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Memory Technologies 

Technologies have vastly different tradeoffs between 
capacity, access latency, bandwidth, energy, and cost 

–  … and logically, different applications 

Capacity Latency Cost/GB 

Register 1000s of bits 20 ps $$$$ 

SRAM ~10 KB-10 MB 1-10 ns ~$1000 

DRAM ~10 GB 80 ns ~$10 

Flash* ~100 GB 100 us ~$1 

Hard disk* ~1 TB 10 ms ~$0.10 

 
I/O 

subsystem 

Memory 
Hierarchy 

Processor 
Datapath 

* non-volatile (retains contents when powered off) 
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Static RAM (SRAM) 
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SRAM Cell 

6-MOSFET (6T) cell: 
–  Two CMOS inverters (4 MOSFETs) forming a bistable 

element 

–  Two access transistors 

6T SRAM Cell 

Wordline N access FETs 

bitline bitline 

Vdd 

GND 

GND 

Vdd 

Bistable element 
(two stable states) 
stores a single bit 

“1” 

“0” 
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SRAM Read 

1.  Drivers precharge all 
bitlines to Vdd (1), and 
leave them floating 

2.  Address decoder 
activates one wordline 

3.  Each cell in the 
activated word slowly 
pulls down one of the 
bitlines to GND (0) 

4.  Sense amplifiers sense 
change in bitline 
voltages, producing 
output data 

6T SRAM Cell 

wordline  access FETs 

bitline bitline 
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2 3
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2 2
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SRAM Write 

1.  Drivers set and hold 
bitlines to desired values 
(Vdd and GND for 1, GND 
and Vdd for 0) 

2.  Address decoder activates 
one wordline 

3.  Each cell in word is 
overpowered by the 
drivers, stores value 

wordline  access FETs 

bitline bitline 

1

2 3

OFFàON 

Vdd 

GNDàVdd 

2 2

Vdd GND 11
3

àGND GND àVdd 

All transistors are carefully sized 
so that bitline GND overpowers 
cell Vdd, but bitline Vdd does not 
overpower cell GND (why?) 
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•  SRAM so far can do either one read or one write/
cycle 

•  We can do multiple reads and writes with multiple 
ports by adding one set of wordlines and bitlines 
per port 

•  Cost/bit? For N ports… 
–  Wordlines:   _____ 

–  Bitlines:   _____ 
–  Access FETs:  _____ 

•  Wires often dominate 
area à O(N2) area! 

Multiported SRAMs 

2*N 

2*N 

N 
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Summary: SRAMs 

•  Array of k*b cells (k words, b cells per word) 
•  Cell is a bistable element + access transistors 

–  Analog circuit with carefully sized transistors to allow 
reads and writes 

•  Read: Precharge bitlines, activate wordline, sense 
•  Write: Drive bitlines, activate wordline, overpower 

cells 

•  6 MOSFETs/cell… can we do better? 
–  What’s the minimum number of MOSFETs needed to store 

a single bit? 
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1T Dynamic RAM (DRAM) Cell 

word 
line 

bitline 

access FET 

C in storage capacitor determined by: 

C =  
e A 
d 

more area better dielectric 

thinner film 

1T DRAM Cell 

VREF 

Storage 
capacitor  

Trench capacitors 
take little area 

ü ~20x smaller area than SRAM cell à Denser and cheaper! 
û  Problem: Capacitor leaks charge, must be refreshed periodically 
(~milliseconds) 

Cyferz (CC BY 2.5) 
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DRAM Writes and Reads 

•  Writes: Drive bitline to Vdd or GND, 
activate wordline, charge or 
discharge capacitor 

 

•  Reads: 
1.  Precharge bitline to Vdd/2 
2.  Activate wordline 

3.  Capacitor and bitline share charge 
•  If capacitor was discharged, bitline voltage decreases slightly 

•  If capacitor was charged, bitline voltage increases slightly 

4.  Sense bitline to determine if 0 or 1 

–  Issue: Reads are destructive! (charge is gone!) 
–  So, data must be rewritten to cell at end of read 

word 
line 

bitline 

access FET 

1T DRAM Cell 

VREF 

Storage 
capacitor  
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Summary: DRAM 

•  1T DRAM cell: transistor + capacitor 
•  Smaller than SRAM cell, but destructive reads and 

capacitors leak charge 

•  DRAM arrays include circuitry to: 
–  Write word again after every read (to avoid losing data) 

