
6.004 Computation Structures L18: Devices & Interrupts, Slide #1

18. Devices and Interrupts

6.004x Computation Structures
Part 3 – Computer Organization

Copyright © 2016 MIT EECS

6.004 Computation Structures L18: Devices & Interrupts, Slide #2

OS Device Handlers

6.004 Computation Structures L18: Devices & Interrupts, Slide #3

Timer
Handler

KE
R

N
EL

MState
DPYNUM=0

P1:

P1

loop:SVC(0)
...
SVC(1)
...
BR(loop)

OS Organization: I/O Devices

P2

loop:SVC(2)
...
SVC(3)
...
BR(loop)

PN

loop:SVC(3)
...
SVC(1)
...
BR(loop)

User
Mode
PC[31]=0

Kernel
Mode
PC[31]=1

U
SE

R
 P

R
O

C
ES

SE
S

Scheduler

MState
DPYNUM=1

P2: MState
DPYNUM=27

PN
:

…

…

Keyboard
Handler

Key
Buffer

Mouse
Handler

Click
BufferSaved

Regs
(MState) Illegal Op

Handler

Yield WrCh GetKey …

6.004 Computation Structures L18: Devices & Interrupts, Slide #4

SVC call from application

Application:
…
ReadKey() // read key into R0
…

. . .

“A”

Device Buffer
(in OS Kernel)

KeyHit_h() {
(read ASCII code, put in buffer)

}

INTERRUPT from Keyboard n

INTERRUPT to OS

IN OUT

ReadKey_h() {
(remove next char from
buffer, return in R0)

…}

TRAP to OS

IN OUT

Asynchronous I/O Handling

6.004 Computation Structures L18: Devices & Interrupts, Slide #5

OPERATION: NO attention to Keyboard during normal
operation

• on key strike: hardware asserts IRQ to request interrupt
• USER program interrupted, PC+4 of interrupted inst.

saved in XP
• state of USER program saved on KERNEL stack;
• Keyboard handler invoked, runs to completion;
• state of USER program restored; program resumes.

TRANSPARENT to USER program.

Interrupt-based Asynch I/O

Keyboard Interrupt Handler (in O.S. KERNEL):

struct Device {
char Flag, Data;

} Keyboard;

KeyHit_h() {
Buffer[inptr] = Keyboard.Data;
inptr = (inptr + 1) % BUFSIZE;

}

Assume each
keyboard has
an associated
buffer

6.004 Computation Structures L18: Devices & Interrupts, Slide #6

SVCs for Input/Output

6.004 Computation Structures L18: Devices & Interrupts, Slide #7

SVC recap: SVC, encoded as illegal instruction, causes an
exception. OS notices special SVC opcode, dispatches to
appropriate sub-handler based on index in low-bits of SVC inst.
First draft of a ReadKey SVC handler (supporting a virtual
keyboard): returns next keystroke on a user’s keyboard in
response to the SVC request:

Problem: Can’t interrupt code running in the
supervisor mode… so the buffer never gets filled.

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

/* busy wait loop */
}
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum)) {

/* busy wait loop */
}
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadKey SVC: Attempt #1

6.004 Computation Structures L18: Devices & Interrupts, Slide #8

A BETTER keyboard SVC handler:

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

/* busy wait loop */
UserMState.Regs[XP] = UserMState.Regs[XP]-4;

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

Problem: The process just wastes its time-slice waiting
for someone to hit a key...

This one actually works!

ReadKey SVC: Attempt #2

That’s a
funny way
to write
a loop

6.004 Computation Structures L18: Devices & Interrupts, Slide #9

EVEN BETTER: On I/O wait, YIELD remainder of quantum:

ReadKey_h()
{

int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP]-4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

RESULT: Better CPU utilization!!

Does timesharing cause CPU use to be less efficient?
• COST: Scheduling, context-switching overhead; but
• GAIN: Productive use of idle time of one process by

running another.

ReadKey SVC: Attempt #3

6.004 Computation Structures L18: Devices & Interrupts, Slide #10

To improve efficiency further, we can avoid scheduling processes
in prolonged I/O wait:
– Processes can be in ACTIVE or WAITING (“sleeping”) states;
– Scheduler cycles among ACTIVE PROCESSES only;
– Active process moves to WAITING status when it tries to read

a character and buffer is empty;
– Waiting processes each contain a code (eg, in PCB)

designating what they are waiting for (eg, keyboard N);
– Device interrupts (eg, on keyboard N) move any processes

waiting on that device to ACTIVE state.

