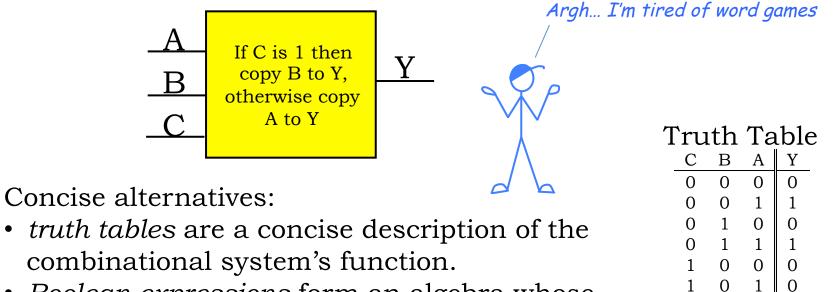
4. Combinational Logic

6.004x Computation Structures Part 1 – Digital Circuits

Copyright © 2015 MIT EECS

Functional Specifications

There are many ways of specifying the function of a combinational device, for example:



• *Boolean expressions* form an algebra whose operations are AND (multiplication), OR (addition), and inversion (overbar).

 $Y = \overline{C} \cdot \overline{B} \cdot A + \overline{C}BA + CB\overline{A} + CBA$

1

1

0

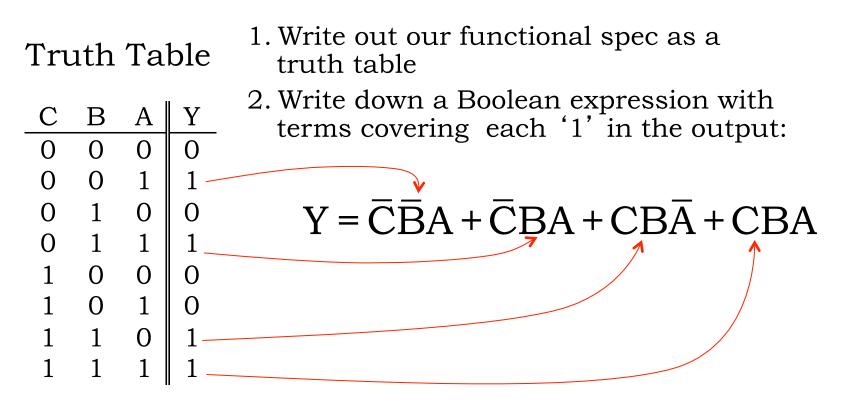
1

1

1

Any combinational (Boolean) function can be specified as a truth table or an equivalent <u>sum-of-products</u> Boolean expression!