–  Refresh (read+write) every word periodically 

•  DRAM vs SRAM: 
–  ~20x denser than SRAM 

–  ~2-10x slower than SRAM 
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Non-Volatile Storage: Flash 

Flash Memory: Use “floating gate” transistors to store charge 
•  Very dense: Multiple bits/transistor, read and written in blocks 
•  Slow (especially on writes), 10-100 us 
•  Limited number of writes: charging/discharging the floating 

gate (writes) requires large voltages that damage transistor 

Cyferz (CC BY 2.5) 

Electrons here diminish 
strength of field from 
control gate ⇒ no 
inversion ⇒ NFET stays 
off even when word line 
is high. 



6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #14 

Non-Volatile Storage: Hard Disk 

Hard Disk: Rotating magnetic platters + read/write head 
•  Extremely slow (~10ms): Mechanically move head to position, 

wait for data to pass underneath head 
•  ~100MB/s for sequential read/writes 
•  ~100KB/s for random read/writes 
•  Cheap 

Surachit (CC BY 2.5) 
Circular track divided 
into sectors 

Disk head 
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Summary: Memory Technologies 

•  Different technologies have vastly different tradeoffs 
•  Size is a fundamental limit, even setting cost aside: 

–  Small + low latency, high bandwidth, low energy, or 
–  Large + high-latency, low bandwidth, high energy 

•  Can we get the best of both worlds? (large, fast, 
cheap) 

Capacity Latency Cost/GB 

Register 1000s of bits 20 ps $$$$ 

SRAM ~10 KB-10 MB 1-10 ns ~$1000 

DRAM ~10 GB 80 ns ~$10 

Flash ~100 GB 100 us ~$1 

Hard disk ~1 TB 10 ms ~$0.10 
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The Memory Hierarchy 

Want large, fast, and cheap memory, but… 
Large memories are slow (even if built with fast components) 

Fast memories are expensive 
 

Idea: Can we use a hierarchal system of memories 
with different tradeoffs to emulate a large, fast, cheap 
memory? 

FLASH CPU SRAM DRAM 

Speed: 
Capacity: 

Cost: 

Fastest 
Smallest 
Highest 

Slowest 
Largest 
Lowest 

Mem 

Fast 
Large 
Cheap 

≈ ? 
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Memory Hierarchy Interface 

Approach 1: Expose Hierarchy 
–  Registers, SRAM, DRAM, 

Flash, Hard Disk each 
available as storage 
alternatives 

–  Tell programmers: “Use them cleverly” 

Approach 2: Hide Hierarchy 
–  Programming model: Single memory, single address space 

–  Machine transparently stores data in fast or slow memory, 
depending on usage patterns 

10 GB 
DRAM CPU 

10 KB 
SRAM 

10 MB 
SRAM 1 TB 

 Flash/HDD 

10 GB 
DRAM 

CPU 100 KB 
SRAM 

1 TB 
HDD/SSD 

L1Cache Main memory 
Swap space X? 
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The Locality Principle 

Keep the most often-used data in a small, fast 
SRAM (often local to CPU chip) 

Refer to Main Memory only rarely, for remaining 
data. 

Locality of Reference: 

Access to address X at time t implies that 
access to address X+ΔX  at time  t+Δt 
becomes more probable as ΔX and Δt 
approach zero. 

The reason this strategy works:  LOCALITY 
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Δt 

Memory Reference Patterns 

time 

address 

data 

stack 

code 

|S| 

Δ t 

S is the set of 
locations accessed 
during  Δt. 
 
Working set:  a set S 
which changes slowly 
wrt access time. 
 
Working set size, |S| 
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Caches 

Cache: A small, interim storage component that 
transparently retains (caches) data from recently 
accessed locations 

–  Very fast access if data is cached, otherwise 
accesses slower, larger cache or memory 

–  Exploits the locality principle 

Computer systems often use multiple levels of caches 

Caching widely applied beyond hardware (e.g., web 
caches) 
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A Typical Memory Hierarchy 
•  Everything is a cache for something else… 

