
6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #1

14. Caches & The Memory Hierarchy

6.004x Computation Structures
Part 2 – Computer Architecture

Copyright © 2016 MIT EECS

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #2

Our “Computing Machine”

(PC+4)+4*SXT(C)

ASEL 0 1

Data
Memory

RD

WD

Adr

WE

W D S E L 0 1 2

WA Rc: ID[25:21] 0 1 XP

 PC

JT

+4
Instruction

Memory A
D

Rb: ID[15:11]Ra: ID[20:16]

RA2SEL
Rc: ID[25:21]

+
Register

File
RA1 RA2
RD1 RD2

BSEL 0 1

C: SXT(ID[15:0])
Z

ALU
A B

JT
WA WD

WE

ALUFN

Control Logic

Z

ASEL
BSEL

PCSEL
RA2SEL

WDSEL

ALUFN

PC+4

0 1

MWR

0 1 2 3 4
XAdr ILL

OP

WASEL

WASEL

IRQ

W E R F

WERF

00

PCSEL

OE MOE
MOE
MWR

ID[31:0]

ID[31:26]

0 1 Reset

RESET

Memory

We need to fetch one
instruction each cycle

Ultimately
data is
loaded
from and
results
stored to
memory

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #3

Memory Technologies

Technologies have vastly different tradeoffs between
capacity, access latency, bandwidth, energy, and cost

–  … and logically, different applications

Capacity Latency Cost/GB

Register 1000s of bits 20 ps $$$$

SRAM ~10 KB-10 MB 1-10 ns ~$1000

DRAM ~10 GB 80 ns ~$10

Flash* ~100 GB 100 us ~$1

Hard disk* ~1 TB 10 ms ~$0.10

I/O

subsystem

Memory
Hierarchy

Processor
Datapath

* non-volatile (retains contents when powered off)

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #4

Static RAM (SRAM)
Drivers

Sense
amplifiers

Address
decoder

SRAM cell

Wordlines
(horizontal)

Bitlines
(vertical,
two per cell)

8x6 SRAM
array

Address

3

Data in

6

Data out
6

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #5

SRAM Cell

6-MOSFET (6T) cell:
–  Two CMOS inverters (4 MOSFETs) forming a bistable

element

–  Two access transistors

6T SRAM Cell

Wordline N access FETs

bitline bitline

Vdd

GND

GND

Vdd

Bistable element
(two stable states)
stores a single bit

“1”

“0”

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #6

SRAM Read

1.  Drivers precharge all
bitlines to Vdd (1), and
leave them floating

2.  Address decoder
activates one wordline

3.  Each cell in the
activated word slowly
pulls down one of the
bitlines to GND (0)

4.  Sense amplifiers sense
change in bitline
voltages, producing
output data

6T SRAM Cell

wordline access FETs

bitline bitline

1

2 3

4

OFFàON

1 0

GNDàVdd

2 2
t

V(t)

t

V(t) 3

Vdd Vdd 1

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #7

SRAM Write

1.  Drivers set and hold
bitlines to desired values
(Vdd and GND for 1, GND
and Vdd for 0)

2.  Address decoder activates
one wordline

3.  Each cell in word is
overpowered by the
drivers, stores value

wordline access FETs

bitline bitline

1

2 3

OFFàON

Vdd

GNDàVdd

2 2

Vdd GND 11
3

àGND GND àVdd

All transistors are carefully sized
so that bitline GND overpowers
cell Vdd, but bitline Vdd does not
overpower cell GND (why?)

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #8

•  SRAM so far can do either one read or one write/
cycle

•  We can do multiple reads and writes with multiple
ports by adding one set of wordlines and bitlines
per port

•  Cost/bit? For N ports…
–  Wordlines: _____

–  Bitlines: _____
–  Access FETs: _____

•  Wires often dominate
area à O(N2) area!

Multiported SRAMs

2*N

2*N

N

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #9

Summary: SRAMs

•  Array of k*b cells (k words, b cells per word)
•  Cell is a bistable element + access transistors

–  Analog circuit with carefully sized transistors to allow
reads and writes

•  Read: Precharge bitlines, activate wordline, sense
•  Write: Drive bitlines, activate wordline, overpower

cells

•  6 MOSFETs/cell… can we do better?
–  What’s the minimum number of MOSFETs needed to store

a single bit?