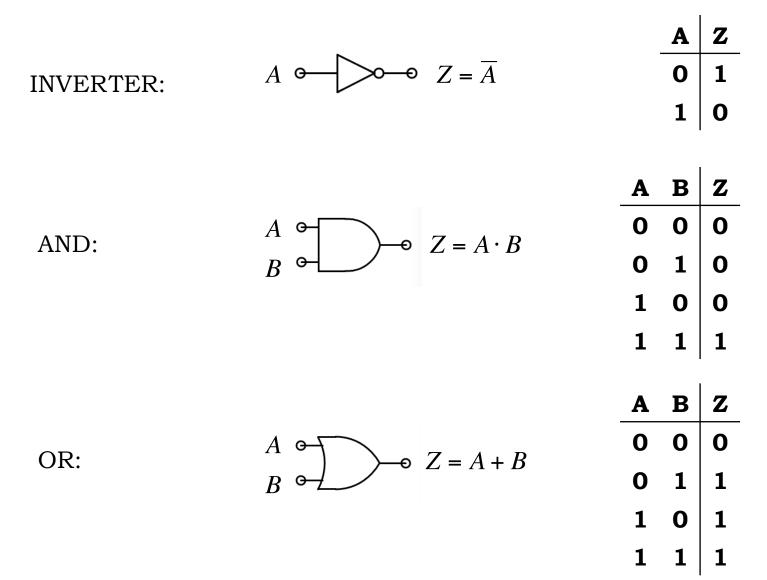
Here's a Design Approach



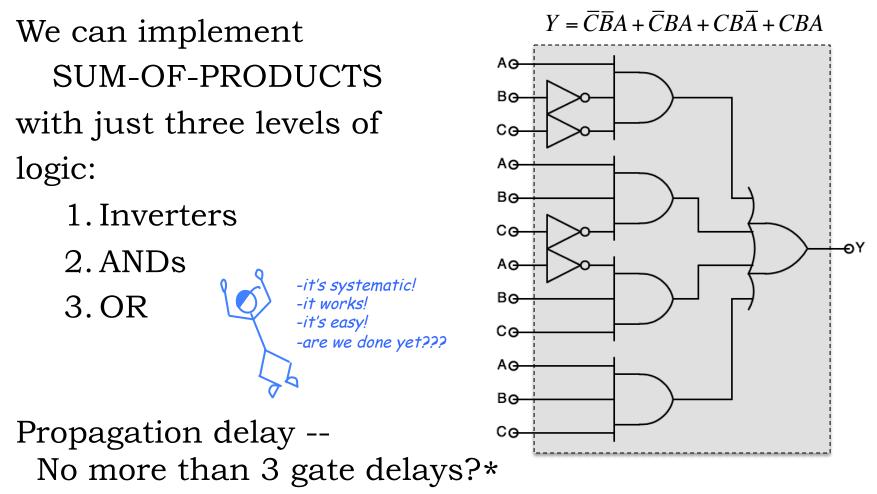
3. We'll show how to build a circuit using this equation in the next two slides.

This approach will always give us Boolean expressions in a particular form: SUM-OF-PRODUCTS

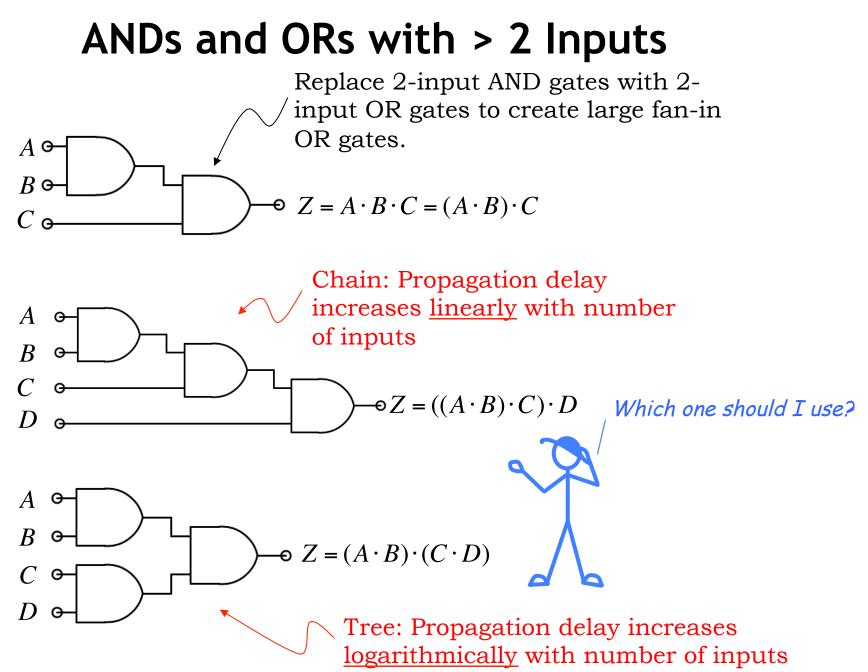
Sum-of-products Building Blocks



Straightforward Synthesis

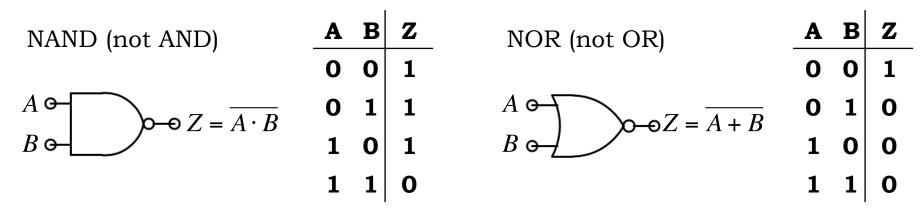


*assuming gates with an arbitrary number of inputs, which, as we'll see, isn't a good assumption!

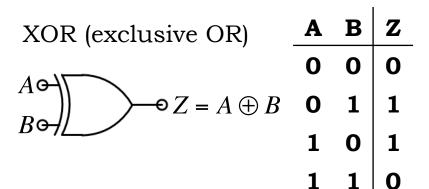


6.004 Computation Structures

More Building Blocks



In a CMOS gate, rising inputs lead to falling outputs and vice-versa, so CMOS gates are naturally inverting. Want to use NANDs and NORs in CMOS designs... But NAND and NOR operations are not associative, so wide NAND and NOR gate can't use a chain or tree strategy. Stay tuned for more on this!

