
6.004 Computation Structures L21: Parallel Processing, Slide #1

21. Parallel Processing

6.004x Computation Structures
Part 3 – Computer Organization

Copyright © 2016 MIT EECS

6.004 Computation Structures L21: Parallel Processing, Slide #2

Instruction-level Parallelism

6.004 Computation Structures L21: Parallel Processing, Slide #3

Processor Performance

• Pipelining lowers tCLK. What about CPI?

• CPI = CPIideal + CPIstall
– CPIideal: cycles per instruction if no stall

• CPIstall contributors
– Data hazards
– Control hazards: branches, exceptions
– Memory latency: cache misses

Cycle
Time

nInstructio
Cycles

Program
nsInstructio

Program
Time =

CPI tCLK

6.004 Computation Structures L21: Parallel Processing, Slide #4

5-Stage Pipelined Processors

• Advantages
– CPIideal is 1 (pipelining)
– Simple, elegant

• Still used in ARM & MIPS processors

• Room for improvement
– Upper performance bound is CPI=1
– High-latency instructions not handled well

• 1 stage for accesses to large caches or multiplier
• Long clock cycle time

– Unnecessary stalls due to rigid pipeline
• If one instruction stalls, anything behind it stalls

IF

WB

RF

ALU

MEM

6.004 Computation Structures L21: Parallel Processing, Slide #5

Improving 5-stage Pipeline Performance

• Lower tCLK: deeper pipelines
– Overlap more instructions

6.004 Computation Structures L21: Parallel Processing, Slide #6

Limits to Pipeline Depth

• Each pipeline stage introduces some overhead (O)
– Propagation delay of pipeline registers
– Setup and hold times
– Clock skew
– Inequalities in work per stage

• Cannot break up work into stages at
arbitrary points

• If original tCLK was T, with N stages tCLK is T/N+O
– If N→¥, speedup = T / (T/N+O) → T/O

• Assuming that CPI stays constant
– Eventually overhead dominates and deeper pipelines have

diminishing returns

T

T/N O T/N O

6.004 Computation Structures L21: Parallel Processing, Slide #7

Improving 5-stage Pipeline Performance
• Lower tCLK: deeper pipelines

– Overlap more instructions
• Higher CPIideal: wider pipelines

– Each pipeline stage processes multiple instructions
• Lower CPIstall: out-of-order execution

– Execute each instruction as soon as its source operands
are available

• Balance conflicting goals
– Deeper & wider pipelines Þ more control hazards
– Branch prediction

• It all works because of instruction-level parallelism
(ILP)

6.004 Computation Structures L21: Parallel Processing, Slide #8

loop:

LD(n, r1)

CMPLT(r31, r1, r2)

BF(r2, done)

LD(r, r2) LD(n,r1) LD(n,r4)

MUL(r1, r2, r3) SUBC(r4, 1, r4)

ST(r3, r) ST(r4, n) BR(loop)

done:

Instruction Level Parallelism (ILP)

Sequential Code “Safe” Parallel Code

loop:
LD(n, r1)
CMPLT(r31, r1, r2)
BF(r2, done)
LD(r, r2)
LD(n,r1)
MUL(r1, r2, r3)
ST(r3, r)
LD(n,r4)
SUBC(r4, 1, r4)
ST(r4, n)
BR(loop)

done:
These last two can
be solved with
renaming, i.e., giving
each result a unique
register name.

Read-after-write
Write-after-write
Write-after-read

𝑟 =# 𝑖
%

&'(

6.004 Computation Structures L21: Parallel Processing, Slide #9

Wider or Superscalar Pipelines

• Each stage operates on up to N
instructions each clock cycle
– Known as wide or superscalar pipelines
– CPIideal = 1/N

• Options (from simpler to harder)
– One integer and one floating-point

instruction
– Any N=2 instructions
– Any N=4 instructions
– Any N=? Instructions

• What are the limits?