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #10

1T Dynamic RAM (DRAM) Cell

word
line

bitline

access FET

C in storage capacitor determined by:

C =
e A
d

more area better dielectric

thinner film

1T DRAM Cell

VREF

Storage
capacitor

Trench capacitors
take little area

ü ~20x smaller area than SRAM cell à Denser and cheaper!
û  Problem: Capacitor leaks charge, must be refreshed periodically
(~milliseconds)

Cyferz (CC BY 2.5)

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #11

DRAM Writes and Reads

•  Writes: Drive bitline to Vdd or GND,
activate wordline, charge or
discharge capacitor

•  Reads:
1.  Precharge bitline to Vdd/2
2.  Activate wordline

3.  Capacitor and bitline share charge
•  If capacitor was discharged, bitline voltage decreases slightly

•  If capacitor was charged, bitline voltage increases slightly

4.  Sense bitline to determine if 0 or 1

–  Issue: Reads are destructive! (charge is gone!)
–  So, data must be rewritten to cell at end of read

word
line

bitline

access FET

1T DRAM Cell

VREF

Storage
capacitor

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #12

Summary: DRAM

•  1T DRAM cell: transistor + capacitor
•  Smaller than SRAM cell, but destructive reads and

capacitors leak charge

•  DRAM arrays include circuitry to:
–  Write word again after every read (to avoid losing data)

–  Refresh (read+write) every word periodically

•  DRAM vs SRAM:
–  ~20x denser than SRAM

–  ~2-10x slower than SRAM

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #13

Non-Volatile Storage: Flash

Flash Memory: Use “floating gate” transistors to store charge
•  Very dense: Multiple bits/transistor, read and written in blocks
•  Slow (especially on writes), 10-100 us
•  Limited number of writes: charging/discharging the floating

gate (writes) requires large voltages that damage transistor

Cyferz (CC BY 2.5)

Electrons here diminish
strength of field from
control gate ⇒ no
inversion ⇒ NFET stays
off even when word line
is high.

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #14

Non-Volatile Storage: Hard Disk

Hard Disk: Rotating magnetic platters + read/write head
•  Extremely slow (~10ms): Mechanically move head to position,

wait for data to pass underneath head
•  ~100MB/s for sequential read/writes
•  ~100KB/s for random read/writes
•  Cheap

Surachit (CC BY 2.5)
Circular track divided
into sectors

Disk head

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #15

Summary: Memory Technologies

•  Different technologies have vastly different tradeoffs
•  Size is a fundamental limit, even setting cost aside:

–  Small + low latency, high bandwidth, low energy, or
–  Large + high-latency, low bandwidth, high energy

•  Can we get the best of both worlds? (large, fast,
cheap)

Capacity Latency Cost/GB

Register 1000s of bits 20 ps $$$$

SRAM ~10 KB-10 MB 1-10 ns ~$1000

DRAM ~10 GB 80 ns ~$10

Flash ~100 GB 100 us ~$1

Hard disk ~1 TB 10 ms ~$0.10

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #16

The Memory Hierarchy

Want large, fast, and cheap memory, but…
Large memories are slow (even if built with fast components)

Fast memories are expensive

Idea: Can we use a hierarchal system of memories
with different tradeoffs to emulate a large, fast, cheap
memory?

FLASH CPU SRAM DRAM

Speed:
Capacity:

Cost:

Fastest
Smallest
Highest

Slowest
Largest
Lowest

Mem

Fast
Large
Cheap

≈ ?

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #17

Memory Hierarchy Interface

Approach 1: Expose Hierarchy
–  Registers, SRAM, DRAM,

Flash, Hard Disk each
available as storage
alternatives

–  Tell programmers: “Use them cleverly”

Approach 2: Hide Hierarchy
–  Programming model: Single memory, single address space

–  Machine transparently stores data in fast or slow memory,
depending on usage patterns

10 GB
DRAM CPU

10 KB
SRAM

10 MB
SRAM 1 TB

 Flash/HDD

10 GB
DRAM

CPU 100 KB
SRAM

1 TB
HDD/SSD

L1Cache Main memory
Swap space X?

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #18

The Locality Principle

Keep the most often-used data in a small, fast
SRAM (often local to CPU chip)

Refer to Main Memory only rarely, for remaining
data.

Locality of Reference:

Access to address X at time t implies that
access to address X+ΔX at time t+Δt
becomes more probable as ΔX and Δt
approach zero.

The reason this strategy works: LOCALITY

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #19

Δt

Memory Reference Patterns

time

address

data

stack

code

|S|

Δ t

S is the set of
locations accessed
during Δt.