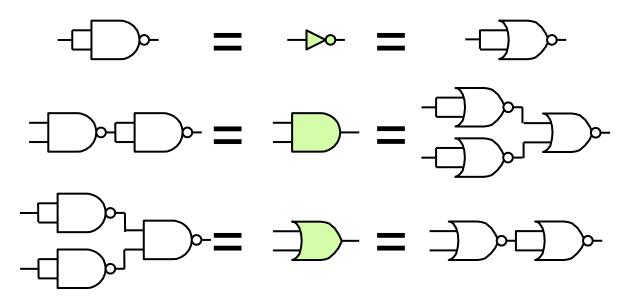


XOR is very useful when implementing parity and arithmetic logic. Also used as a "programmable inverter": if A=0, Z=B; if A=1, Z=~B

Wide fan-in XORs can be created with chains or trees of 2-input XORs.

Universal Building Blocks

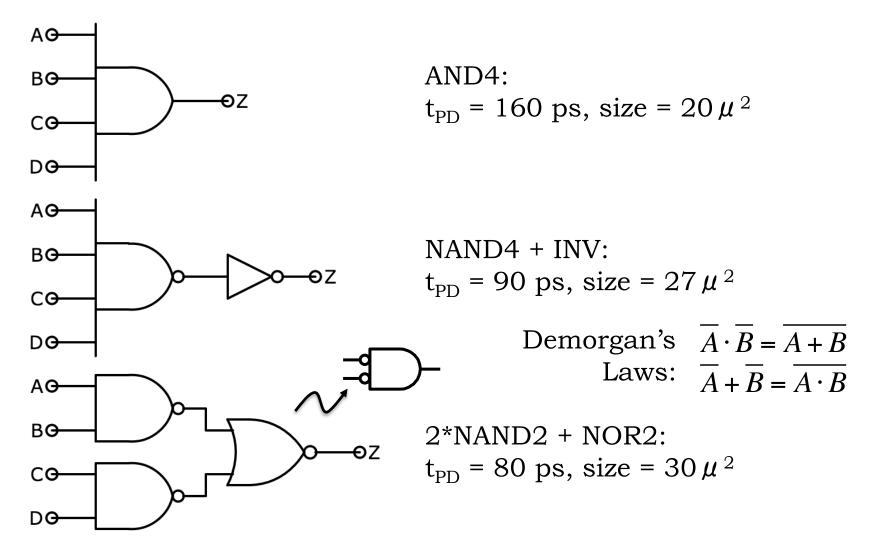
NANDs and NORs are <u>universal</u>:



Any logic function can be implemented using only NANDs (or, equivalently, NORs). Good news for CMOS technologies!

CMOS **V** Inverting Logic

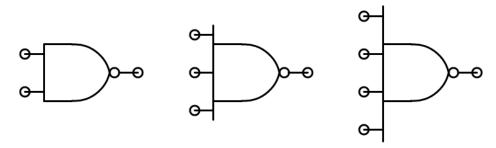
See "The Standard Cell Library" handout in Updates & Handouts



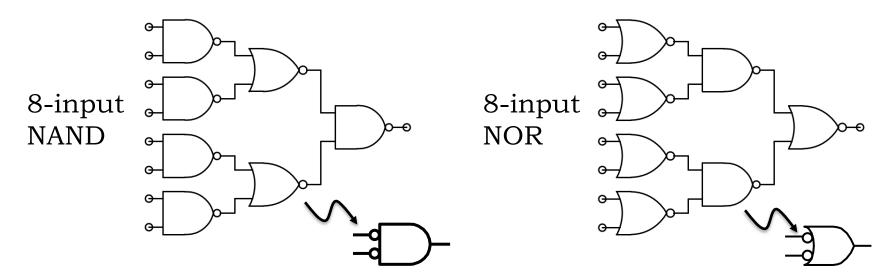
6.004 Computation Structures

Wide NANDs and NORs

Most logic libraries include 2-, 3- and 4-input devices:

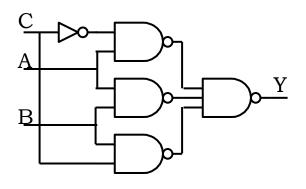


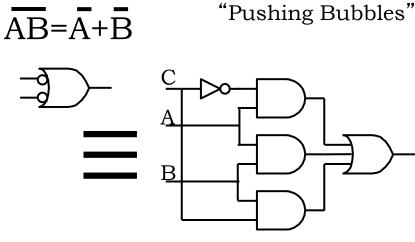
But for a large number of inputs, the series connections of too many MOSFETs can lead to very large effective R. Design note: use trees of smaller devices...