UNIX kernel utilities:
– sleep(reason) - Puts CurProc to sleep. “Reason” is an

arbitrary binary value giving a condition for reactivation.
– wakeup(reason) - Makes active any process in sleep(reason).

Sophisticated Scheduling

6.004 Computation Structures L18: Devices & Interrupts, Slide #11

ReadKey_h() {
…
if (BufferEmpty(kbdnum)) {

User.Regs[XP] = User.Regs[XP] - 4;
sleep(kbdnum);

} else { … }
}

sleep(status s) {
ProcTbl[Cur].status = s;
Scheduler();

}
Scheduler() {

…
while (ProcTbl[i].status != 0) {

i = (i+1)%N;
}
…

}
wakeup(status s) {

for (i = 0; i < N; i += 1) {
if (ProcTbl[i].status == s)

PCB[i].status = 0;
}

}

SVC call from application

KeyHit_h() {
…

WriteBuffer(kbdnum, key);
wakeup(kbdnum);

…
}

INTERRUPT from Keyboard n

ReadKey SVC: Attempt #4

6.004 Computation Structures L18: Devices & Interrupts, Slide #12

Example: Match Handler with OS

6.004 Computation Structures L18: Devices & Interrupts, Slide #13

Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during

handing of SVC traps
Model C: A single-process (not timeshared) system which runs dedicated

application code

R1

R2

R3

Example: Match Handler to OS
ReadCh_h() { // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() { // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum));
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() { // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

Always reads
from the
same buffer

C

Oops!
Infinite loop?

B

A

6.004 Computation Structures L18: Devices & Interrupts, Slide #14

Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during handing of

SVC traps
Model C: A single-process (not timeshared) system which runs dedicated application

code

Which handler & OS?
“I get compile-time errors; Scheduler and ProcTbl are undefined!”

R1

R2

R3

ReadCh_h() { // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() { // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum));
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() { // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

A B C

R1 X

R2 X

R3 X

X X

X

X

X

6.004 Computation Structures L18: Devices & Interrupts, Slide #15

Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during handing of

SVC traps
Model C: A single-process (not timeshared) system which runs dedicated application

code

Which handler & OS?
“Hey, now the system always reads everybody’s input from keyboard 0.
In addition, it seems to waste a lot more CPU cycles than it used to.”

R1

R2

R3

ReadCh_h() { // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() { // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum));
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() { // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

A B C

R1 X

R2 X

R3 X

X

X

X

X

X

6.004 Computation Structures L18: Devices & Interrupts, Slide #16

Model A: A timeshared Beta system whose OS kernel is uninterruptable
Model B: A timeshared Beta system which enables device interrupts during handing of

SVC traps
Model C: A single-process (not timeshared) system which runs dedicated application

code

Which handler & OS?
“Neat, the new system seems to work fine.

It even wastes less CPU time than it used to!”

R1

R2

R3

ReadCh_h() { // Version R1
if (BufferEmpty(0))

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
else

UserMState.Regs[0] = ReadInputBuffer(0);
}

ReadCh_h() { // Version R2
int kbdnum = ProcTbl[Cur].DPYNum;
while (BufferEmpty(kbdnum));
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

ReadCh_h() { // Version R3
int kbdnum = ProcTbl[Cur].DPYNum;
if (BufferEmpty(kbdnum)) {

UserMState.Regs[XP] = UserMState.Regs[XP] – 4;
Scheduler();

} else
UserMState.Regs[0] = ReadInputBuffer(kbdnum);

}

A B C

R1 X

R2 X

R3 X

X

X

X

XX

6.004 Computation Structures L18: Devices & Interrupts, Slide #17

Real Time

6.004 Computation Structures L18: Devices & Interrupts, Slide #18

Side-effects of CPU virtualization
+ abstraction of machine resources
(memory, I/O, registers, etc.)

+ multiple “processes” executing concurrently
+ better CPU utilization
- Processing throughput is more variable

Our approach to dealing with the asynchronous world
- I/O - separate “event handling” from “event processing”

Difficult to meet “hard deadlines”
- control applications, e.g., ESC on cars
- playing videos/MP3s

Real-time as an alternative to time-sliced
or fixed-priority preemptive scheduling

The Need for “Real Time”

6.004 Computation Structures L18: Devices & Interrupts, Slide #19

One way to measure the real-time performance of a system
is INTERRUPT LATENCY:

• HOW MUCH TIME can elapse between an interrupt
request and the START of its handler?

time

Request

Sometimes bad things happen when service is delayed
beyond its “dead”-line:

Missed characters
Automobile crashes
Nuclear meltdowns

Interrupt Latency

“HARD”
Real time

constraints

Latency (L) Service
Time (S)

Deadline (D)

What is largest
L such that
LMAX + S = D?