Working set: a set S
which changes slowly
wrt access time.

Working set size, |S|

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #20

Caches

Cache: A small, interim storage component that
transparently retains (caches) data from recently
accessed locations

–  Very fast access if data is cached, otherwise
accesses slower, larger cache or memory

–  Exploits the locality principle

Computer systems often use multiple levels of caches

Caching widely applied beyond hardware (e.g., web
caches)

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #21

A Typical Memory Hierarchy
•  Everything is a cache for something else…

Registers

Level 1 Cache

Level 2 Cache

Level 3 Cache

Main Memory

Flash Drive

Hard Disk

On chip

Other
chips

Mechanical
devices

On the
datapath

Access time Capacity Managed By

1 cycle 1 KB Software/Compiler

2-4 cycles 32 KB Hardware

10 cycles 256 KB Hardware

40 cycles 10 MB Hardware

200 cycles 10 GB Software/OS

10-100us 100 GB Software/OS

10ms 1 TB Software/OS

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #22

A Typical Memory Hierarchy
•  Everything is a cache for something else…

Registers

Level 1 Cache

Level 2 Cache

Level 3 Cache

Main Memory

Flash Drive

Hard Disk

On chip

Other
chips

Mechanical
devices

On the
datapath

Access time Capacity Managed By

1 cycle 1 KB Software/Compiler

2-4 cycles 32 KB Hardware

10 cycles 256 KB Hardware

40 cycles 10 MB Hardware

200 cycles 10 GB Software/OS

10-100us 100 GB Software/OS

10ms 1 TB Software/OS

TODAY:
Hardware Caches

LATER:
Software Caches
(Virtual Memory)

HW vs SW caches:

Same objective: fake
large, fast, cheap

mem

Conceptually similar

Different
implementations

(very different
tradeoffs!)

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #23

Cache Access

•  Processor sends address to cache
•  Two options:

–  Cache hit: Data for this address in cache, returned quickly

–  Cache miss: Data not in cache
•  Fetch data from memory, send it back to processor

•  Retain this data in the cache (replacing some other data)

–  Processor must deal with variable memory access time

Processor Cache Main
Memory

0x6004

LD 0x6004
LD 0x6034

DATA
0x6034

DATA

0x6034

DATA

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #24

Hit Ratio:

Miss Ratio:

Average Memory Access Time (AMAT):

–  Goal of caching is to improve AMAT
–  Formula can be applied recursively in multi-level

hierarchies:

Cache Metrics

HR = hits
hits+misses

=1−MR

MR = misses
hits+misses

=1−HR

...)(32211

211

=×+×+=

=×+=

LLLLL

LLL

AMATMissRatioHitTimeMissRatioHitTimeAMAT
AMATMissRatioHitTimeAMAT

AMAT = HitTime + MissRatio × MissPenalty

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #25

Example: How High of a Hit Ratio?

What hit ratio do we need to break even?
(Main memory only: AMAT = 100)

Processor Cache Main
Memory

4 cycles 100 cycles

What hit ratio do we need to achieve AMAT = 5 cycles?

100 = 4 + (1 − HR) × 100 ⇒ HR = 4%

5 = 4 + (1 − HR) × 100 ⇒ HR = 99%

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #26

Basic Cache Algorithm

MAIN
MEMORY

CPU

(1-HR)

Tag Data

A

B

Mem[A]

Mem[B]

Q: How do we “search” the cache?

ON REFERENCE TO Mem[X]:
 Look for X among cache tags...

HIT: X = TAG(i) , for some cache line i
•  READ: return DATA(i)
•  WRITE: change DATA(i); Start Write to Mem(X)

MISS: X not found in TAG of any cache line

•  REPLACEMENT SELECTION:

Select some line k to hold Mem[X] (Allocation)

•  READ: Read Mem[X]

 Set TAG(k)=X, DATA(k)=Mem[X]

•  WRITE: Start Write to Mem(X)

 Set TAG(k)=X, DATA(k)= new Mem[X]

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #27

00000000000000000000000011101000	

Direct-Mapped Caches

•  Each word in memory maps into a single cache line
•  Access (for cache with 2W lines):

–  Index into cache with W address bits (the index bits)

–  Read out valid bit, tag, and data
–  If valid bit == 1 and tag matches upper address bits, HIT

Tag (27 bits) Valid bit Data (32 bits)

