logic, Slide #2

What if you were given the following design specification:

When the button is pushed:
1) Turn the light on if it is off
2) Turn the light off if it is on

The light should change
state within a second
of the button press

button light

What makes this device different
from those we’ve discussed before?

1. “State” – i.e., the device has memory
2. The output was changed by a input

“event” (pushing a button) rather
than an input “level”

Something We Can’t Build (Yet)

#1

#2

6.004 Computation Structures L5: Sequential Logic, Slide #3

Plan: Build a Sequential Circuit with stored digital STATE –

•  Memory stores CURRENT state, produced at output

•  Combinational Logic computes

•  NEXT state (from input, current state)

•  OUTPUT bits (from input, current state)

•  State changes on LOAD control input

Combinational
Logic

Current
State

Next
State

Input Output

Memory
Device

LOAD

Digital State: What We’d Like to Build

Sequence of values

Trigger
periodically

Needed:
Loadable
Memory

6.004 Computation Structures L5: Sequential Logic, Slide #4

We’ve chosen to encode information using voltages and
we know from physics that we can “store” a voltage as
charge on a capacitor:

Pros:
•  compact – low cost/bit

(on BIG memories)
Cons:

•  complex interface
•  stable? (noise, …)
•  it leaks! ⇒ refresh

To write:
 Drive bit line, turn on access fet,
 force storage cap to new voltage

NFET serves as
access switch VREF

word line

bit line

Memory: Using Capacitors

Suppose we use
feedback to
refresh
continuously? To read:

 precharge bit line, turn on access fet,
 detect (small) change in bit line voltage

C

6.004 Computation Structures L5: Sequential Logic, Slide #5

IDEA: use positive feedback to maintain storage indefinitely.
Our logic gates are built to restore marginal signal levels, so
noise shouldn’t be a problem!

VIN VOUT

Result: a bistable
storage element

Feedback constraint:
VIN = VOUT

VTC for
inverter pair

VIN

VOUT Three solutions:
•  two end-points are stable
•  middle point is metastable

Not affected
by noise

We’ll get back to this!

Memory: Using Feedback

0 1 0 1 0 1

6.004 Computation Structures L5: Sequential Logic, Slide #6

Y

S

B

It’s easy to build a settable storage element (called a
latch) using a lenient MUX:

D0

D1

G

0
0
1
1

D

--
--
0
1

Q’

0
1
--
--

Q

0
1
0
1

“state” signal
appears as both
input and output

Q stable

Q follows D

A

D

G

Q
Q’

Settable Memory Element

Here’s a feedback path,
so it’s no longer a
combinational circuit.

D: data input
G: gate input
Q: state output

S

6.004 Computation Structures L5: Sequential Logic, Slide #7

G

D Q

D

TPD

V1 V2

V2 V1

TPD

G

Q

G=1:
Q follows D

G=0:
Q holds

G=1: Q Follows D, independently of Q’

G=0: Q Holds stable Q’, independently of D

Q
0

1 D

G

Q’

New Device: D Latch

Circuit:

Schematic
Symbol:

BUT… A change in D
or G contaminates
Q, hence Q’ … how
can this possibly
work?

6.004 Computation Structures L5: Sequential Logic, Slide #8

3.

TPD TPD

2.

TPD

1.

0

1 D

G

Q

D V1 V2

V2 V1

G

Q

Assume LENIENT Mux,
propagation delay of TPD

Then output valid when

Q’

Does lenience guarantee a
working latch?

2.  Q=D stable for TPD ,
independently of G; or

1.  G=1, D stable for TPD,
independently of Q’; or

3.  G=0, Q stable for TPD ,
independently of D

G D Q’ Q

1 0 X 0

1 1 X 1

X 0 0 0

X 1 1 1

0 X 0 0

0 X 1 1

A Plea for Lenience

What if D and G
change at about
the same time…

6.004 Computation Structures L5: Sequential Logic, Slide #9

Dynamic Discipline for our latch:

D Stable

0

1

A

D

G

Q

To reliably latch V2:

Q’

•  Apply V2 to D, holding G=1

•  After another TPD, Q’ & D
both valid for TPD; will hold
Q=V2 independently of G

•  Set G=0, while Q’ & D hold Q=D

•  After TPD, V2 appears at Q=Q’

•  After another TPD, G=0 and
Q’ are sufficient to hold
Q=V2 independently of D

D

G

Q

V2

V2

TPD TPD

TSETUP THOLD

TPD

TSETUP = 2TPD: interval prior to G
transition for which D must
be stable & valid

THOLD = TPD: interval following G
transition for which D must
be stable & valid

…With a Little Discipline

6.004 Computation Structures L5: Sequential Logic, Slide #10

Combinational
Logic

G

D Q
Current
State

New
State

Input Output

When G=1, latch is Transparent…

… provides a combinational path from D to Q.

Can’t work without tricky timing constraints on G=1
pulse:

•  Must fit within contamination delay of logic

•  Must accommodate latch setup, hold times

Want to signal an INSTANT, not an INTERVAL…

Let’s Try It Out!