6.004 Computation Structures L18: Devices & Interrupts, Slide #20

What causes interrupt latency:

• State save, context switch.
• Periods of un-interruptability:

§ Long, uninterruptable instructions – e.g. block moves
§ Explicitly disabled periods (e.g. .during service of other

interrupts).

time

Request
Latency Service

Time Deadline?

Sources of Interrupt Latency

GOAL: BOUND (and minimize) interrupt latency!

• Optimize interrupt sequence context switch
• Make unbounded-time instructions interruptable (state in registers, etc).
• Avoid/minimize disable time
• Allow handlers to be interrupted, in certain cases.

But, this is
application
dependent!

We can consider this
when we write our O/S

We can address
this in our ISA

6.004 Computation Structures L18: Devices & Interrupts, Slide #21

Weak Priorities

6.004 Computation Structures L18: Devices & Interrupts, Slide #22

DEVICE

Keyboard

Disk

Printer

Service
Time

800

500

400

Actual w/c
Latency

"TOY" System scenario:

What is the WORST CASE latency seen by each device?

Req: K,P,D

PK D

Req: D,P,K

D P K

Req: K,D,P

K D P

Assumptions:
• Infrequent interrupt requests (each happens only once/scenario)
• Simultaneous requests might be served in ANY order…. Whence
• Service of EACH device might be delayed by ALL others!

500 + 400 = 900

800 + 400 = 1200

800+ 500 = 1300

Scheduling of Multiple Devices

Can we
do
better?

6.004 Computation Structures L18: Devices & Interrupts, Slide #23

ISSUE: Processor becomes
interruptable on returning to
user mode, several interrupt
requests are pending. Which
is served first?

Latencies with WEAK PRIORITIES:
Service of each device might be
delayed by:
• Service of 1 other (arbitrary)

device, whose interrupt
request was just honored;
+

• Service of ALL higher-priority
devices.

DP K

Req:
P,K,D

Req:
K,P,D

K PD

DEVICE

Keyboard

Disk

Printer

Service
Time

800

500

400

Actual w/c
Latency

900

800

1300

WEAK PRIORITY ORDERING: Check in prescribed sequence, e.g.:
DISK > PRINTER > KEYBOARD.

vs 1200 –
Now delayed by only 1 service!

Weak (Non-preemptive) Priorities

6.004 Computation Structures L18: Devices & Interrupts, Slide #24

Setting Priorities
How should priorities be assigned given hard real-time
constraints? We’ll assume each device has a service deadline D.

If not otherwise specified, assume D is the time until the
next request for the same device, e.g., the keyboard handler
should be finished processing one character before the next
arrives.

“Earliest Deadline” is a strategy for assigning priorities that is
guaranteed to meet the deadlines if any priority assignment can
meet the deadlines:

1. Sort the requests by their deadlines
2. Assign the highest priority to the earliest deadline,

second priority to the next deadline, and so on.
3. Weak priority scheduling: choose the pending request

with the highest priority, i.e., that has the earliest
deadline.

6.004 Computation Structures L18: Devices & Interrupts, Slide #25

Strong Priorities

6.004 Computation Structures L18: Devices & Interrupts, Slide #26

Without preemption, ANY interrupt service can delay ANY other
service request… the slowest service time constrains response to
fastest devices. Often, tight deadlines can’t be met using this
scheme alone.

EXAMPLE: 800 uSec deadline (hence 300 uSec maximum
interrupt latency) on disk service, to avoid missing next sector...

need PREEMPTION: Allow handlers for LOWER PRIORITY
interrupts to be interrupted by HIGHER priority requests!

~0

[D] 500

[D,P] 900

CAN'T SATISFY the disk requirement in this system using weak
priorities!

The Need for Preemption

Latency using
weak priority

Device
Service
Time (S)

Deadline
(D)

LMAX

900us Keyboard 800us

800us Disk 500us 800us 300us

1300us Printer 400us

Latency w/
preemptionPriority

1
3
2

6.004 Computation Structures L18: Devices & Interrupts, Slide #27

SCHEME:
• Expand supervisor bit in PC to be a PRIORITY integer PRI

(eg, 3 bits for 8 levels)
• ASSIGN a priority to each device.
• Prior to each instruction execution:

§ Find priority PDEV of highest requesting device, say Di

§ Take interrupt if and only if PDEV > PRI, set PRI = PDEV.