32-bit BYTE address

Index
bits

Tag
bits

Offset
bits

=? HIT

Example: 8-location DM cache (W=3) 0
1
2
3
4
5
6
7

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #28

Example: Direct-Mapped Caches

64-line direct-mapped cache à 64 indexes à 6 index bits

1	

1	

0	

1	

1	

1	

0x000058	

0x000058	

0x000058	

0x000040	

0x000007	

0x000058	

0xDEADBEEF	

0x00000000	

0x00000007	

0x42424242	

0x6FBA2381	

0xF7324A32	

Tag (24 bits) Valid bit Data (32 bits)
0

1

2

3

4

63

…

…

…

Read Mem[0x400C]

HIT, DATA 0x42424242

Part of the address (index bits) is encoded in the location!
Tag + Index bits unambiguously identify the data’s address

0100 0000 0000 1100

TAG: 0x40
INDEX: 0x3
OFFSET: 0x0

Would 0x4008 hit?
INDEX: 0x2 → tag mismatch → miss

What are the addresses of data in indexes 0, 1, and 2?
TAG: 0x58 → 0101 1000 iiii ii00 (substitute line # for iiiiii) → 0x5800, 0x5804, 0x5808

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #29

Block Size

Take advantage of locality: increase block size
–  Another advantage: Reduces size of tag memory!

–  Potential disadvantage: Fewer blocks in the cache

Tag (26 bits) Valid bit Data (4 words, 16 bytes)

Example: 4-block,
16-word DM cache

Index bits: 2 (4 indexes) Tag bits: 26 (=32-4-2)
Block offset bits: 4 (16 bytes/block)

32-bit BYTE address 0 1 2 3

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #30

Block Size Tradeoffs

• Larger block sizes…
–  Take advantage of spatial locality
–  Incur larger miss penalty since it takes longer to transfer the

block into the cache
–  Can increase the average hit time and miss rate

• Average Access Time (AMAT) = HitTime + MissPenalty*MR

Block Size

Miss Penalty AMAT

Block Size

Increased miss penalty
and miss rate

Miss Ratio

Block Size

Exploits spatial locality

Fewer blocks,
compromises
locality

~64 bytes

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #31

Loop A:
 Pgm at

1024,
data at
37:

Direct-Mapped Cache Problem: Conflict Misses

Assume:
 1024-line DM cache
 Block size = 1 word
Consider looping code, in

steady state
Assume WORD, not BYTE,

addressing

Word
Address

1024
37

1025
38

1026
39

1024
37
…

Cache
Line index

0
37
1
38
2
39
0
37

Hit/
Miss

HIT
HIT
HIT
HIT
HIT
HIT
HIT
HIT

Inflexible mapping (each
address can only be in one
cache location) à Conflict
misses!

Loop B:
 Pgm at

1024,
data at
2048:

1024
2048
1025
2049
1026
2050
1024
2048

...

0
0
1
1
2
2
0
0

MISS
MISS
MISS
MISS
MISS
MISS
MISS
MISS

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #32

Fully-Associative Cache

Opposite extreme: Any address can be in any location
–  No cache index!

–  Flexible (no conflict misses)

–  Expensive: Must compare tags of all entries in parallel to find
matching one (can do this in hardware, this is called a CAM)

32-bit BYTE address

=?

=?
=?

=?

Tag bits Offset bits

Tag
Valid
bit Data

…

…

…

…

…

…

0 1 2 3

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #33

N-way Set-Associative Cache

• Compromise between direct-mapped and fully associative

–  Nomenclature:
•  # Rows = # Sets

•  # Columns = # Ways

•  Set size = #ways
= “set associativity”
(e.g., 4-way à 4 entries/set)

–  compare all tags from all
ways in parallel

• An N-way cache can be seen as:

–  N direct-mapped caches in parallel

• Direct-mapped and fully-associative are just special cases of N-way
set-associative

Tag Data Tag Data Tag Data

8
se

ts

4 ways

Tag Data

=? =? =? =?

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #34

N-way Set-Associative Cache

k

HIT

DATA TO CPU

INCOMING ADDRESS

=? =? =?

i

0

MEM DATA

SET

WAY

Example: 3-way
8-set cache

Tag Tag Tag Data Data Data

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #35

Δt

“Let me count the ways.”

time

address

data

stack

code

Potential
cache line
conflicts
during
interval Δt

Elizabeth Barrett Browning

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #36

0

2

4

6

8

10

12

14

1k 2k 4k 8k 16k 32k 64k 128k

1-way

2-way

4-way

8-way

fully assoc.