Fetch

Decode
Read Registers

ALU

Memory

Write Registers

See http://people.ee.duke.edu/~sorin/ece252/lectures/3-superscalar.pdf

6.004 Computation Structures L21: Parallel Processing, Slide #10

A Modern Out-of-Order Superscalar Processor

I-Cache

Fetch Unit

Instruction Buffer

Decode/Rename

Dispatch

Branch
Predict

Int Int FP FP L/S L/S

Reservation Stations

Write Buffer

Retire

D-Cache

In
 O

rd
er

In
 O

rd
er

O
ut

 O
f O

rd
er

Reorder Buffer

For OoO:
determine when
operands are
ready for inst.

Needed to
avoid high
CPISTALL on
deep pipelines

Make sure side-
effects happen
in correct
order!

6.004 Computation Structures L21: Parallel Processing, Slide #11

Limits To Single-Processor Performance

• Pipeline depth: getting close to pipelining limits
– Clocking overheads, CPI degradation

• Branch prediction & memory latency limit the
practical benefits of out-of-order execution

• Power grows superlinearly with higher frequency &
more OoO logic

• Extreme design complexity

• Limited ILP à Must exploit DLP and TLP
– Data-Level Parallelism: Vector extensions, GPUs
– Thread-Level Parallelism: Multiple threads and cores

6.004 Computation Structures L21: Parallel Processing, Slide #12

Data-level Parallelism

6.004 Computation Structures L21: Parallel Processing, Slide #13

Data-Level Parallelism

• Same operation applied to multiple data elements

• Exploit with vector processors or vector ISA extensions

» Each datapath has its own local storage (register file)
» All datapaths execute the same instruction
» Memory access with vector loads and stores + wide memory port

Reg File

ALU

PC

+1 or Branch

Reg File

ALU

Reg File

ALU

Reg File

ALU

Data
Memory

Instruction
Memory

addr

addr

data

data

Addressing
Unit

Control

for (int i = 0; i < 16; i++) x[i] = a[i] + b[i];

6.004 Computation Structures L21: Parallel Processing, Slide #14

Vector Code Example

CMOVE(16, R0)
loop: LD(R1, 0, R4)

LD(R2, 0, R5)
ADDC(R1, 4, R1)
ADDC(R2, 4, R2)
ADD(R4, R5, R6)
ST(R6, 0, R3)
ADDC(R3, 4, R3)
SUBC(R0, 1, R1)
BNE(R0, loop)

LD.V(R1, 0, V1)
LD.V(R2, 0, V2)
ADD.V(V1, V2, V3)
ST.V(V3, 0, R3)

for (i = 0; i < 16; i++) x[i] = a[i] + b[i];

Beta assembly Equivalent vector assembly

of cycles = 1 + 10*15 + 9 = 160 # of cycles = 4

6.004 Computation Structures L21: Parallel Processing, Slide #15

Data-dependent Vector Operations

LD.V(R1, 0, V1) // load a[i]
LD.V(R2, 0, V2) // load b[i]
LD.V(R3, 0, V3) // load c[i]
CMPLT.V(V1, V2) // set local predicate flags

// predicated instructions perform the
// indicated operation if the local predicate
// flag istrue or isfalse.
ADDC.V.iftrue(V3, 3, V3)

for (i = 0; i < 16; i++)
if (a[i] < b[i]) c[i] = c[i] + 3;

Equivalent vector assembly

6.004 Computation Structures L21: Parallel Processing, Slide #16

Vector Processing Implementations
• Advantages of vector ISAs:

– Compact: 1 instruction defines N operations
– Parallel: N operations are (data) parallel and independent
– Expressive: Memory operations describe regular patterns

• Modern CPUs: Vector extensions & wider registers
– SSE: 128-bit operands (4x32-bit or 2x64-bit)
– AVX (2011): 256-bit operands (8x32-bit or 4x64-bit)
– AVX-512 (upcoming): 512-bit operands
– Explicit parallelism, extracted at compile time (vectorization)

• GPUs: Designed for data parallelism from the ground up
– 32 to 64 32-bit floating-point elements
– Implicit parallelism, scalar binary with multiple instances

executed in lockstep (and regrouped dynamically)

6.004 Computation Structures L21: Parallel Processing, Slide #17

Thread-level Parallelism

6.004 Computation Structures L21: Parallel Processing, Slide #18

Multicore Processors

If applications have a lot of parallelism, using a larger
number of simpler cores is more efficient!

