
6.004 Computation Structures L09: Programmable Machines, Slide #1

9. Programmable Machines

6.004x Computation Structures
Part 2 – Computer Architecture

Copyright © 2015 MIT EECS

6.004 Computation Structures L09: Programmable Machines, Slide #2

Example: Factorial

int	a	=	1;	
int	b	=	N;	
do	{	
		a	=	a	*	b;	
		b	=	b	–	1;	
}	while	(b	!=	0)		

C:

factorial(N)	=	N!	=	N*(N-1)*…*1	

initially:				a	=			1,	b	=	5	
after	iter	1:	a	=			5,	b	=	4	
after	iter	2:	a	=		20,	b	=	3	
after	iter	3:	a	=		60,	b	=	2	
after	iter	4:	a	=	120,	b	=	1	
after	iter	5:	a	=	120,	b	=	0	
Done!	

6.004 Computation Structures L09: Programmable Machines, Slide #3

Example: Factorial

int	a	=	1;	
int	b	=	N;	
do	{	
		a	=	a	*	b;	
		b	=	b	–	1;	
}	while	(b	!=	0)		

C:

factorial(N)	=	N!	=	N*(N-1)*…*1	

–  Helpful to translate into hardware
–  D-registers (a, b)
–  2-bits of state (start, loop, done)
–  Boolean transitions (b’==0, b’!=0)
–  Register assignments in states

(e.g., a ß a * b)

High-level FSM:

start loop done

a	ß	1	
b	ß	N	

a	ß	a	*	b	
b	ß	b	-	1	

b’!=0	

b’==0	

a	ß	a	
b	ß	b	start:		a	←			1,	b	←	5	

loop:			a	←			5,	b	←	4	
loop:			a	←		20,	b	←	3	
loop:			a	←		60,	b	←	2	
loop:			a	←	120,	b	←	1	
loop:			a	←	120,	b	←	0	
done:	

6.004 Computation Structures L09: Programmable Machines, Slide #4

Datapath for Factorial

•  Draw registers
•  Draw combinational

circuit for each
assignment

•  Connect to input muxes

start loop done

a	ß	1	
b	ß	N	

a	ß	a	*	b	
b	ß	b	-	1	

b	!=	0	

b	==	0	

a	ß	a	
b	ß	b	

1

32

N
32

0 1 2 waSEL
2

32
0 1 2 wbSEL

2

32

*

32

a
32

b
32

+

-1

32

6.004 Computation Structures L09: Programmable Machines, Slide #5

Control FSM for Factorial
•  Draw combinational logic for

transition conditions
•  Implement control FSM:

–  States: High-level FSM states
–  Inputs: Transition logic outputs
–  Outputs: Mux select signals

start
0

loop
1

done
2

a	ß	1	
b	ß	N	

a	ß	a	*	b	
b	ß	b	-	1	

b’!=0	

b’==0	

a	ß	a	
b	ß	b	

1 N

a b

0 1 2 0 1 2 waSEL wbSEL

*
+

-1
==

0

z

z

Control
FSM

waSEL

wbSEL

(2 bits)
(2 bits)

S Z waSEL wbSEL S’

00 0 10 00 01

00 1 10 00 01

01 0 01 01 01

01 1 01 01 10

10 0 00 10 10

10 1 00 10 10

6.004 Computation Structures L09: Programmable Machines, Slide #6

Control FSM Hardware

A[2:0] D[5:0]

000 10 00 01

001 10 00 01

010 01 01 01

011 01 01 10

100 00 10 10

101 00 10 10

waSEL

Next
state

Current
state

IN

2 2

wbSEL

ROM
8 locs x 6 bits

A[0]

A[2:1] D[1:0]

ROM contents

D[3:2]

D[5:4]

6.004 Computation Structures L09: Programmable Machines, Slide #7

So Far: Single-Purpose Hardware

•  Problemà Procedure (High-level FSM)à
Implementation

•  Systematic way to implement high-level FSM as a
datapath + control FSM
–  Is this implementation an FSM itself?