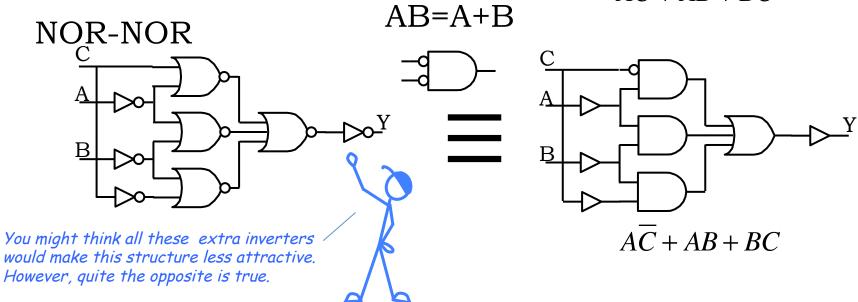


CMOS Sum-of-products Implementation

NAND-NAND







6.004 Computation Structures

L4: Logic Synthesis, Slide #11

Y

Logic Simplification

Can we implement the same function with fewer gates? Before trying we'll add a few more tricks in our bag. BOOLEAN ALGEBRA:

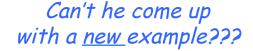
OR rules: a + 1 = 1, a + 0 = a, a + a = aa1 = a, a0 = 0, aa = aAND rules: Commutative: a + b = b + a, ab = ba(a + b) + c = a + (b + c), (ab)c = a(bc)Associative: a(b+c) = ab + ac, a + bc = (a+b)(a+c)Distributive: Complements: $a + \overline{a} = 1$, $a\overline{a} = 0$ a + ab = a, $a + \overline{a}b = a + b$ a(a + b) = a, $a(\overline{a} + b) = ab$ Absorption: $ab + \overline{a}b = b$, $(a+b)(\overline{a}+b) = b$ Reduction: DeMorgan's Law: $\overline{a} + \overline{b} = \overline{ab}$. $\overline{a}\overline{b} = \overline{a+b}$

Boolean Minimization

Let's (again!) simplify $Y = \overline{CBA} + CB\overline{A} + CBA + \overline{CBA}$

Using the identity

 $\alpha A + \alpha \overline{A} = \alpha (A + \overline{A}) = \alpha \cdot 1 = \alpha$



For any expression α and variable A:

$$Y = \overline{CB}A + CB\overline{A} + CBA + \overline{CB}A$$
$$Y = \overline{CB}A + CB + \overline{CB}A$$
$$Y = \overline{CA} + CB$$

Hey... I could write a program to do that

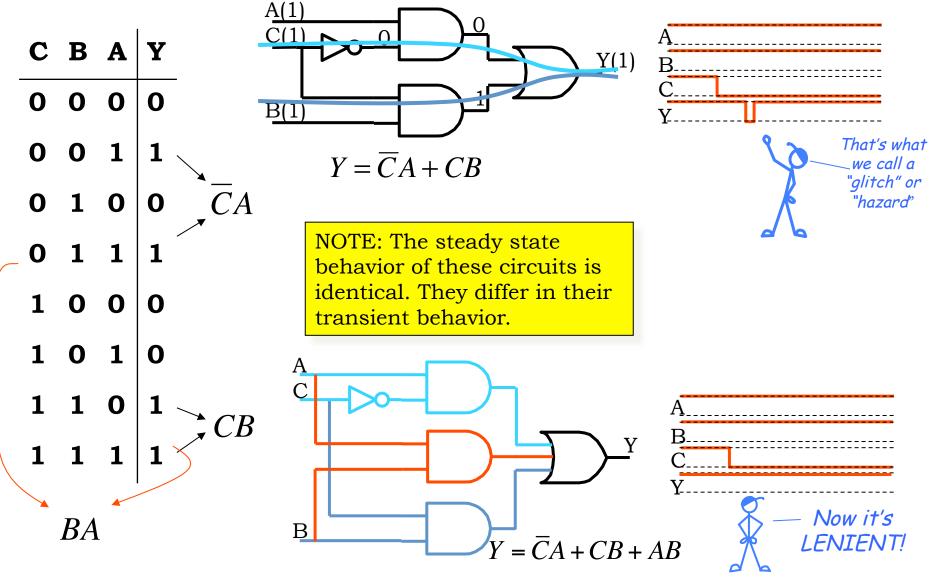
Truth Tables with "Don't Cares"

One way to reveal the opportunities for a more compact implementation is to rewrite the truth table using "don't cares" (-- or X) to indicate when the value of a particular input is irrelevant in determining the value of the output.

C	B	Α	Y	С	B	A	Y	
0	0	0	0	0	X	0	0	-
0	0	1	1	0	x	1	1	$\rightarrow \overline{C}A$
0	1	0	0					CII
0	1	1	1			X		
1	0	0	0	1	1	X	1	$\rightarrow CB$
1	0	1	0	X	0	0	0	
1	1	0	1	X	1	1	1	$\rightarrow BA$
1	1	1	1				I	~~~

Note: Some input combinations (e.g., 000) are matched by more than one row in the "don't care" table. It would be a bug if all the matching rows didn't specify the same output value!

