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OS Device Handlers
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SVC call from application

Application:
…
ReadKey() // read key into R0
…

. . .

“A”

Device Buffer
(in OS Kernel)

KeyHit_h() {
(read ASCII code, put in buffer)

}

INTERRUPT from Keyboard n

INTERRUPT to OS

IN OUT

ReadKey_h() {
(remove next char from
buffer, return in R0)

…}

TRAP to OS

IN OUT

Asynchronous I/O Handling
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OPERATION:  NO attention to Keyboard during normal 
operation

• on key strike: hardware asserts IRQ to request interrupt
• USER program interrupted, PC+4 of interrupted inst. 

saved in XP
• state of USER program saved on KERNEL stack;
• Keyboard handler invoked, runs to completion;
• state of USER program restored; program resumes.

TRANSPARENT to USER program.

Interrupt-based Asynch I/O

Keyboard Interrupt Handler (in O.S. KERNEL):

struct Device {
char Flag, Data;

} Keyboard;

KeyHit_h() {
Buffer[inptr] = Keyboard.Data;
inptr = (inptr + 1) % BUFSIZE;

}

Assume each 
keyboard has 
an associated 
buffer
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SVCs for Input/Output
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SVC recap: SVC, encoded as illegal instruction, causes an 
exception.  OS notices special SVC opcode, dispatches to 
appropriate sub-handler based on index in low-bits of SVC inst.
First draft of a ReadKey SVC handler (supporting a virtual  
keyboard): returns next keystroke on a user’s keyboard in 
response to the SVC request:

Problem: Can’t interrupt code running in the 
supervisor mode… so the buffer never gets filled.

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

/* busy wait loop */
}
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

/* busy wait loop */
}
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadKey SVC: Attempt #1
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A BETTER keyboard SVC handler:

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

/* busy wait loop */
UserMState.Regs[XP] = UserMState.Regs[XP]-4;

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

Problem: The process just wastes its time-slice waiting 
for someone to hit a key...

This one actually works!

ReadKey SVC: Attempt #2

That’s a
funny way
to write
a loop
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EVEN BETTER: On I/O wait, YIELD remainder of quantum:

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP]-4;
Scheduler( );

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

RESULT: Better CPU utilization!!

Does timesharing cause CPU use to be less efficient?
• COST: Scheduling, context-switching overhead; but
• GAIN: Productive use of idle time of one process by 

running another.

ReadKey SVC: Attempt #3
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To improve efficiency further, we can avoid scheduling processes 
in prolonged I/O wait:
– Processes can be in ACTIVE or WAITING (“sleeping”) states;
– Scheduler cycles among ACTIVE PROCESSES only;
– Active process moves to WAITING status when it tries to read 

a character and buffer is empty;
– Waiting processes each contain a code (eg, in PCB) 

designating what they are waiting for (eg, keyboard N);
– Device interrupts (eg, on keyboard N) move any processes 

waiting on that device to ACTIVE state.

UNIX kernel utilities:
– sleep(reason) - Puts CurProc to sleep.  “Reason” is an 

arbitrary binary value giving a condition for reactivation.
– wakeup(reason) - Makes active any process in sleep(reason).

Sophisticated Scheduling
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ReadKey_h() {
…
if (BufferEmpty(kbdnum)) {

User.Regs[XP] = User.Regs[XP] - 4;
sleep(kbdnum);

} else {   …  }
}

sleep(status s) {
ProcTbl[Cur].status = s;
Scheduler();

}
Scheduler() {

…
while (ProcTbl[i].status != 0) {

i = (i+1)%N;
}
…

}
wakeup(status s) {

for (i = 0; i < N; i += 1) {
if (ProcTbl[i].status == s)

PCB[i].status = 0;
}

}

SVC call from application

KeyHit_h() {
…

WriteBuffer(kbdnum, key);
wakeup(kbdnum);

…
}

INTERRUPT from Keyboard n

ReadKey SVC: Attempt #4
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Example: Match Handler with OS
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Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during 

handing of SVC traps
Model C: A single-process (not timeshared) system which runs dedicated 

application code

R1

R2

R3

Example: Match Handler to OS
ReadCh_h() {  // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() {  // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)); 
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() {  // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

Always reads 
from the 
same buffer

C

Oops!  
Infinite loop?

B

A
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Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during handing of 

SVC traps
Model C: A single-process (not timeshared) system which runs dedicated application 

code

Which handler & OS?
“I get compile-time errors; Scheduler and ProcTbl are undefined!”

R1

R2

R3

ReadCh_h() {  // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() {  // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)); 
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() {  // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

A B C

R1 X

R2 X

R3 X

X X

X

X

X
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Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during handing of 

SVC traps
Model C: A single-process (not timeshared) system which runs dedicated application 

code

Which handler & OS?
“Hey, now the system always reads everybody’s input from keyboard 0.
In addition, it seems to waste a lot more CPU cycles than it used to.”

