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Instruction-level Parallelism
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Processor Performance

• Pipelining lowers tCLK. What about CPI?

• CPI = CPIideal + CPIstall
– CPIideal: cycles per instruction if no stall

• CPIstall contributors
– Data hazards
– Control hazards: branches, exceptions
– Memory latency: cache misses
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Program
Time =
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5-Stage Pipelined Processors

• Advantages
– CPIideal is 1 (pipelining)
– Simple, elegant

• Still used in ARM & MIPS processors

• Room for improvement
– Upper performance bound is CPI=1
– High-latency instructions not handled well

• 1 stage for accesses to large caches or multiplier
• Long clock cycle time 

– Unnecessary stalls due to rigid pipeline
• If one instruction stalls, anything behind it stalls
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Improving 5-stage Pipeline Performance

• Lower tCLK: deeper pipelines
– Overlap more instructions
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Limits to Pipeline Depth

• Each pipeline stage introduces some overhead (O)
– Propagation delay of pipeline registers
– Setup and hold times
– Clock skew
– Inequalities in work per stage

• Cannot break up work into stages at
arbitrary points

• If original tCLK was T,  with N stages tCLK is T/N+O
– If N→¥, speedup = T / (T/N+O) → T/O

• Assuming that CPI stays constant
– Eventually overhead dominates and deeper pipelines have 

diminishing returns

T

T/N O T/N O
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Improving 5-stage Pipeline Performance
• Lower tCLK: deeper pipelines

– Overlap more instructions
• Higher CPIideal: wider pipelines

– Each pipeline stage processes multiple instructions
• Lower CPIstall: out-of-order execution

– Execute each instruction as soon as its source operands 
are available

• Balance conflicting goals
– Deeper & wider pipelines Þ more control hazards
– Branch prediction 

• It all works because of instruction-level parallelism 
(ILP)
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loop: 

LD(n, r1) 

CMPLT(r31, r1, r2) 

BF(r2, done) 

LD(r, r2) LD(n,r1)  LD(n,r4) 

MUL(r1, r2, r3) SUBC(r4, 1, r4) 

ST(r3, r) ST(r4, n) BR(loop) 

done:

Instruction Level Parallelism (ILP)

Sequential Code “Safe” Parallel Code

loop: 
LD(n, r1) 
CMPLT(r31, r1, r2) 
BF(r2, done) 
LD(r, r2) 
LD(n,r1) 
MUL(r1, r2, r3) 
ST(r3, r) 
LD(n,r4) 
SUBC(r4, 1, r4) 
ST(r4, n)
BR(loop) 

done:
These last two can 
be solved with 
renaming, i.e., giving 
each result a unique 
register name.

Read-after-write
Write-after-write
Write-after-read
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Wider or Superscalar Pipelines

• Each stage operates on up to N 
instructions each clock cycle
– Known as wide or superscalar pipelines
– CPIideal = 1/N

• Options (from simpler to harder)
– One integer and one floating-point 

instruction
– Any N=2 instructions
– Any N=4 instructions
– Any N=? Instructions

• What are the limits?

Fetch

Decode
Read Registers

ALU

Memory

Write Registers

See http://people.ee.duke.edu/~sorin/ece252/lectures/3-superscalar.pdf
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A Modern Out-of-Order Superscalar Processor
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Decode/Rename
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Reorder Buffer

For OoO: 
determine when 
operands are 
ready for inst.