Looks like a stupid
approach to me…

6.004 Computation Structures L5: Sequential Logic, Slide #11

Flakey Control Systems

Gate closed Gate open

Sequence
of values

How do we
ensure
only one
car gets
through?

6.004 Computation Structures L5: Sequential Logic, Slide #12

Solution: Escapement Strategy (2 gates)

Gate 1: open
Gate 2: closed

Sequence
of values

Gate 1

Gate 2

Gate 1: closed
Gate 2: open

Gate 1

Gate 2

Key: at no
time is there a
path through
both gates

6.004 Computation Structures L5: Sequential Logic, Slide #13

G

D Q

G

D Q D

CLK

Q
master slave

Observations:
•  only one latch “transparent” at any time:

•  master closed when slave is open
•  slave closed when master is open

 ⇒ no combinational path through register

The gate of this
latch is open
when the clock
is low

The gate of this
latch is open
when the clock
is high

(the feedback path in one of the master or slave latches is always active)

(Edge-Triggered) D Register

What does
that one do?

0
1
0
1
S

D

G

Q

6.004 Computation Structures L5: Sequential Logic, Slide #14

G

D Q

G

D Q D

CLK

D Q D

CLK

Q
master slave

D

CLK

Q

master closed

D-Register Waveforms

slave open
master open
slave closed

Q

6.004 Computation Structures L5: Sequential Logic, Slide #15

G

D Q

G

D Q D

CLK

Q
master slave

D

CLK

Slave latch is closing ⇒ ☆ must meet setup/hold times
but master latch is opening so ☆ may change

Um, about that hold time…

The master’s contamination
delay must meet the hold time
of the slave: tCD,M ≥ tH,S

6.004 Computation Structures L5: Sequential Logic, Slide #16

CLK

D

Q
D Q D

CLK

Q

≤tPD

tPD: maximum propagation delay, CLK→Q

≥tCD

tCD: minimum contamination delay, CLK→Q
≥tSETUP

tSETUP: setup time
guarantee that D has propagated through feedback path before master
closes

≥tHOLD

tHOLD: hold time
guarantee master is closed and data is stable before allowing D to
change

D-Register Timing 1

6.004 Computation Structures L5: Sequential Logic, Slide #17

Single-clock Synchronous Discipline

• No combinational cycles

• Only care about value of
register data inputs just before
rising edge of clock

• Period greater than every
 combinational delay + setup time
• Change saved state after

noise-inducing logic
transitions have stopped!

We’ll use registers in a highly constrained way to build
digital systems:

• Single periodic clock signal
shared among all clocked
devices

Does that
symbol
register?

Single-clock Synchronous Circuits

6.004 Computation Structures L5: Sequential Logic, Slide #18

œ

CLK

t1

t1 = tCD,reg1 + tCD,L ≥ tHOLD,reg2

L D Q D Q

CLK

reg1 reg2

Questions for register-based
designs:

•  how much time for useful work
(i.e. for combinational logic
delay)?

•  what happens if there’s no
combinational logic between
two registers?

•  what happens if CLK signal
doesn’t arrive at the two
registers at exactly the
same time (a phenomenon
known as “clock skew”)?

t2

t2 = tPD,reg1 + tPD,L + tSETUP,reg2 ≤ tCLK

QR1

tCD,reg1

tCD, L tPD, L

tPD,reg1

QR1

Timing in a Single-clock System

tSETUP,reg2

6.004 Computation Structures L5: Sequential Logic, Slide #19

Active Clock Edges punctuate time ---

•  Discrete Clock periods

•  Sequences of states

•  Simple rules – eg truth tables – relating outputs to
inputs and the current state)

•  ABSTRACTION: Finite State Machines (next lecture!)

Combinational
Logic

Current
State

Next
State

Input Output

DREG
Memory

Clock

Model: Discrete Time

State updated every rising clock edge

6.004 Computation Structures L5: Sequential Logic, Slide #20

Questions:

•  Constraints on tCD for the logic?

•  Minimum clock period?

•  Setup, Hold times for Inputs?

Combinational
Logic

Current
State

Next
State

Input Output

Clock tCD,L = ?
tPD,L = 5ns

tCD,R = 1ns
tPD,R = 3ns
tS,R = 2ns
tH,R = 2ns

tCD,L ≥ 1 ns

tS,INPUT = tPD,L + tS,R = 7 nS
tH,INPUT = tH,R - tCD,L= 1 nS

tCD,R (1 ns) + tCD,L(?) ≥ tH,R(2 ns)

tCLK ≥ tPD,R+tPD,L+ tS,R = 10nS

Sequential Circuit Timing

clk

Next State

tS,R
tH,R

Input tPD,L

tCD,L

6.004 Computation Structures L5: Sequential Logic, Slide #21

Basic memory elements:
•  Feedback, detailed analysis

=> basic level-sensitive
devices (eg, latch)

•  2 Latches => Register
•  Dynamic Discipline:

constraints on input timing
Synchronous 1-clock logic:
•  Simple rules for sequential

circuits
•  Yields clocked circuit with TS,

TH constraints on input timing

Finite State Machines
Next Lecture Topic!

>tS >tH

Clk

Q

D

>tCD
<tPD

D Q

D Q

Out In

Clk

Combinational
logic

Summary