Performance

C
os

t
(a

re
a,

en
er

gy
…

) Cost/perf curve of
possible core designs

High-perf,
expensive
core

Moderate perf,
efficient core

2 cores

4 cores

What is the optimal tradeoff between core cost and number of cores?

6.004 Computation Structures L21: Parallel Processing, Slide #19

Amdahl’s Law

• Speedup= timewithout enhancement / timewith enhancement

• Suppose an enhancement speeds up a fraction f of
a task by a factor of S
timenew = timeold·((1-f) + f/S)
Soverall = timeold / timenew = 1 / ((1-f) + f/S)

f(1 - f)

(1 - f)

timenew

f/S

timeold

Corollary: Make the common case fast

6.004 Computation Structures L21: Parallel Processing, Slide #20

Amdahl’s Law and Parallelism

What is the maximum speedup you can get by
running on a multicore machine?

Soverall = 1 / ((1-f) + f/S)

f = 0.9, S=∞ à Soverall = 10

What f do you need to use a 1000-core machine well?

Soverall 1 / (1-f)lim

S→∞

Say you write a program that can do 90% of the work
in parallel, but the other 10% is sequential

Soverall = 500 à f = 0.998

6.004 Computation Structures L21: Parallel Processing, Slide #21

Thread-Level Parallelism

• Divide computation among multiple threads of
execution
– Each thread executes a different instruction stream
– More flexible than vector processing, but more expensive

• Communication models:
– Shared memory:

• Single address space
• Implicit communication by

memory loads & stores
– Message passing:

• Separate address spaces
• Explicit communication by

sending and receiving messages

Mem Mem Mem

Network

Mem

6.004 Computation Structures L21: Parallel Processing, Slide #22

Shared Memory & Caches

6.004 Computation Structures L21: Parallel Processing, Slide #23

Multicore Caches

• Multicores have multiple private caches for performance
• We want the semantics of a single shared memory

Core 0

Main Memory (x=1, y=2)

Cache
(x=1, y=2)

Core 1

Cache
(x=1, y=2)

Core 2

Cache

Core 3

Cache

Memory
bus

Thread A (C0)
x = 3;
print(y);

Thread B (C1)
y = 4;
print(x);

Consider the following trivial threads running on C0 and C1:

6.004 Computation Structures L21: Parallel Processing, Slide #24

What Are the Possible Outcomes?

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2 1
x=3; y=4; print(y); print(x); 2 1
x=3; y=4; print(x); print(y); 2 1
y=4; x=3; print(x); print(y); 2 1
y=4; x=3; print(y); print(x); 2 1
y=4; print(x); x=3; print(y); 2 1

Plausible execution sequences:

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

$1: x = 1
y = 2

$2: x = 1
y = 2

Hey, we get the
same answer
every time… Let’s
go build it!

X 3
X 4

6.004 Computation Structures L21: Parallel Processing, Slide #25

Uniprocessor Outcome

But, what are the possible outcomes if we ran Thread A and
Thread B on a single timed-shared processor?

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2 3
x=3; y=4; print(y); print(x); 4 3
x=3; y=4; print(x); print(y); 4 3
y=4; x=3; print(x); print(y); 4 3
y=4; x=3; print(y); print(x); 4 3
y=4; print(x); x=3; print(y); 4 1

Plausible Uniprocessor execution sequences:

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

Notice that
the outcome
2, 1 does not
appear in
this list!

6.004 Computation Structures L21: Parallel Processing, Slide #26

Sequential Consistency

Semantic constraint:

Result of executing N parallel threads should correspond to
some interleaved execution on a single processor.

Possible printed values: 2, 3; 4, 3; 4, 1.
(each corresponds to at least one interleaved execution)

IMPOSSIBLE printed values: 2, 1
(corresponds to NO valid interleaved execution).