Needed to 
avoid high 
CPISTALL on 
deep pipelines

Make sure side-
effects happen 
in correct 
order!
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Limits To Single-Processor Performance

• Pipeline depth: getting close to pipelining limits
– Clocking overheads, CPI degradation

• Branch prediction & memory latency limit the 
practical benefits of out-of-order execution

• Power grows superlinearly with higher frequency & 
more OoO logic

• Extreme design complexity

• Limited ILP à Must exploit DLP and TLP
– Data-Level Parallelism: Vector extensions, GPUs
– Thread-Level Parallelism: Multiple threads and cores
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Data-level Parallelism
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Data-Level Parallelism

• Same operation applied to multiple data elements

• Exploit with vector processors or vector ISA extensions

» Each datapath has its own local storage (register file)
» All datapaths execute the same instruction
» Memory access with vector loads and stores + wide memory port

Reg File

ALU

PC

+1 or Branch

Reg File

ALU

Reg File

ALU

Reg File

ALU

Data
Memory

Instruction
Memory

addr

addr

data

data

Addressing
Unit

Control

for (int i = 0; i < 16; i++) x[i] = a[i] + b[i];
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Vector Code Example

CMOVE(16, R0)
loop: LD(R1, 0, R4)

LD(R2, 0, R5)
ADDC(R1, 4, R1)
ADDC(R2, 4, R2)
ADD(R4, R5, R6)
ST(R6, 0, R3)
ADDC(R3, 4, R3)
SUBC(R0, 1, R1)
BNE(R0, loop)

LD.V(R1, 0, V1)
LD.V(R2, 0, V2) 
ADD.V(V1, V2, V3)
ST.V(V3, 0, R3)

for (i = 0; i < 16; i++)  x[i] = a[i] + b[i];

Beta assembly Equivalent vector assembly

# of cycles = 1 + 10*15 + 9 = 160 # of cycles = 4
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Data-dependent Vector Operations

LD.V(R1, 0, V1)  // load a[i]
LD.V(R2, 0, V2)  // load b[i]
LD.V(R3, 0, V3)  // load c[i]
CMPLT.V(V1, V2)  // set local predicate flags

// predicated instructions perform the
// indicated operation if the local predicate
// flag istrue or isfalse.
ADDC.V.iftrue(V3, 3, V3)

for (i = 0; i < 16; i++)
if (a[i] < b[i]) c[i] = c[i] + 3;

Equivalent vector assembly
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Vector Processing Implementations
• Advantages of vector ISAs:

– Compact: 1 instruction defines N operations
– Parallel: N operations are (data) parallel and independent
– Expressive: Memory operations describe regular patterns

• Modern CPUs: Vector extensions & wider registers
– SSE: 128-bit operands (4x32-bit or 2x64-bit)
– AVX (2011): 256-bit operands (8x32-bit or 4x64-bit)
– AVX-512 (upcoming): 512-bit operands
– Explicit parallelism, extracted at compile time (vectorization)

• GPUs: Designed for data parallelism from the ground up
– 32 to 64 32-bit floating-point elements
– Implicit parallelism, scalar binary with multiple instances 

executed in lockstep (and regrouped dynamically)
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Thread-level Parallelism
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Multicore Processors

If applications have a lot of parallelism, using a larger 
number of simpler cores is more efficient!

Performance
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) Cost/perf curve of
possible core designs

High-perf,
expensive
core

Moderate perf,
efficient core

2 cores

4 cores

What is the optimal tradeoff between core cost and number of cores?
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Amdahl’s Law

• Speedup= timewithout enhancement / timewith enhancement

• Suppose an enhancement speeds up a fraction f of 
a task by a factor of S
timenew = timeold·( (1-f) + f/S )
Soverall = timeold / timenew = 1 / ( (1-f) + f/S )

f(1 - f)

(1 - f)

timenew

f/S

timeold

Corollary: Make the common case fast
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Amdahl’s Law and Parallelism

What is the maximum speedup you can get by 
running on a multicore machine?

Soverall = 1 / ( (1-f) + f/S )

f = 0.9, S=∞ à Soverall = 10

What f do you need to use a 1000-core machine well?