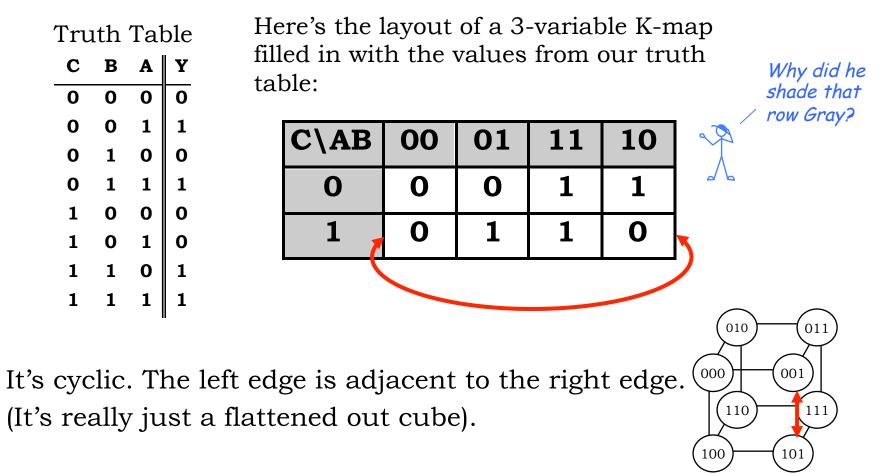
The Case for a Non-minimal SOP



6.004 Computation Structures

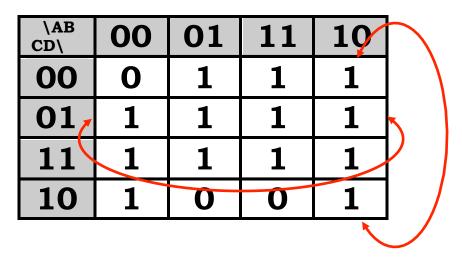
Karnaugh Maps: A Geometric Approach

K-Map: a truth table arranged so that terms which differ by exactly one variable are adjacent to one another so we can see potential reductions easily.



Extending K-maps to 4-variable Tables

4-variable K-map F(A,B,C,D):



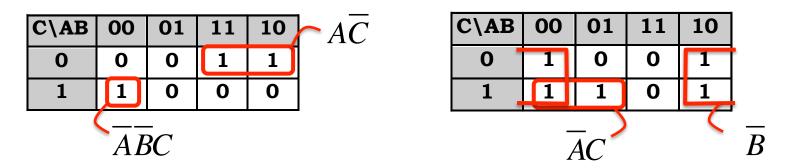
Again it's cyclic. The left edge is adjacent to the right edge, and the top is adjacent to the bottom.

For functions of 5 or 6 variables, we'd need to use the 3rd dimension to build a 4x4x4 K-map. But then we're out of dimensions...

Finding Implicants

An implicant

- is a rectangular region of the K-map where the function has the value 1 (i.e., a region that will need to be described by one or more product terms in the sum-of-products)
- has a width and length that must be a power of 2: 1, 2, 4
- can overlap other implicants
- is a prime implicant if it is not completely contained in any other implicant.

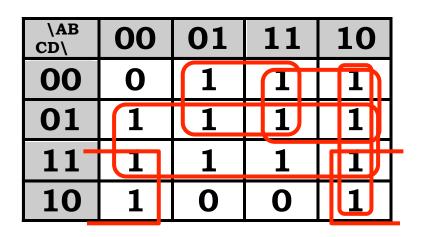


• can be uniquely identified by a single product term. The larger the implicant, the smaller the product term.

Finding Prime Implicants

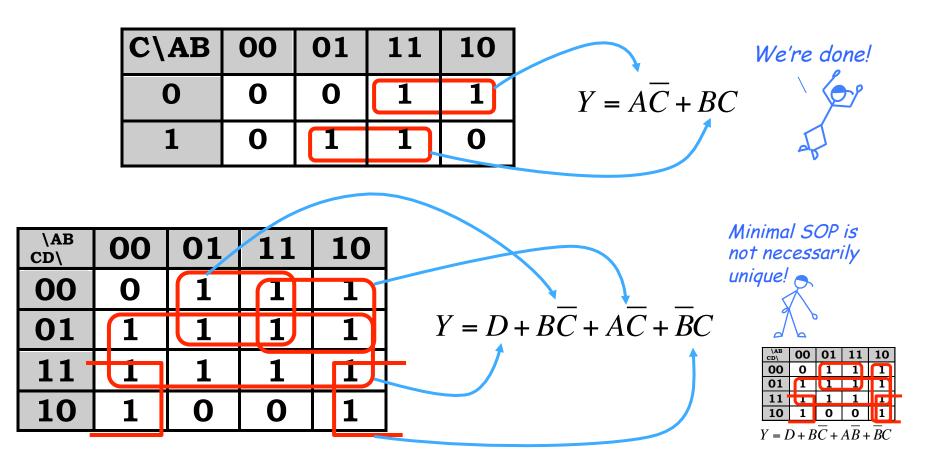
We want to find all the prime implicants. The right strategy is a greedy one.