Associativity Tradeoffs

•  More ways…
–  Reduce conflict misses

–  Increase hit time

Miss ratio (%)

Cache size (bytes)

Associativity

[H&P: Fig 5.9]

Little additional benefits
beyond 4 to 8 ways

Hit Time

Ways

AMAT

Ways

Higher hit time

Lower conflict misses

yMissPenaltMissRatioHitTimeAMAT ×+=

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #37

Issue: Replacement Policy

Associativity Implies Choices

address

Fully associative

•  Compare addr with each
tag simultaneously

•  Location A can be
 stored in any cache line

address

Direct-mapped

•  Compare addr with
only one tag

•  Location A can be
stored in exactly one
cache line

N
address

N-way set-associative

•  Compare addr with N
tags simultaneously

•  Location A can be stored
in exactly one set, but in
any of the N cache lines
belonging to that set

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #38

Replacement Policies
• Optimal policy (Belady’s MIN): Replace the block that is

accessed furthest in the future
–  Requires knowing the future…

•  Idea: Predict the future from looking at the past
–  If a block has not been used recently, it’s often less likely to be

accessed in the near future (a locality argument)

• Least Recently Used (LRU): Replace the block that was
accessed furthest in the past

–  Works well in practice
–  Need to keep ordered list of N items → N! orderings
→ O(log2N!) = O(N log2N) “LRU bits” + complex logic

–  Caches often implement cheaper approximations of LRU

• Other policies:
–  First-In, First-Out (least recently replaced)

–  Random: Choose a candidate at random
•  Not very good, but does not have adversarial access patterns

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #39

Write Policy

Write-through: CPU writes are cached, but also written to
main memory immediately (stalling the CPU until write is
completed). Memory always holds current contents

–  Simple, slow, wastes bandwidth

Write-behind: CPU writes are cached; writes to main memory
may be buffered. CPU keeps executing while writes are
completed in the background

–  Faster, still uses lots of bandwidth

Write-back: CPU writes are cached, but not written to main
memory until we replace the block. Memory contents can be
“stale”

–  Fastest, low bandwidth, more complex
–  Commonly implemented in current systems

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #40

Write-Back

ON REFERENCE TO Mem[X]: Look for X among tags...

HIT: TAG(X) == Tag[i] , for some cache block i

• READ: return Data[i]
• WRITE: change Data[i]; Start Write to Mem[X]

MISS: TAG(X) not found in tag of any cache block that X can map to

• REPLACEMENT SELECTION:
§ Select some line k to hold Mem[X]
§ Write Back: Write Data[k] to Mem[Address from Tag[k]]

• READ: Read Mem[X]

Ø Set Tag[k] = TAG(X), Data[k] = Mem[X]

• WRITE: Start Write to Mem[X]
Ø Set Tag[k] = TAG(X), Data[k] = new Mem[X]

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #41

Write-Back with “Dirty” Bits

ON REFERENCE TO Mem[X]: Look for TAG(X) among tags...

HIT: TAG(X) == Tag[i] , for some cache block i

• READ: return Data[i]
• WRITE: change Data[i] Start Write to Mem[X] D[i]=1

MISS: TAG(X) not found in tag of any cache block that X can map to

• REPLACEMENT SELECTION:
§ Select some block k to hold Mem[X]
§ If D[k] == 1 (Writeback) Write Data[k] to Mem[Address of Tag[k]]

• READ: Read Mem[X]; Set Tag[k] = TAG(X), Data[k] = Mem[X], D[k]=0
• WRITE: Start Write to Mem[X] D[k]=1

Ø Set Tag[k] = TAG(X), Data[k] = new Mem[X]

MAIN
MEMORY CPU TAG(A) Mem[A]

TAG(B) Mem[B]

TAG DATA V

1

1

0
0
0
0
0

D

1

0

Add 1 bit per block to
record whether block has
been written to. Only
write back dirty blocks.

6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #42

Summary: Cache Tradeoffs

•  Larger cache size: Lower miss rate, higher hit time
•  Larger block size: Trade off spatial for temporal

locality, higher miss penalty

•  More associativity (ways): Lower miss rate, higher
hit time

•  More intelligent replacement: Lower miss rate,
higher cost

•  Write policy: Lower bandwidth, more complexity

•  How to navigate all these dimensions? Simulate
different cache organizations on real programs

AMAT = HitTime + MissRatio × MissPenalty