Registers 

Level 1 Cache 

Level 2 Cache 

Level 3 Cache 

Main Memory 

Flash Drive 

Hard Disk 

On chip 

Other 
chips 

Mechanical 
devices 

On the 
datapath 

Access time Capacity  Managed By 

1 cycle 1 KB Software/Compiler 

2-4 cycles 32 KB Hardware 

10 cycles 256 KB Hardware 

40 cycles 10 MB Hardware 

200 cycles 10 GB Software/OS 

10-100us 100 GB Software/OS 

10ms 1 TB Software/OS 
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A Typical Memory Hierarchy 
•  Everything is a cache for something else… 

Registers 

Level 1 Cache 

Level 2 Cache 

Level 3 Cache 

Main Memory 

Flash Drive 

Hard Disk 

On chip 

Other 
chips 

Mechanical 
devices 

On the 
datapath 

Access time Capacity  Managed By 

1 cycle 1 KB Software/Compiler 

2-4 cycles 32 KB Hardware 

10 cycles 256 KB Hardware 

40 cycles 10 MB Hardware 

200 cycles 10 GB Software/OS 

10-100us 100 GB Software/OS 

10ms 1 TB Software/OS 

TODAY: 
Hardware Caches 

LATER: 
Software Caches 
(Virtual Memory) 

HW vs SW caches: 
 

Same objective: fake 
large, fast, cheap 

mem 
 

Conceptually similar 
 

Different 
implementations 

(very different 
tradeoffs!) 
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Cache Access 

•  Processor sends address to cache 
•  Two options: 

–  Cache hit: Data for this address in cache, returned quickly 

–  Cache miss: Data not in cache 
•  Fetch data from memory, send it back to processor 

•  Retain this data in the cache (replacing some other data) 

–  Processor must deal with variable memory access time 

Processor Cache Main 
Memory 

0x6004  

LD 0x6004 
LD 0x6034 

DATA 
0x6034  

DATA 

0x6034  

DATA 
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Hit Ratio: 

Miss Ratio: 

Average Memory Access Time (AMAT): 

–  Goal of caching is to improve AMAT 
–  Formula can be applied recursively in multi-level 

hierarchies: 

Cache Metrics 

HR = hits
hits+misses

=1−MR

MR = misses
hits+misses

=1−HR

...)( 32211

211

=×+×+=

=×+=

LLLLL

LLL

AMATMissRatioHitTimeMissRatioHitTimeAMAT
AMATMissRatioHitTimeAMAT

AMAT = HitTime + MissRatio × MissPenalty 
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Example: How High of a Hit Ratio? 

What hit ratio do we need to break even? 
(Main memory only: AMAT = 100) 

Processor Cache Main 
Memory 

4 cycles 100 cycles 

What hit ratio do we need to achieve AMAT = 5 cycles? 

100 = 4 + (1 − HR) × 100  ⇒ HR = 4% 

5 = 4 + (1 − HR) × 100  ⇒ HR = 99% 
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Basic Cache Algorithm 

MAIN  
MEMORY 

CPU 

(1-HR) 

Tag Data 

A 

B 

Mem[A] 

Mem[B] 

Q:  How do we “search” the cache?   

ON REFERENCE TO Mem[X]:  
 Look for X among cache tags... 

 
 
 
 
 

HIT: X = TAG(i) , for some cache line i 
•  READ:  return DATA(i) 
•  WRITE:  change DATA(i); Start Write to Mem(X) 

MISS: X not found in TAG of any cache line 
 
•  REPLACEMENT SELECTION: 

Select some line k to hold Mem[X] (Allocation) 
 
•  READ:  Read Mem[X] 

  Set TAG(k)=X, DATA(k)=Mem[X] 
 
•  WRITE:  Start Write to Mem(X) 

  Set TAG(k)=X, DATA(k)= new Mem[X] 
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00000000000000000000000011101000	

Direct-Mapped Caches 

•  Each word in memory maps into a single cache line 
•  Access (for cache with 2W lines): 

–  Index into cache with W address bits (the index bits) 

–  Read out valid bit, tag, and data 
–  If valid bit == 1 and tag matches upper address bits, HIT 

Tag (27 bits) Valid bit Data (32 bits) 

32-bit BYTE address 

Index 
bits 

Tag 
bits 

Offset 
bits 

=? HIT 

Example: 8-location DM cache (W=3) 0 
1 
2 
3 
4 
5 
6 
7 
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Example: Direct-Mapped Caches 

64-line direct-mapped cache à 64 indexes à 6 index bits 

 