–  If so, can you draw the truth table?

•  How should we generalize our approach so we can
solve many problems with one set of hardware?
–  More storage for operands and results

–  A larger repertoire of operations
–  General-purpose datapath

6.004 Computation Structures L09: Programmable Machines, Slide #8

A Simple Programmable Datapath

•  Each cycle, this datapath:
–  Reads two operands (a, b)

from 4 registers (R0-R3)
–  Performs one operation of

+, -, *, NAND on operands
–  Optionally writes result to

a register
•  Control FSM:

R0

R1

R2

R3

+ - * NAND ==?

z

aSEL

bSEL

wSEL

opSEL

Control
FSM

aSEL
bSEL
opSEL
wSEL

z

wEN

wEN

LE

LE

LE

LE

0 1 2 3

6.004 Computation Structures L09: Programmable Machines, Slide #9

•  Assume initial register contents:

•  Control FSM:

A Control FSM for Factorial

loop
mul

loop
sub done

R0	value	=	1	
R1	value	=	N	
R2	value	=	-1	
R3	value	=	0	

asel = 0
bsel = 1
opsel = 2 (*)
wen = 1
wsel = 0

asel = 1
bsel = 3
opsel = X
wen = 0
wsel = X

asel = 1
bsel = 2
opsel = 0 (+)
wen = 1
wsel = 1

loop
beq

R0	ß	R0	*	R1	 R1	ß	R1	+	R2	

asel = 1
bsel = 3
opsel = X
wen = 0
wsel = X

N!	in	R0	

z == 1

z == 0

6.004 Computation Structures L09: Programmable Machines, Slide #10

New Problem à New Control FSM

•  You can solve many more problems with this
datapath!
–  Exponentiation, division, square root, …

–  But nothing that requires more than four registers

•  By designing a control FSM, we are programming
the datapath

•  Early digital computers were programmed this way!
–  ENIAC (1943):

•  First general-purpose digital computer

•  Programmed by setting huge array of dials and switches

•  Reprogramming it took about 3 weeks

6.004 Computation Structures L09: Programmable Machines, Slide #11

"Eniac" by Unknown - U.S. Army Photo.

6.004 Computation Structures L09: Programmable Machines, Slide #12

U.S. Army Photo.

6.004 Computation Structures L09: Programmable Machines, Slide #13

The von Neumann Model

•  Many approaches to build a general-purpose
computer. Almost all modern computers are based
on the von Neumann model (John von Neumann,
1945)

•  Components:

Input/
Output

• Central processing unit:
 Performs operations on values in registers

• Main memory:
 Array of W words of N bits each

•  Input/output devices to communicate with the outside world

Central Processing Unit

Datapath
Control

FSM

status

control

& memory

Main
Memory

address

data

6.004 Computation Structures L09: Programmable Machines, Slide #14

Key Idea: Stored-Program Computer

•  Express program as a sequence of coded instructions
•  Memory holds both data and instructions

•  CPU fetches, interprets, and executes successive
instructions of the program

Central
Processing

Unit

Main
Memory

instruction
instruction
instruction

data
data
data

op	 ra	rb	rc	

rc	←	op(ra,rb)	

0xba5eba11	

But, how do we know
which words hold
instructions and
which words hold
data?