- Find the uncircled prime implicant with the greatest area
 - Order: $4x4 \Rightarrow 2x4$ or $4x2 \Rightarrow 4x1$ or 1x4 or $2x2 \Rightarrow 2x1$ or $1x2 \Rightarrow 1x1$
 - Overlap is okay
- Circle it
- Repeat until all prime implicants are circled



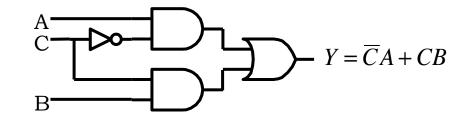
Write Down Equations

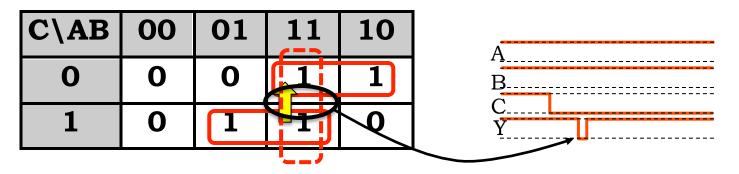
Picking just enough prime implicants to cover all the 1's in the KMap, combine equations to form minimal sum-of-products.



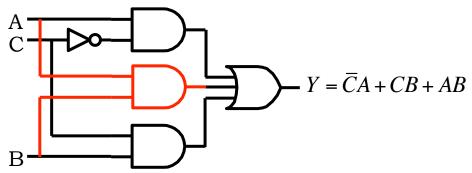
Prime Implicants, Glitches & Leniency

This circuit produces a glitch on Y when A=1, B=1, C: $1 \rightarrow 0$

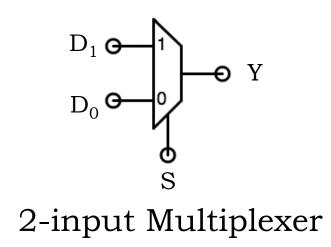




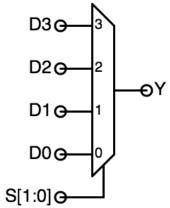
To make the circuit lenient, include product terms for ALL prime implicants.



We've Been Designing a Mux



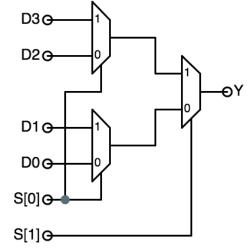
MUXes can be generalized to 2^k data inputs and k select inputs ...



Truth Table

S	\mathbf{D}_1	Do	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

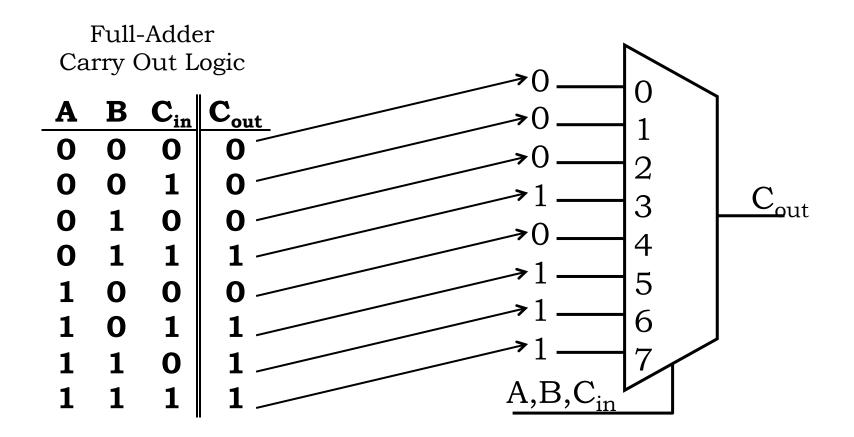
... and implemented as a tree of smaller MUXes:



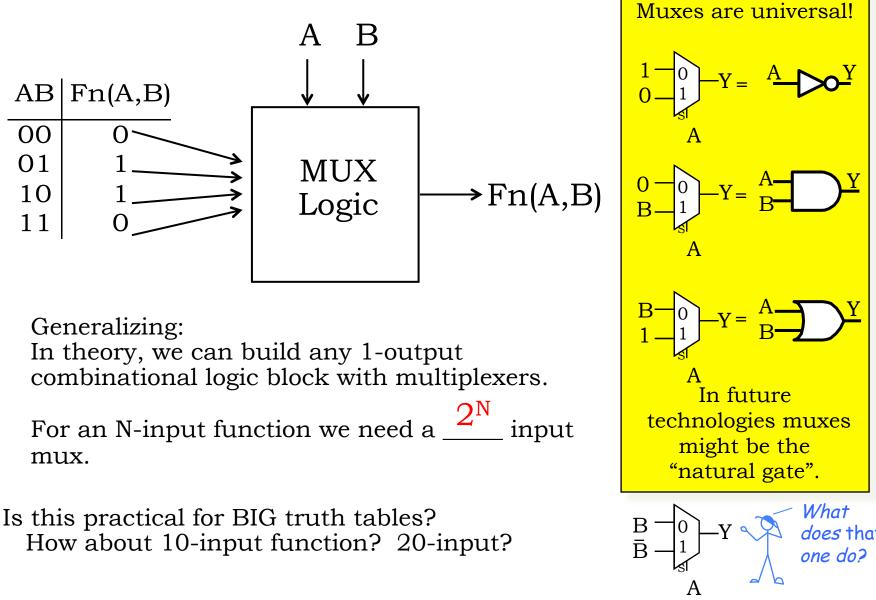
6.004 Computation Structures

Systematic Implementation Strategies

Consider implementing some arbitrary Boolean function, F(A,B,C) ... using a MULTIPLEXER as the only circuit element:

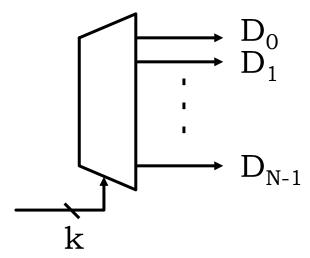


Synthesis By Table Lookup



6.004 Computation Structures

A New Combinational Device



DECODER:

- k SELECT inputs,
- N = 2^k DATA OUTPUTS.

Select inputs choose one of the D_j to assert HIGH, all others will be LOW.

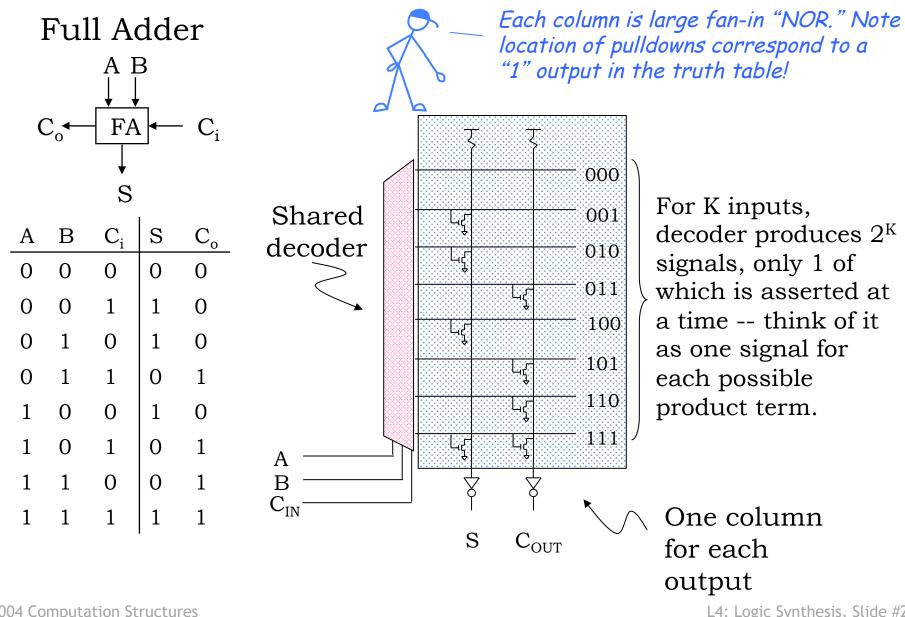
mentioned that HIGH is a synonym for '1' and LOW means the same as '0'

Have I

NOW, we are well on our way to building a general purpose table-lookup device.

We can build a 2-dimensional ARRAY of decoders and selectors as follows ...