Soverall 1 / (1-f)lim

S→∞

Say you write a program that can do 90% of the work 
in parallel, but the other 10% is sequential

Soverall = 500 à f = 0.998
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Thread-Level Parallelism

• Divide computation among multiple threads of 
execution
– Each thread executes a different instruction stream
– More flexible than vector processing, but more expensive

• Communication models:
– Shared memory:

• Single address space
• Implicit communication by

memory loads & stores
– Message passing:

• Separate address spaces
• Explicit communication by

sending and receiving messages

Mem Mem Mem

Network

Mem
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Shared Memory & Caches
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Multicore Caches

• Multicores have multiple private caches for performance
• We want the semantics of a single shared memory

Core 0

Main Memory (x=1, y=2)

Cache
(x=1, y=2)

Core 1

Cache
(x=1, y=2)

Core 2

Cache

Core 3

Cache

Memory
bus

Thread A (C0)
x = 3;
print(y);

Thread B (C1)
y = 4;
print(x);

Consider the following trivial threads running on C0 and C1:
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What Are the Possible Outcomes?

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2 1
x=3; y=4; print(y); print(x); 2 1
x=3; y=4; print(x); print(y); 2 1
y=4; x=3; print(x); print(y); 2 1
y=4; x=3; print(y); print(x); 2 1
y=4; print(x); x=3; print(y); 2 1

Plausible execution sequences:

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

$1: x = 1
y = 2

$2: x = 1
y = 2

Hey, we get the 
same answer 
every time… Let’s 
go build it!

X 3
X 4
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Uniprocessor Outcome

But, what are the possible outcomes if we ran Thread A and
Thread B on a single timed-shared processor?

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2 3
x=3; y=4; print(y); print(x); 4 3
x=3; y=4; print(x); print(y); 4 3
y=4; x=3; print(x); print(y); 4 3
y=4; x=3; print(y); print(x); 4 3
y=4; print(x); x=3; print(y); 4 1

Plausible Uniprocessor execution sequences:

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

Notice that 
the outcome 
2, 1 does not 
appear in 
this list!
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Sequential Consistency

Semantic constraint:

Result of executing N parallel threads should correspond to 
some interleaved execution on a single processor. 

Possible printed values: 2, 3;   4, 3;   4, 1.
(each corresponds to at least one interleaved execution)

IMPOSSIBLE printed values:  2, 1
(corresponds to NO valid interleaved execution).

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

Shared Memory
int x=1, y=2;

Weren’t 
caches 
supposed to 
be invisible 
to programs?
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Alternatives to Sequential Consistency?

ALTERNATIVE MEMORY SEMANTICS:
“WEAK” consistency

EASIER GOAL: Memory operations from each thread appear to 
be performed in order issued by that thread ;

Memory operations from different threads may overlap in 
arbitrary ways (not necessarily consistent with any 
interleaving).

ALTERNATIVE APPROACH:
• Weak consistency, by default;

• MEMORY BARRIER instruction: stalls thread until all 
previous memory operations have completed.

See http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
for a very readable discussion of memory semantics in multicore systems.
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Cache Coherence
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Fix: “Snoopy” Cache Coherence Protocol

Core 0

Main Memory (x=1, y=2)

Cache
(x=1, y=2)

Core 1

Cache
(x=1, y=2)

Core 2

Cache

Core 3

Cache

Idea: Have caches communicate over shared bus, letting 
other caches know when a shared cached value changes

“Snoopy”
bus

Goal: minimize contention for snoopy bus by communicating 
only when necessary, i.e., when there’s a shared value.
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Example: MESI Cache Coherence Protocol

• Modified The cache line is present only in the current cache, and 
is dirty; it has been modified from the value in main memory. The 
cache is required to write the data back to main memory at some 
time in the future, before permitting any other read of the (no 
longer valid) main memory state. 

• Exclusive The cache line is present only in the current cache, but 
is clean; it matches main memory. It may be changed to the 
Shared state at any time, in response to a bus read request. 
Alternatively, it may be changed to the Modified state when writing 
to it.

• Shared Indicates that this cache line may be stored in other 
caches of the machine and is clean; it matches the main memory. 
The line may be discarded (changed to the Invalid state) at any 
time.  Writes to SHARED cache lines get special handling…

• Invalid Indicates that this cache line is invalid (unused).

https://en.wikipedia.org/wiki/MESI_protocol

State Tag DataCache line:
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The Cache Has Two Customers!