6.004 Computation Structures L09: Programmable Machines, Slide #15

registers

operations

Anatomy of a von Neumann Computer

Datapath

In
te

rn
al

 s
to

ra
ge

Control
Unit

control

status

…
dest

asel

fn

bsel

status ALU

PC 1101000111011

• Instructions coded as binary data

• Program Counter or PC: Address
of the instruction to be executed

• Logic to translate instructions into

control signals for datapath

R1 ←R2+R3

instructions address

Main Memory

data address

6.004 Computation Structures L09: Programmable Machines, Slide #16

Instructions
•  Instructions are the fundamental unit of work
•  Each instruction specifies:

–  An operation or opcode to be performed

–  Source operands and destination for the result

•  In a von Neumann machine, instructions
are executed sequentially
–  CPU logically implements this loop:

–  By default, the next PC is current
PC + size of current instruction
unless the instruction says otherwise

Fetch instruction

Decode instruction

Read src operands

Execute

Write dst operand

Compute next PC

6.004 Computation Structures L09: Programmable Machines, Slide #17

Instruction Set Architecture (ISA)
•  ISA: The contract between software and hardware

–  Functional definition of operations and storage locations
–  Precise description of how software can invoke and access

them

• The ISA is a new layer of abstraction:

–  ISA specifies what the hardware provides, not how it’s
implemented

–  Hides the complexity of CPU implementation

–  Enables fast innovation in hardware (no need to change
software!)
•  8086 (1978): 29 thousand transistors, 5 MHz, 0.33 MIPS

•  Pentium 4 (2003): 44 million transistors, 4 GHz, ~5000 MIPS

•  Both implement x86 ISA

–  Dark side: Commercially successful ISAs last for decades
•  Today’s x86 CPUs carry baggage of design decisions from the 70’s

6.004 Computation Structures L09: Programmable Machines, Slide #18

Instruction Set Architecture Design

•  Designing an ISA is hard:
–  How many operations?

–  What types of storage, how much?

–  How to encode instructions?

–  How to future-proof?

•  How to decide? Take a quantitative approach
–  Take a set of representative benchmark programs

–  Evaluate versions of your ISA and implementation with
and without feature

–  Pick what works best overall (performance, energy, area…)

•  Corollary: Optimize the common case

Let’s design our own instruction set: the Beta!

6.004 Computation Structures L09: Programmable Machines, Slide #19

Beta ISA: Storage

PC

CPU State

r0
r1
r2

...

r31 000000....0	

32-bit “words”

General Registers

Main Memory

0 1 2 3

(4 bytes)
32-bit “words”

0 31

Up to 232 bytes (4GB of
memory) organized as
230 4-byte words

Why separate registers and main memory?
Tradeoff: Size vs speed and energy r31 hardwired to 0

Each memory word is 32-
bits wide, but for historical
reasons the β uses byte
memory addresses. Since
each word contains four 8-
bit bytes, addresses of
consecutive words differ by
4.

0x00	
0x04	
0x08	
0x0C	

0x10	
0x12	

Address

6.004 Computation Structures L09: Programmable Machines, Slide #20

Storage Conventions

•  Variables live in memory
•  Registers hold temporary values

•  To operate with memory variables
–  Load them

–  Compute on them

–  Store the results

0x1000:	
0x1004:	
0x1008:	

0x1010:	
0x100C:	

n
r
x
y

int	x,	y;	
y	=	x	*	37;	

R0	←	Mem[0x1008]	
R0	←	R0	*	37	
Mem[0x100C]	←	R0		

6.004 Computation Structures L09: Programmable Machines, Slide #21

Beta ISA: Instructions

•  Three types of instructions:
–  Arithmetic and logical: Perform operations on general

registers

–  Loads and stores: Move data between general registers and
main memory

–  Branches: Conditionally change the program counter

•  All instructions have a fixed length: 32 bits (4 bytes)
–  Tradeoff (vs variable-length instructions):

•  Simpler decoding logic, next PC is easy to compute

•  Larger code size

6.004 Computation Structures L09: Programmable Machines, Slide #22

Beta ALU Instructions

Example coded instruction: ADD

32-bit hex: 0x80611000
We prefer to write a symbolic representation: ADD(r1,r2,r3)	

ADD(ra,rb,rc):	

“Add the contents of ra
to the contents of rb;
store the result in rc”