R1

R2

R3

ReadCh_h() {  // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() {  // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)); 
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() {  // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

A B C

R1 X

R2 X

R3 X

X

X

X

X

X
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Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during handing of 

SVC traps
Model C: A single-process (not timeshared) system which runs dedicated application 

code

Which handler & OS?
“Neat, the new system seems to work fine.

It even wastes less CPU time than it used to!”

R1

R2

R3

ReadCh_h() {  // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() {  // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)); 
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() {  // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

A B C

R1 X

R2 X

R3 X

X

X

X

XX
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Real Time
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Side-effects of CPU virtualization
+ abstraction of machine resources
(memory, I/O, registers, etc. )

+ multiple “processes” executing concurrently 
+ better CPU utilization
- Processing throughput is more variable

Our approach to dealing with the asynchronous world
- I/O - separate “event handling” from “event processing”

Difficult to meet “hard deadlines”
- control applications, e.g., ESC on cars
- playing videos/MP3s

Real-time as an alternative to time-sliced 
or fixed-priority preemptive scheduling 

The Need for “Real Time”
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One way to measure the real-time performance of a system 
is INTERRUPT LATENCY:

• HOW MUCH TIME can elapse between an interrupt 
request and the START of its handler?

time

Request

Sometimes bad things happen when service is delayed 
beyond its “dead”-line:

Missed characters
Automobile crashes
Nuclear meltdowns

Interrupt Latency

“HARD”
Real time

constraints

Latency (L) Service
Time (S)

Deadline (D)

What is largest 
L such that 
LMAX + S = D?
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What causes interrupt latency:

• State save, context switch.
• Periods of un-interruptability:

§ Long, uninterruptable instructions – e.g. block moves
§ Explicitly disabled periods (e.g. .during service of other 

interrupts).

time

Request
Latency Service

Time Deadline?

Sources of Interrupt Latency

GOAL:  BOUND (and minimize) interrupt latency!

• Optimize interrupt sequence context switch
• Make unbounded-time instructions interruptable (state in registers, etc).
• Avoid/minimize disable time
• Allow handlers to be interrupted, in certain cases.

But, this is 
application 
dependent!

We can consider this
when we write our O/S

We can address
this in our ISA
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Weak Priorities
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DEVICE

Keyboard

Disk

Printer

Service
Time

800

500

400

Actual w/c
Latency

________

________

________

"TOY" System scenario:

What is the WORST CASE latency seen by each device?

Req: K,P,D 

PK D

Req: D,P,K

D P K

Req: K,D,P

K D P

Assumptions:
• Infrequent interrupt requests (each happens only once/scenario)
• Simultaneous requests might be served in ANY order…. Whence
• Service of EACH device might be delayed by ALL others!

500 + 400 = 900

800 + 400 = 1200

800+ 500 = 1300

Scheduling of Multiple Devices

Can we 
do 
better?
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ISSUE: Processor becomes 
interruptable on returning to 
user mode, several interrupt 
requests are pending.  Which 
is served first?

Latencies with WEAK PRIORITIES:
Service of each device might be 
delayed by:
• Service of 1 other (arbitrary) 

device, whose interrupt 
request was just honored;
+

• Service of ALL higher-priority 
devices.

DP K

Req: 
P,K,D

Req: 
K,P,D

K PD

DEVICE

Keyboard

Disk

Printer

Service
Time

800

500

400

Actual w/c
Latency

________

________

________

900

800

1300

WEAK PRIORITY ORDERING:  Check in prescribed sequence, e.g.:
DISK > PRINTER > KEYBOARD.

vs 1200 –
Now delayed by only 1 service!

Weak (Non-preemptive) Priorities
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Setting Priorities
How should priorities be assigned given hard real-time 
constraints?  We’ll assume each device has a service deadline D.  

If not otherwise specified, assume D is the time until the 
next request for the same device, e.g., the keyboard handler 
should be finished processing one character before the next 
arrives.

“Earliest Deadline” is a strategy for assigning priorities that is 
guaranteed to meet the deadlines if any priority assignment can 
meet the deadlines:

1. Sort the requests by their deadlines
2. Assign the highest priority to the earliest deadline, 

second priority to the next deadline, and so on.
3. Weak priority scheduling: choose the pending request 

with the highest priority, i.e., that has the earliest 
deadline.
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Strong Priorities
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Without preemption, ANY interrupt service can delay ANY other 
service request… the slowest service time constrains response to 
fastest devices.  Often, tight deadlines can’t be met using this 
scheme alone.

EXAMPLE: 800 uSec deadline (hence 300 uSec maximum 
interrupt latency) on disk service, to avoid missing next sector...

need PREEMPTION:  Allow handlers for LOWER PRIORITY 
interrupts to be interrupted by HIGHER priority requests!