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

Shared Memory
int x=1, y=2;

Weren’t
caches
supposed to
be invisible
to programs?

6.004 Computation Structures L21: Parallel Processing, Slide #27

Alternatives to Sequential Consistency?

ALTERNATIVE MEMORY SEMANTICS:
“WEAK” consistency

EASIER GOAL: Memory operations from each thread appear to
be performed in order issued by that thread ;

Memory operations from different threads may overlap in
arbitrary ways (not necessarily consistent with any
interleaving).

ALTERNATIVE APPROACH:
• Weak consistency, by default;

• MEMORY BARRIER instruction: stalls thread until all
previous memory operations have completed.

See http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2010.07.23a.pdf
for a very readable discussion of memory semantics in multicore systems.

6.004 Computation Structures L21: Parallel Processing, Slide #28

Cache Coherence

6.004 Computation Structures L21: Parallel Processing, Slide #29

Fix: “Snoopy” Cache Coherence Protocol

Core 0

Main Memory (x=1, y=2)

Cache
(x=1, y=2)

Core 1

Cache
(x=1, y=2)

Core 2

Cache

Core 3

Cache

Idea: Have caches communicate over shared bus, letting
other caches know when a shared cached value changes

“Snoopy”
bus

Goal: minimize contention for snoopy bus by communicating
only when necessary, i.e., when there’s a shared value.

6.004 Computation Structures L21: Parallel Processing, Slide #30

Example: MESI Cache Coherence Protocol

• Modified The cache line is present only in the current cache, and
is dirty; it has been modified from the value in main memory. The
cache is required to write the data back to main memory at some
time in the future, before permitting any other read of the (no
longer valid) main memory state.

• Exclusive The cache line is present only in the current cache, but
is clean; it matches main memory. It may be changed to the
Shared state at any time, in response to a bus read request.
Alternatively, it may be changed to the Modified state when writing
to it.

• Shared Indicates that this cache line may be stored in other
caches of the machine and is clean; it matches the main memory.
The line may be discarded (changed to the Invalid state) at any
time. Writes to SHARED cache lines get special handling…

• Invalid Indicates that this cache line is invalid (unused).

https://en.wikipedia.org/wiki/MESI_protocol

State Tag DataCache line:

6.004 Computation Structures L21: Parallel Processing, Slide #31

The Cache Has Two Customers!

State Tag DataCache line:

Read
Write Store queue

CPU

Queue up write misses,
STORE_BARRIER inst
waits until store queue
is empty

Queue up invalidates,
READ_BARRIER inst
waits until invalidate
queue is empty

Read
Read w/ intent to modify
Write
Invalidate
Flags:

shared

Invalidate queue
Snoopy bus

6.004 Computation Structures L21: Parallel Processing, Slide #32

MESI Activity Diagram

CC0: https://en.wikipedia.org/wiki/MESI_protocol#/media/File:MESI_protocol_activity_diagram.png

Intel adds “F”
state to
choose which
cache
responds

6.004 Computation Structures L21: Parallel Processing, Slide #33

Cache Coherence in Action

Thread A
x = 3;
print(y);

Thread B
y = 4;
print(x);

$0: [S] x =1, [S] y = 2 $1: [S] x =1, [S] y = 2

1. x = 3 → $0 sends invalidate x, update cache
$0: [M] x =3, [S] y = 2 $1: [S] y = 2

2. y = 4 → $1 sends invalidate y, update cache
$0: [M] x =3 $1: [M] y = 4

3. print(x) → $1 read x, $0 responds with Shared flag, update mem
$0: [S] x =3 $1: [S] x = 3, [M] y = 4

4. print(y) → $0 read y, $1 responds with Shared flag, update mem
$0: [S] x =3, [S] y = 4 $1: [S] x = 3, [S] y = 4

1 2
34

6.004 Computation Structures L21: Parallel Processing, Slide #34

Parallel Processing Summary
Prospects for future CPU architectures:

Pipelining - Well understood, but mined-out
Superscalar - At its practical limits
Vector/GPU - Useful for special applications

Prospects for future Computer System architectures:
Single-thread limits: forcing multicores, parallelism

Brains work well, with dismal clock
rates … parallelism?