Read-only Memory (ROM)

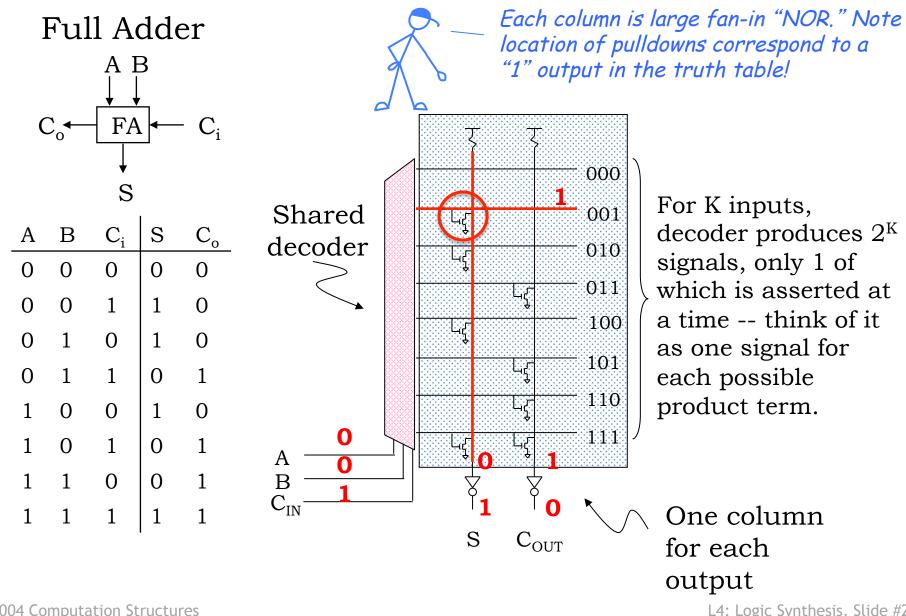


signals, only 1 of which is asserted at a time -- think of it as one signal for each possible product term.

L4: Logic Synthesis, Slide #26

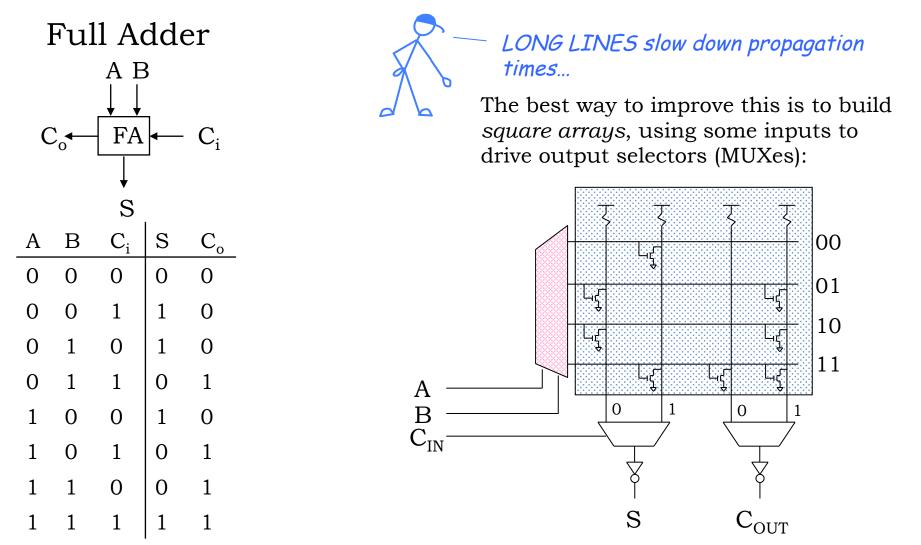
6.004 Computation Structures

Read-only Memory (ROM)



For K inputs, decoder produces 2^K signals, only 1 of which is asserted at a time -- think of it as one signal for each possible product term.

Read-only Memory (ROM)



2D Addressing: Standard for ROMs, RAMs, logic arrays...

Logic According to ROMs

ROMs ignore the structure of combinational functions ...

- Size, layout, and design are independent of function
- Any Truth table can be "programmed" by minor reconfiguration:
 - Metal layer (masked ROMs)
 - Fuses (Field-programmable PROMs)
 - Charge on floating gates (EPROMs) ... etc.

ROMs tend to generate "glitchy" outputs. WHY?

Model: LOOK UP value of function in truth table... Inputs: "ADDRESS" of a T.T. entry ROM SIZE = # TT entries... ... for an N-input boolean function, size ≅ 2^N x #outputs

Summary

- Sum of products
 - Any function that can be specified by a truth table or, equivalently, in terms of AND/OR/NOT (Boolean expression)
 - "3-level" implementation of any logic function
 - Limitations on number of inputs (fan-in) increases depth
 - SOP implementation methods
 - NAND-NAND, NOR-NOR
- Muxes used to build table-lookup implementations
 - Easy to change implemented function -- just change constants
- ROMs
 - Decoder logic generates all possible product terms
 - Selector logic determines which terms are ORed together