OPCODE =
100000, encodes

ADD

rc=3,
encodes R3 as

destination

ra=1, rb=2
encodes R1 and R2 as

 source locations

Reg[rc]	ß	Reg[ra]	+	Reg[rb]	

1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 unused

OPCODE rc ra rb unused Format:

Similar instructions for
other ALU operations:

arithmetic: ADD, SUB, MUL, DIV
compare: CMPEQ, CMPLT, CMPLE
boolean: AND, OR, XOR, XNOR
shift: SHL, SHR, SAR

6.004 Computation Structures L09: Programmable Machines, Slide #23

32 registers

operations

Implementation Sketch #1

…

rc

ra

fn ALU

0

rb

PC

Now that we have our first set of instructions, we can create a
more concrete implementation sketch:

OPCODE rc ra rb unused

4 +

6.004 Computation Structures L09: Programmable Machines, Slide #24

Should We Support Constant Operands?

Many programs use small constants frequently
e.g., our factorial example: 0, 1, -1

Tradeoff:
When used, they save registers and instructions

More opcodes à more complex control logic and datapath

Analyzing operands when running SPEC CPU
benchmarks, we find that constant operands appear
in

•  >50% of executed arithmetic instructions
o  Loop increments, scaling indicies

•  >80% of executed compare instructions
o  Loop termination condition

•  >25% of executed load instructions
o  Offsets into data structures

6.004 Computation Structures L09: Programmable Machines, Slide #25

Beta ALU Instructions with Constant

arithmetic: ADDC, SUBC, MULC, DIVC
compare: CMPEQC, CMPLTC, CMPLEC
boolean: ANDC, ORC, XORC, XNORC
shift: SHLC, SHRC, SARC

Similar instructions for other
ALU operations:

Example instruction: ADDC adds register contents and constant:

Symbolic version: ADDC(r1,-3,r3)	

“Add the contents of ra to
const; store the result in rc”

OPCODE =
110000, encoding

ADDC
rc=3,

encoding R3
as destination

ra=1,
encoding R1

as first
operand

Reg[rc]	ß	Reg[ra]	+	sext(const)	

16-bit two’s
complement constant,
encoding -3 as second
operand (will be sign-

extended to become 32-bit
two’s complement operand)

ADDC(ra,const,rc):	

1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

Format: OPCODE rc ra 16-bit signed constant

6.004 Computation Structures L09: Programmable Machines, Slide #26

32 registers

operations

Implementation Sketch #2

…

rc

ra

fn ALU

0

rb

PC

Next we add the datapath hardware to support small constants
as the second ALU operand:

4 +

OPCODE rc ra 16-bit signed constant

bsel

sxt(const)

6.004 Computation Structures L09: Programmable Machines, Slide #27

Beta Load and Store Instructions

LD(ra,const,rc)			Reg[rc]	ß	Mem[Reg[ra]	+	sext(const)]	

Load rc with the contents of the memory location

ST(rc,const,ra)			Mem[Reg[ra]	+	sext(const)]	ß	Reg[rc]	

Store the contents of rc into the memory location

OPCODE rc ra 16-bit signed constant
address

Loads and stores move data between the internal registers and
main memory

Address calculation
is just like ADDC
instruction!

To access memory the CPU has to generate an address. LD and
ST compute the address by adding the sign-extended constant
to the contents of register ra.
•  To access a constant address, specify R31 as ra.
•  To use only a register value as the address, specify a constant

of 0.

6.004 Computation Structures L09: Programmable Machines, Slide #28

Using LD and ST

•  Variables live in memory
•  Registers hold temporary values

•  To operate with memory variables
–  Load them

–  Compute on them

–  Store the results

0x1000:	
0x1004:	
0x1008:	

0x1010:	
0x100C:	

n
r
x
y

int	x,	y;	
y	=	x	*	37;	

R0	←	Mem[0x1008]	
R0	←	R0	*	37	
Mem[0x100C]	←	R0		

LD(R31,0x1008,R0)	
MULC(R0,37,R0)	
ST(R0,0x100C,R31)		

6.004 Computation Structures L09: Programmable Machines, Slide #29

Can We Solve Factorial With ALU Instructions?