State Tag DataCache line:

Read
Write Store queue

CPU

Queue up write misses,
STORE_BARRIER inst 
waits until store queue 
is empty

Queue up invalidates,
READ_BARRIER inst 
waits until invalidate 
queue is empty

Read
Read w/ intent to modify
Write
Invalidate
Flags:

shared

Invalidate queue
Snoopy bus
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MESI Activity Diagram

CC0: https://en.wikipedia.org/wiki/MESI_protocol#/media/File:MESI_protocol_activity_diagram.png

Intel adds “F” 
state to 
choose which 
cache 
responds
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Cache Coherence in Action

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

$0: [S] x =1, [S] y = 2 $1: [S] x =1, [S] y = 2

1. x = 3  → $0 sends invalidate x, update cache
$0: [M] x =3, [S] y = 2 $1: [S] y = 2

2. y = 4  → $1 sends invalidate y, update cache
$0: [M] x =3 $1: [M] y = 4

3. print(x)  → $1 read x, $0 responds with Shared flag, update mem
$0: [S] x =3 $1: [S] x = 3, [M] y = 4

4. print(y)  → $0 read y, $1 responds with Shared flag, update mem
$0: [S] x =3, [S] y = 4 $1: [S] x = 3, [S] y = 4

1 2
34
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Parallel Processing Summary
Prospects for future CPU architectures:

Pipelining - Well understood, but mined-out
Superscalar - At its practical limits
Vector/GPU - Useful for special applications

Prospects for future Computer System architectures:
Single-thread limits: forcing multicores, parallelism

Brains work well, with dismal clock
rates … parallelism?

Needed: NEW models, NEW ideas, NEW approaches

FINAL ANSWER:  It’s up to YOUR generation!
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6.004 Wrap-up
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From Atoms to Amazon

Atoms
Materials

Devices

Digital Circuits

FSMs + Datapaths
Programmable architectures

Operating System

Parallelism & communication

Data and Control structures
Interpretation & Compilation

Virtual Memory

Insulator, conductor,
semiconductor

Lumped component model

Instruction set + memory

Programming languages

Virtual Machines

Cloud

Bits, Logic gates

6.
00

4
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The Power of Engineering Abstractions

Insulator, conductor,
semiconductor

Lumped component model

Instruction set + memory

Programming languages

Virtual Machines

Cloud

Bits, Logic gates

Good abstractions allow us to 
reason about behavior while 
shielding us from the details 
of the implementation.

Corollary: implementation 
technologies can evolve while 
preserving the engineering 
investment at higher levels.

Leads to hierarchical design:
• Limited complexity at each 

level ⇒ shorten design 
time, easier to verify

• Reusable building blocks
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6.004: The Big Lesson

Engineering Abstractions:
– Understanding of their technical 

underpinnings
– Respect for their value
– Techniques for using them

But, most importantly:
The self assurance to discard them, in 
favor of new abstractions!

Good engineers use abstractions;
GREAT engineers create them!

You’ve built, debugged, understood a 
complex computer from FETs to OS… 
what have you learned?
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Things to look forward to…
6.004 is only an appetizer!

Algorithms
Arithmetic
Signal Processing
Language 
implementation

Processors
Superscalars
Deep pipelines
Multicores

Systems Software
Storage
Virtual Machines
Networking

Languages & Models
Python/Java/Ruby/…
Objects/Streams/Aspects
Networking

Tools
Design Languages
FPGA prototyping
Timing Analyzers
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Thinking Outside the Box

Will computers always 
look and operate the way 
computers do today?

Some things to question:
– Well-defined system 
“state”

– Silicon-based logic

– Logic at all

– Programming Si
Boolean

LogicMOSFET
transistors

Synchronous
Clocked
Systems

Von Neumann
Architectures

?
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THE END!

Computing is slow…
The future is in your hands.
Start innovating!

-- 6.004 Staff

The only problem
with Haiku is that you just 
get started and then

-- Roger McGough 