1	

1	

0	

1	

1	

1	

0x000058	

0x000058	

0x000058	

0x000040	

0x000007	

0x000058	

0xDEADBEEF	

0x00000000	

0x00000007	

0x42424242	

0x6FBA2381	

0xF7324A32	

Tag (24 bits) Valid bit Data (32 bits) 
0 

1 

2 

3 

4 

63 

…
 

…
 

…
 

Read Mem[0x400C] 

HIT, DATA 0x42424242 

Part of the address (index bits) is encoded in the location! 
Tag + Index bits unambiguously identify the data’s address 

0100 0000 0000 1100 

TAG:    0x40 
INDEX:   0x3  
OFFSET: 0x0 

Would 0x4008 hit? 
INDEX: 0x2 → tag mismatch → miss 

What are the addresses of data in indexes 0, 1, and 2? 
TAG: 0x58 → 0101 1000 iiii ii00  (substitute line # for iiiiii) → 0x5800, 0x5804, 0x5808 
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Block Size 

Take advantage of locality: increase block size 
–  Another advantage: Reduces size of tag memory! 

–  Potential disadvantage: Fewer blocks in the cache 

Tag (26 bits) Valid bit Data (4 words, 16 bytes) 

Example: 4-block, 
16-word DM cache 

Index bits: 2 (4 indexes) Tag bits: 26 (=32-4-2) 
Block offset bits: 4 (16 bytes/block) 

32-bit BYTE address 0                     1                     2                    3 



6.004 Computation Structures L14: Caches & The Memory Hierarchy, Slide #30 

Block Size Tradeoffs 

• Larger block sizes… 
–  Take advantage of spatial locality 
–  Incur larger miss penalty since it takes longer to transfer the 

block into the cache 
–  Can increase the average hit time and miss rate 

• Average Access Time (AMAT) = HitTime + MissPenalty*MR 

Block Size 

Miss Penalty AMAT 

Block Size 

Increased miss penalty 
and miss rate 

Miss Ratio 

Block Size 

Exploits spatial locality 

Fewer blocks, 
compromises 
locality 

~64 bytes 
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Loop A: 
   Pgm at 

1024, 
data at 
37: 

Direct-Mapped Cache Problem: Conflict Misses 

Assume: 
   1024-line DM cache 
   Block size = 1 word 
Consider looping code, in 

steady state 
Assume WORD, not BYTE, 

addressing 

Word 
Address 

 
1024 
37 

1025 
38 

1026 
39 

1024 
37 
… 

Cache 
Line index 

 
0 
37 
1 
38 
2 
39 
0 
37 
 

Hit/ 
Miss 

 
HIT 
HIT 
HIT 
HIT 
HIT 
HIT 
HIT 
HIT 

Inflexible mapping (each 
address can only be in one 
cache location) à Conflict 
misses! 

Loop B: 
   Pgm at 

1024, 
data at 
2048: 

 
1024 
2048 
1025 
2049 
1026 
2050 
1024 
2048 

... 

 
0 
0 
1 
1 
2 
2 
0 
0 

 
MISS 
MISS 
MISS 
MISS 
MISS 
MISS 
MISS 
MISS 
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Fully-Associative Cache 

Opposite extreme: Any address can be in any location 
–  No cache index! 

–  Flexible (no conflict misses) 

–  Expensive: Must compare tags of all entries in parallel to find 
matching one (can do this in hardware, this is called a CAM) 

32-bit BYTE address 

=? 

=? 
=? 

=? 

Tag bits Offset bits 

Tag 
Valid 
bit Data 

…
 

…
 

…
 

…
 

…
 

…
 

0                     1                     2                    3 
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N-way Set-Associative Cache 

• Compromise between direct-mapped and fully associative 

–  Nomenclature: 
•  # Rows = # Sets 

•  # Columns = # Ways 

•  Set size = #ways 
= “set associativity” 
(e.g., 4-way à 4 entries/set) 

–  compare all tags from all 
ways in parallel 

• An N-way cache can be seen as: 

–  N direct-mapped caches in parallel 
 

• Direct-mapped and fully-associative are just special cases of N-way 
set-associative 

Tag Data Tag Data Tag Data 

8 
se

ts
 

4 ways 

Tag Data 

=? =? =? =? 
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N-way Set-Associative Cache 

k 

HIT 

DATA TO CPU 

INCOMING  ADDRESS 

=? =? =? 

i 

0 

MEM DATA 

SET 

WAY 

Example: 3-way 
8-set cache 

Tag Tag Tag Data Data Data 
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Δt 

“Let me count the ways.” 

time 

address 

data 

stack 

code 

Potential 
cache line 
conflicts 
during 
interval Δt 

Elizabeth Barrett Browning 
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0

2

4

6

8

10

12

14

1k 2k 4k 8k 16k 32k 64k 128k

1-way

2-way

4-way

8-way

fully assoc.

