
6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #1

10b. Models of Computation

6.004x Computation Structures
Part 2 – Computer Architecture

Copyright © 2015 MIT EECS

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #18

Universality?

•  Recall: We say a set of Boolean gates is universal if
we can implement any Boolean function using only
gates from that set.

•  What problems can we solve with a von Neumann

computer? (e.g., the Beta)
–  Everything that FSMs can solve?

–  Every problem?
–  Does it depend on the ISA?

•  Needed: a mathematical model of computation
–  Prove what can be computed, what can’t

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #19

Models of Computation

The roots of computer science stem from
the evaluation of many alternative
mathematical “models” of computation to
determine the classes of computations
each could represent.

An elusive goal was to find a universal
model, capable of representing all
practical computations...

• switches

• gates

• combinational
logic

• memories

• FSMs

Are FSMs the ultimate
digital computing

device?

We’ve got FSMs…
what else do we need?

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #20

FSM Limitations
Despite their usefulness and flexibility, there are common
problems that cannot be solved by any FSM. For instance:

Paren
Checker

“(()())”	 OK	

Paren
Checker

“(())())”	 Nix	

Well-formed Parentheses Checker:

Given any string of coded left &
right parens, outputs 1 if it is
balanced, else 0.

Simple, easy to describe.

PROBLEM: Requires arbitrarily many states,
depending on input. Must "COUNT"
unmatched left parens. An FSM can only
keep track of a finite number of unmatched
parens: for every FSM, we can find a string it
can’t check.

NO!

Alan Turing

I know how
to fix that!

Can this problem be solved using an FSM???

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #21

Turing Machines

Alan Turing was one of a group
of researchers studying
alternative models of
computation.

He proposed a conceptual model
consisting of an FSM combined
with an infinite digital tape that
could be read and written at
each step.
• encode input as symbols on tape
• FSM reads tape/writes symbols/
changes state until it halts

• Answer encoded on tape

Turing’s model (like others of the
time) solves the "FINITE" problem
of FSMs.

S1

1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

S2

0,(1,R)

0,(1,L)

1,Halt

1,(1,L)

Bounded tape configuration
can be expressed as a
(large!) integer

FSMs can be enumerated and
given a (very large) integer index.

We can talk about TM 347
running on input 51, producing
an answer of 42.
TMs as integer functions:
 y = TMI[x]

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #22

Other Models of Computation…

Turing Machines [Turing]

FSM i

0 1 1 0 0 0 1 0 0

Alan Turing

Recursive Functions [Kleene]
F(0,x) ≡ x
F(1+y,x) ≡ 1+F(x,y)

(define (fact n)
 (... (fact (- n 1)) ...)

Stephen
Kleene

Lambda calculus [Church, Curry, Rosser...]

λ x. λ y.xxy

(lambda(x)(lambda(y)(x (x y))))

Alonzo
Church

Production Systems [Post, Markov]

α → β
IF pulse=0 THEN
 patient=dead

Emile Post

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #23

Computability
FACT: Each model studied is capable of computing exactly the
same set of integer functions!

Proof Technique:
Constructions that translate between models

BIG IDEA:

Computability, independent of computation scheme chosen

Church's Thesis:

Every discrete function computable by ANY
realizable machine is computable by some
Turing machine.

f(x) computable ⇔ for some k, all x
 f(x) = Tk[x]

unproved, but
universally
accepted...

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #24

FSM

0 1 1 0 0 0 1 0 0

Multiplication

FSM

0 1 1 0 0 0 1 0 0

Sorting

FSM

0 1 1 0 0 0 1 0 0

Factorization FSM

0 1 1 0 0 0 1 0 0

Primality Test

Is there an alternative to
infinitely many ad-hoc Turing
Machines?

“special-purpose”
 Turing Machines....

meanwhile...

Turing machines Galore!

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #25

Here’s an interesting function to explore: the Universal
function, U, defined by

SURPRISE! U is computable by a Turing Machine:

TU
k

j Tk[j]

In fact, there are infinitely many such machines. Each is
capable of performing any computation that can be
performed by any TM!

U(k, j) = Tk[j]

Could this be computable???

it sure would be
neat to have a
single, general-
purpose
machine...

The Universal Function

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #26

Universality

TU
k

j Tk[j]

What’s going on here?

k encodes a “program” – a description
of some arbitrary machine.

j encodes the input data to be used.

TU interprets the program, emulating
its processing of the data!

KEY IDEA: Interpretation.
Manipulate coded representations of
computing machines, rather than the
machines themselves.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #27

Turing Universality

The Universal Turing Machine is the paradigm for modern
general-purpose computers!

Basic threshold test: Is your computer Turing Universal ?
•  If so, it can emulate every other Turing machine!
•  Thus, your computer can compute any computable

function

To show your computer is Universal: demonstrate that it can
emulate some known UTM.

•  Actually given finite memory, can only emulate UTMs +
inputs up to a certain size

•  This is not a high bar: conditional branches (BEQ) and
some simple arithmetic (SUB) are enough.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #28

Coded Algorithms: Key to CS
data vs hardware

Algorithms as data: enables
COMPILERS: analyze, optimize, transform behavior

SOFTWARE ENGINEERING:
Composition, iteration,
abstraction of coded behavior

 F(x) = g(h(x), p((q(x)))

TCOMPILER-X-to-Y[PX] = PY, such that TX[PX, z] = TY[PY, z]

Px

Py

Pgm

Pgm

PLINUX PJade

Pgm
Pgm

Pgm

LANGUAGE DESIGN: Separate
specification from implementation

•  C, Java, JSIM, Linux, ... all run on
X86, Sun, ARM, JVM, CLR, ...

•  Parallel development paths:
•  Language/Software design
•  Interpreter/Hardware design

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #29

Uncomputability (!)

Uncomputable functions: There are well-defined discrete
functions that a Turing machine cannot compute

–  No algorithm can compute f(x) for arbitrary x in finite number of
steps

–  Not that we don’t know algorithm - can prove no algorithm exists

–  Corollary: Finite memory is not the only limiting factor on
whether we can solve a problem

The most famous uncomputable function is the so-called
Halting function, fH(k, j), defined by:

 fH(k, j) = 1 if Tk[j] halts;

 0 otherwise.

fH(k, j) determines whether the kth TM halts when given a tape
containing j.

6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #30

If fH is computable, it is equivalent to some TM (say, TH):

TH

k

j
1 iff Tk[j] halts,
else 0

Then TN (N for “Nasty”), which must be computable if TH is:

TN

TH ?
1

0

LOOP

HALT

TN[x]: LOOPS if Tx[x] halts;
 HALTS if Tx[x] loops

Finally, consider giving N as an argument to TN:

TN[N]: LOOPS if TN[N] halts;
 HALTS if TN[N] loops

TN can’t be
computable, hence
TH can’t either!

x

Why fH is Uncomputable