~0

[D] 500

[D,P]   900

CAN'T SATISFY the disk requirement in this system using weak 
priorities!

The Need for Preemption

Latency using
weak priority

Device
Service
Time (S)

Deadline
(D)

LMAX

900us Keyboard 800us

800us Disk 500us 800us 300us

1300us Printer 400us

Latency w/
preemptionPriority

1
3
2
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SCHEME:
• Expand supervisor bit in PC to be a PRIORITY integer PRI 

(eg, 3 bits for 8 levels)
• ASSIGN a priority to each device.
• Prior to each instruction execution:

§ Find priority PDEV of highest requesting device, say Di

§ Take interrupt if and only if PDEV > PRI, set PRI = PDEV.

Strong priorities:
KEY:  Priority in Processor state

Allows interruption of (certain) handlers
Allows preemption, but not reentrance

BENEFIT: Latency seen at high priorities UNAFFECTED by
service times at low priorities.

PC: Program CounterPRI

STRONG PRIORITY ORDERING:  Allow handlers for LOWER 
PRIORITY interrupts to be preempted (interrupted) by HIGHER 
PRIORITY requests.

Strong Priority Implementation
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Consider interrupts which recur at bounded rates:

Note that interrupt LATENCIES don't tell the whole story—consider 
COMPLETION TIMES, e.g., for Keyboard in the example above.

Keyboard service not complete until 3 ms after request!

D 
P 
K

P P 
D

P P 
D

D P K D P DP P

Recurring Interrupts

Priority
Latency using
strong priority

Device
Service
Time (S)

Deadline
(D)

LMAX
Max
Freq.

1 900us Keyboard 800us 100/s

3 0 Disk 500us 800us 300us 500/s

2 500us Printer 400us 1000/s
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P Latency Device
Service
Time (S)

Deadline
(D)

LMAX
Max
Freq.

%
Load

1 900us Keyboard 800us 100/s

3 0 Disk 500us 800us 300us 500/s

2 500us Printer 400us 1000/s

How much CPU time  is consumed by interrupt service?

D 
P 
K

P P 
D

P P 
D

P P 
D

D 
P 
K

P P 
D

P

10 ms. cycle

800us*100/s = 8%

500us*500/s = 25%

400us*1000/s = 40%

Interrupt Load

• User-mode share of CPU = 1 – ∑(SDEV*max_freqDEV) = 0.27
• Also check to see if enough CPU time to meet all deadlines
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Example: Priorities in Action!
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≤ 10 mS

Task Period   Service time  Deadline
Supply ship guidance 30ms   5ms 25ms
Gyroscopes 40 10 20
Cabin pressure 100       ? 100

International Space Station’s on-board computer performs 3 tasks:
• guiding incoming supply ships to a safe docking
• monitoring gyros to keep solar panels properly oriented
• controlling air pressure in the crew cabin

Assuming a weak priority system:
1. What is the maximum service time for “cabin pressure”

that still allows all constraints to be met? 
2. Give a weak priority ordering that meets the constraints
3. What fraction of the time will the processor spend idle?
4. What is the worst-case completion time for each task?

16.67%
25%
10%

G > SSG > CP
48.33%

C,G = 10 + 10 + (5) = 25
C    = 10 + (10) = 20
S,G = 5 + 10 + (10) = 2510

Example: Mr. Blue Visits the ISS
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Our Russian collaborators don’t like the sound of a 
“weak” priority interrupt system and lobby heavily to use 
a “strong” priority interrupt system instead.

Task Period Service time    Deadline
Supply ship guidance 30ms 5ms 25ms
Gyroscopes 40 10 20
Cabin pressure 100 ? 100

Assuming a strong priority system,    G > SSG > CP:

1. What is the maximum service time for “cabin pressure”
that still allows all constraints to be met?

2. What fraction of the time will the processor spend idle?

3. What is the worst-case completion time for each task?

100 – (3*10) – (4*5) = 50

50

16.67%
25%
50%

8.33%

100
10
[G] 10 + 5

Example: Mr. Blue Visits ISS (cont’d.)
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Device interface – two parts:
– Device side: handle interrupts from device (transparent to 

apps)
– Application side: handle interrupts (SVCs) from application

Scheduler interaction:
– “Sleeping” (*inactive) processes waiting for device I/O
– Handler coding issues, looping thru User mode

Real Time constraints, scheduling, guarantees
– Complex, hard scheduling problems – a black art!
– Weak (non-preemptive) vs Strong (preemptive) priorities 

help…
– Common real-world interrupt systems:

- Fixed number (eg, 8 or 16) of strong priority levels
- Each strong priority level can support many devices, 

arranged in a weak priority chain

Summary