•  No! Recall high-level FSM:

•  Factorial needs to loop

•  So far we can only encode sequences of operations
on registers

•  Need a way to change the PC based on data values!
–  Called “branching”. If the branch is taken, the PC is

changed. If the branch is not taken, keep executing
sequentially.

a	ß	a	*	b	 b	ß	b	-	1	 Conditional	
branch	

mul sub done loop
b == 0

b != 0
Branch taken

Branch not
taken

Branch target

6.004 Computation Structures L09: Programmable Machines, Slide #30

Beta Branch Instructions

NPC	ß	PC	+	4	
Reg[rc]	ß	NPC	
if	(Reg[ra]	!=	0)	
						PC	ß	NPC	+	4*offset	
else	
						PC	ß	NPC	

BNE(ra,offset,rc):	Branch if not equal

NPC	ß	PC	+	4	
Reg[rc]	ß	NPC	
if	(Reg[ra]	==	0)	
						PC	ß	NPC	+	4*offset	
else	
						PC	ß	NPC	

BEQ(ra,offset,rc):	Branch if equal

“offset” is a SIGNED
CONSTANT encoded as
part of the instruction! BEQ or BNE rc ra 16-bit signed constant

The Beta’s branch instructions provide a way to conditionally
change the PC to point to a nearby location...

... and, optionally, remembering (in Rc) where we came from
(useful for procedure calls).

offset	=	distance	in	words	to	branch	target,	counting	from	the	
instruction	following	the	BEQ/BNE.		Range:	-32768	to	+32767.	

6.004 Computation Structures L09: Programmable Machines, Slide #31

Can We Solve Factorial Now?

•  Remember control FSM for our simple programmable datapath?

•  Control FSM states à instructions!
–  Not the case in general
–  Happens here because datapath is similar to basic von Neumann datapath

			 		 	 					//	Assume	r1	=	N	
		ADDC(r31,	1,	r0) 	//	r0	=	1	
L:MUL(r0,	r1,	r0) 	//	r0	=	r0	*	r1	
		SUBC(r1,	1,	r1) 	//	r1	=	r1	–	1	
		BNE(r1,	L,	r31) 	//	if	r1	!=	0,	run	MUL	next	

		 	 					//	at	this	point,	r0	=	N!	

int	a	=	1;	
int	b	=	N;	
do	{	
		a	=	a	*	b;	
		b	=	b	–	1;	
}	while	(b	!=	0)		

loop
mul

loop
sub done loop

bne

z == 1

z == 0

6.004 Computation Structures L09: Programmable Machines, Slide #32

Beta JMP Instruction

Branches transfer control to some predetermined destination
specified by a constant in the instruction. It will be useful to be
able to transfer control to a computed address.

011011	 rc ra unused

JMP(Ra,Rc): Reg[Rc] ← PC + 4
 PC ← Reg[Ra]

Useful for procedure call return…

								…	
[0x100]	BEQ(R31,sqrt,R28)	
								…	
[0x678]	BEQ(R31,sqrt,R28)	
								…	

sqrt:	
						…	
						JMP(R28,R31)	

R28 = 0x104

2nd time: PC←0x67C

1st time: PC←0x104

6.004 Computation Structures L09: Programmable Machines, Slide #33

Beta ISA Summary

•  Storage:
–  Processor: 32 registers (r31 hardwired to 0) and PC

–  Main memory: 32-bit byte addresses; each memory access
involves a 32-bit word. Since there are 4 bytes/word, all
addresses will be a multiple of 4.

•  Instruction formats:

•  Instruction types:
–  ALU: Two input registers, or register and constant

–  Loads and stores

–  Branches, Jumps

OPCODE rc ra rb unused

OPCODE rc ra 16-bit signed constant

32 bits

