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Universality? 

•  Recall: We say a set of Boolean gates is universal if 
we can implement any Boolean function using only 
gates from that set. 

 
•  What problems can we solve with a von Neumann 

computer? (e.g., the Beta) 
–  Everything that FSMs can solve? 

–  Every problem? 
–  Does it depend on the ISA? 

 

•  Needed: a mathematical model of computation 
–  Prove what can be computed, what can’t 
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Models of Computation 

The roots of computer science stem from 
the evaluation of many alternative 
mathematical “models” of computation to 
determine the classes of computations 
each could represent. 

An elusive goal was to find a universal 
model, capable of representing all 
practical computations... 

• switches 

• gates 

• combinational 
logic 

• memories 

• FSMs 

Are FSMs the ultimate 
digital computing 

device? 

We’ve got FSMs… 
what else do we need? 
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FSM Limitations 
Despite their usefulness and flexibility, there are common 
problems that cannot be solved by any FSM. For instance: 

Paren 
Checker 

“(()())”	 OK	

Paren 
Checker 

“(())())”	 Nix	

Well-formed Parentheses Checker: 

Given any string of coded left & 
right parens, outputs 1 if it is 
balanced, else 0. 

Simple, easy to describe. 

PROBLEM: Requires arbitrarily many states, 
depending on input.   Must "COUNT" 
unmatched  left parens. An FSM can only 
keep track of a finite number of unmatched 
parens: for every FSM, we can find a string it 
can’t check. 

NO! 

Alan Turing 

I know how 
to fix that! 

Can this problem be solved using an FSM??? 



6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #21 

Turing Machines 

Alan Turing was one of a group 
of researchers studying 
alternative models of 
computation. 
 
He proposed a conceptual model 
consisting of an FSM combined 
with an infinite digital tape that 
could be read and written at 
each step. 
• encode input as symbols on tape 
• FSM reads tape/writes symbols/ 
changes state until it halts 

• Answer encoded on tape 
 
Turing’s model (like others of the 
time) solves the "FINITE" problem 
of FSMs. 

S1 

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

S2 

0,(1,R) 

0,(1,L) 

1,Halt 

1,(1,L) 

Bounded tape configuration 
can be expressed as a 
(large!) integer 

FSMs can be enumerated and 
given a (very large) integer index. 

We can talk about TM 347 
running on input 51, producing  
an answer of 42. 
TMs as integer functions: 
               y = TMI[x] 
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Other Models of Computation… 

Turing Machines [Turing] 

FSM  i 

0 1 1 0 0 0 1 0 0 

Alan Turing 

Recursive Functions [Kleene] 
F(0,x) ≡ x
F(1+y,x) ≡ 1+F(x,y) 

(define (fact n) 
  (... (fact (- n 1)) ...) 

Stephen 
Kleene 

Lambda calculus [Church, Curry, Rosser...] 

λ x. λ y.xxy 

(lambda(x)(lambda(y)(x (x y)))) 

Alonzo 
Church 

Production Systems [Post, Markov] 

α   →   β 
IF pulse=0 THEN 
   patient=dead 

Emile Post 
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Computability 
FACT: Each model studied is capable of computing exactly the 
same set of integer functions! 
 

Proof Technique: 
Constructions that translate between models 

 
BIG IDEA: 

Computability, independent of computation scheme chosen 

Church's Thesis: 
 

Every discrete function computable by ANY  
realizable machine is computable by some 
Turing machine. 
 

f(x) computable ⇔ for some k, all x 
 f(x) = Tk[x] 

 

unproved, but 
universally 
accepted... 
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FSM 

0 1 1 0 0 0 1 0 0 

Multiplication 

FSM 

0 1 1 0 0 0 1 0 0 

Sorting 

FSM 

0 1 1 0 0 0 1 0 0 

Factorization FSM 

0 1 1 0 0 0 1 0 0 

Primality Test 

Is there an alternative to 
infinitely many ad-hoc Turing 
Machines? 
 

“special-purpose” 
      Turing Machines.... 

meanwhile... 

Turing machines Galore! 
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Here’s an interesting function to explore: the Universal 
function, U, defined by 

SURPRISE!  U is computable by a Turing Machine: 

TU 
k 

j Tk[j] 

In fact, there are infinitely many such machines.  Each is 
capable of performing any computation that can be 
performed by any TM!  

U(k, j) = Tk[j] 

Could this be computable??? 

it sure would be 
neat to have a 
single, general-
purpose 
machine... 

The Universal Function 
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Universality 

TU 
k 

j Tk[j] 

What’s going on here? 

k encodes a “program” – a description 
of some arbitrary machine. 

j encodes the input data to be used. 

TU interprets the program, emulating 
its processing of the data! 

KEY IDEA: Interpretation.  
Manipulate coded representations  of 
computing machines, rather than the 
machines themselves. 
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Turing Universality 

The Universal Turing Machine is the paradigm for modern 
general-purpose computers! 

Basic threshold test:  Is your computer Turing Universal ? 
•  If so, it can emulate every other Turing machine! 
•  Thus, your computer can compute any computable 

function 

To show your computer is Universal: demonstrate that it can 
emulate some known UTM. 

•  Actually given finite memory, can only emulate UTMs + 
inputs up to a certain size 

•  This is not a high bar: conditional branches (BEQ) and 
some simple arithmetic (SUB) are enough. 
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Coded Algorithms: Key to CS 
data vs hardware 

Algorithms as data: enables 
COMPILERS: analyze, optimize, transform behavior 

SOFTWARE ENGINEERING: 
Composition, iteration, 
abstraction of coded behavior 

       F(x) = g(h(x), p((q(x))) 

TCOMPILER-X-to-Y[PX] = PY, such that TX[PX, z] = TY[PY, z] 

Px 

Py 

Pgm 

Pgm 

PLINUX PJade 

Pgm 
Pgm 

Pgm 

LANGUAGE DESIGN: Separate 
specification from implementation 

•  C, Java, JSIM, Linux, ... all run on 
X86, Sun, ARM, JVM, CLR, ... 

•  Parallel development paths: 
•  Language/Software design 
•  Interpreter/Hardware design 
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Uncomputability (!) 

Uncomputable functions: There are well-defined discrete 
functions that a Turing machine cannot compute 

–  No algorithm can compute f(x) for arbitrary x in finite number of 
steps 

–  Not that we don’t know algorithm - can prove no algorithm exists 

–  Corollary: Finite memory is not the only limiting factor on 
whether we can solve a problem 

The most famous uncomputable function is the so-called 
Halting function, fH(k, j), defined by: 

      fH(k, j)  =  1  if Tk[j] halts; 

                      0   otherwise. 

fH(k, j) determines whether the kth TM halts when given a tape 
containing j. 
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If fH is computable, it is equivalent to some TM (say, TH): 

TH 

k 

j 
1 iff Tk[j] halts, 
else 0 

Then TN (N for “Nasty”), which must be computable if TH is: 

TN 

TH ? 
1 

0 

LOOP 

HALT 

TN[x]:  LOOPS if Tx[x] halts; 
       HALTS if Tx[x] loops 

Finally, consider giving N as an argument to TN: 

TN[N]:  LOOPS if TN[N] halts; 
       HALTS if TN[N] loops 

TN can’t be 
computable, hence 
TH can’t either! 

x 

Why fH is Uncomputable 