Needed: NEW models, NEW ideas, NEW approaches

FINAL ANSWER: It’s up to YOUR generation!

6.004 Computation Structures L21: Parallel Processing, Slide #35

6.004 Wrap-up

6.004 Computation Structures L21: Parallel Processing, Slide #36

From Atoms to Amazon

Atoms
Materials

Devices

Digital Circuits

FSMs + Datapaths
Programmable architectures

Operating System

Parallelism & communication

Data and Control structures
Interpretation & Compilation

Virtual Memory

Insulator, conductor,
semiconductor

Lumped component model

Instruction set + memory

Programming languages

Virtual Machines

Cloud

Bits, Logic gates

6.
00

4

6.004 Computation Structures L21: Parallel Processing, Slide #37

The Power of Engineering Abstractions

Insulator, conductor,
semiconductor

Lumped component model

Instruction set + memory

Programming languages

Virtual Machines

Cloud

Bits, Logic gates

Good abstractions allow us to
reason about behavior while
shielding us from the details
of the implementation.

Corollary: implementation
technologies can evolve while
preserving the engineering
investment at higher levels.

Leads to hierarchical design:
• Limited complexity at each

level ⇒ shorten design
time, easier to verify

• Reusable building blocks

6.004 Computation Structures L21: Parallel Processing, Slide #38

6.004: The Big Lesson

Engineering Abstractions:
– Understanding of their technical

underpinnings
– Respect for their value
– Techniques for using them

But, most importantly:
The self assurance to discard them, in
favor of new abstractions!

Good engineers use abstractions;
GREAT engineers create them!

You’ve built, debugged, understood a
complex computer from FETs to OS…
what have you learned?

< P C > + 4 + C*4

A S E L 01

D ata M em ory

R D

W D

A d r

R /W

W D S E L0 1 2

W A
R c < 2 5 :2 1 > 0

1
XP

P C S E L

P C

J T

+ 4

Ins truction

M em ory

A

D

R b: < 1 5 :1 1 >R a < 2 0 :1 6 >

R A 2 S E L

R c < 2 5 :2 1 >

+

R egis ter

F ile

R A 1 R A 2

R D 1 R D 2

B S E L01

C : < 1 5 :0 >

C : < 1 5 :0 >
sign-extend ed

Z

A LU

A B

J T

W A
W D

W E

C : < 1 5 :0 > < < 2

sign-extend ed

A LU F N

C ontrol Logic

Z

A S E L

B S E L

P C S E L

R A 2 S E L

W D S E L

A LU F N

W r

< P C > + 4

0 1

W r

01234

XA d r

ILL

O P

W A S E L

W A S E L

IR Q

W E R F

W E R F

0 0

MEM

MEM

CPU

DISK I/O I/
O

L2 $

Graphics
I/O

“AGP” bus

6.004 Computation Structures L21: Parallel Processing, Slide #39

Things to look forward to…
6.004 is only an appetizer!

Algorithms
Arithmetic
Signal Processing
Language
implementation

Processors
Superscalars
Deep pipelines
Multicores

Systems Software
Storage
Virtual Machines
Networking

Languages & Models
Python/Java/Ruby/…
Objects/Streams/Aspects
Networking

Tools
Design Languages
FPGA prototyping
Timing Analyzers

6.004 Computation Structures L21: Parallel Processing, Slide #40

Thinking Outside the Box

Will computers always
look and operate the way
computers do today?

Some things to question:
– Well-defined system
“state”

– Silicon-based logic

– Logic at all

– Programming Si
Boolean

LogicMOSFET
transistors

Synchronous
Clocked
Systems

Von Neumann
Architectures

?

6.004 Computation Structures L21: Parallel Processing, Slide #41

THE END!

Computing is slow…
The future is in your hands.
Start innovating!

-- 6.004 Staff

The only problem
with Haiku is that you just
get started and then

-- Roger McGough