Strong priorities:
KEY: Priority in Processor state

Allows interruption of (certain) handlers
Allows preemption, but not reentrance

BENEFIT: Latency seen at high priorities UNAFFECTED by
service times at low priorities.

PC: Program CounterPRI

STRONG PRIORITY ORDERING: Allow handlers for LOWER
PRIORITY interrupts to be preempted (interrupted) by HIGHER
PRIORITY requests.

Strong Priority Implementation

6.004 Computation Structures L18: Devices & Interrupts, Slide #28

Consider interrupts which recur at bounded rates:

Note that interrupt LATENCIES don't tell the whole story—consider
COMPLETION TIMES, e.g., for Keyboard in the example above.

Keyboard service not complete until 3 ms after request!

D
P
K

P P
D

P P
D

D P K D P DP P

Recurring Interrupts

Priority
Latency using
strong priority

Device
Service
Time (S)

Deadline
(D)

LMAX
Max
Freq.

1 900us Keyboard 800us 100/s

3 0 Disk 500us 800us 300us 500/s

2 500us Printer 400us 1000/s

6.004 Computation Structures L18: Devices & Interrupts, Slide #29

P Latency Device
Service
Time (S)

Deadline
(D)

LMAX
Max
Freq.

%
Load

1 900us Keyboard 800us 100/s

3 0 Disk 500us 800us 300us 500/s

2 500us Printer 400us 1000/s

How much CPU time is consumed by interrupt service?

D
P
K

P P
D

P P
D

P P
D

D
P
K

P P
D

P

10 ms. cycle

800us*100/s = 8%

500us*500/s = 25%

400us*1000/s = 40%

Interrupt Load

• User-mode share of CPU = 1 – ∑(SDEV*max_freqDEV) = 0.27
• Also check to see if enough CPU time to meet all deadlines

6.004 Computation Structures L18: Devices & Interrupts, Slide #30

Example: Priorities in Action!

6.004 Computation Structures L18: Devices & Interrupts, Slide #31

≤ 10 mS

Task Period Service time Deadline
Supply ship guidance 30ms 5ms 25ms
Gyroscopes 40 10 20
Cabin pressure 100 ? 100

International Space Station’s on-board computer performs 3 tasks:
• guiding incoming supply ships to a safe docking
• monitoring gyros to keep solar panels properly oriented
• controlling air pressure in the crew cabin

Assuming a weak priority system:
1. What is the maximum service time for “cabin pressure”

that still allows all constraints to be met?
2. Give a weak priority ordering that meets the constraints
3. What fraction of the time will the processor spend idle?
4. What is the worst-case completion time for each task?

16.67%
25%
10%

G > SSG > CP
48.33%

C,G = 10 + 10 + (5) = 25
C = 10 + (10) = 20
S,G = 5 + 10 + (10) = 2510

Example: Mr. Blue Visits the ISS

6.004 Computation Structures L18: Devices & Interrupts, Slide #32

Our Russian collaborators don’t like the sound of a
“weak” priority interrupt system and lobby heavily to use
a “strong” priority interrupt system instead.

Task Period Service time Deadline
Supply ship guidance 30ms 5ms 25ms
Gyroscopes 40 10 20
Cabin pressure 100 ? 100

Assuming a strong priority system, G > SSG > CP:

1. What is the maximum service time for “cabin pressure”
that still allows all constraints to be met?

2. What fraction of the time will the processor spend idle?

3. What is the worst-case completion time for each task?

100 – (3*10) – (4*5) = 50

50

16.67%
25%
50%

8.33%

100
10
[G] 10 + 5

Example: Mr. Blue Visits ISS (cont’d.)

6.004 Computation Structures L18: Devices & Interrupts, Slide #33

Device interface – two parts:
– Device side: handle interrupts from device (transparent to

apps)
– Application side: handle interrupts (SVCs) from application

Scheduler interaction:
– “Sleeping” (*inactive) processes waiting for device I/O
– Handler coding issues, looping thru User mode

Real Time constraints, scheduling, guarantees
– Complex, hard scheduling problems – a black art!
– Weak (non-preemptive) vs Strong (preemptive) priorities

help…
– Common real-world interrupt systems:

- Fixed number (eg, 8 or 16) of strong priority levels
- Each strong priority level can support many devices,

arranged in a weak priority chain

Summary