Associativity Tradeoffs 

•  More ways… 
–  Reduce conflict misses 

–  Increase hit time 

Miss ratio (%) 

Cache size (bytes) 

Associativity 

[H&P: Fig 5.9] 

Little additional benefits 
beyond 4 to 8 ways 

Hit Time 

Ways 

AMAT 

Ways 

Higher hit time 

Lower conflict misses 

yMissPenaltMissRatioHitTimeAMAT ×+=
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Issue: Replacement Policy 

Associativity Implies Choices 

address 

Fully associative 

•  Compare addr with each 
tag simultaneously 

•   Location A can be 
 stored in any cache line 

address 

Direct-mapped 

•  Compare addr with 
only one tag 

•  Location A can be 
stored in exactly one 
cache line 

N 
address 

N-way set-associative 

•  Compare addr with N  
tags simultaneously 

•  Location A can be stored 
in exactly one set, but in 
any of the N cache lines 
belonging to that set 
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Replacement Policies 
• Optimal policy (Belady’s MIN): Replace the block that is 

accessed furthest in the future 
–  Requires knowing the future… 

•  Idea: Predict the future from looking at the past 
–  If a block has not been used recently, it’s often less likely to be 

accessed in the near future (a locality argument) 

• Least Recently Used (LRU): Replace the block that was 
accessed furthest in the past 

–  Works well in practice 
–  Need to keep ordered list of N items → N! orderings 
→ O(log2N!) = O(N log2N) “LRU bits” + complex logic 

–  Caches often implement cheaper approximations of LRU 

• Other policies: 
–  First-In, First-Out (least recently replaced) 

–  Random: Choose a candidate at random 
•  Not very good, but does not have adversarial access patterns 
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Write Policy 

Write-through: CPU writes are cached, but also written to 
main memory immediately (stalling the CPU until write is 
completed). Memory always holds current contents 

–  Simple, slow, wastes bandwidth 

Write-behind: CPU writes are cached; writes to main memory 
may be buffered.  CPU keeps executing while writes are 
completed in the background 

–  Faster, still uses lots of bandwidth 

Write-back: CPU writes are cached, but not written to main 
memory until we replace the block.  Memory contents can be 
“stale” 

–  Fastest, low bandwidth, more complex 
–  Commonly implemented in current systems 
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Write-Back 

ON REFERENCE TO Mem[X]: Look for X among tags... 
 
HIT:  TAG(X) == Tag[i] , for some cache block i 
 

• READ:  return Data[i] 
• WRITE: change Data[i]; Start Write to Mem[X] 

 
MISS: TAG(X) not found in tag of any cache block that X can map to 
 

• REPLACEMENT SELECTION: 
§ Select some line k to hold Mem[X] 
§ Write Back:  Write Data[k] to Mem[Address from Tag[k]] 

 
• READ:  Read Mem[X] 

Ø Set Tag[k] = TAG(X), Data[k] = Mem[X] 
 

• WRITE: Start Write to Mem[X] 
Ø Set Tag[k] = TAG(X), Data[k] = new Mem[X] 
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Write-Back with “Dirty” Bits 

ON REFERENCE TO Mem[X]: Look for TAG(X) among tags... 
 
HIT:  TAG(X) == Tag[i] , for some cache block i 

• READ:  return Data[i] 
• WRITE: change Data[i] Start Write to Mem[X] D[i]=1 

 
MISS: TAG(X) not found in tag of any cache block that X can map to 

• REPLACEMENT SELECTION: 
§ Select some block k to hold Mem[X] 
§ If D[k] == 1 (Writeback) Write Data[k] to Mem[Address of Tag[k]] 

• READ:  Read Mem[X]; Set Tag[k] = TAG(X), Data[k] = Mem[X], D[k]=0 
• WRITE: Start Write to Mem[X] D[k]=1 

Ø Set Tag[k] = TAG(X), Data[k] = new Mem[X] 

MAIN  
MEMORY CPU TAG(A) Mem[A] 

TAG(B) Mem[B] 

TAG DATA V 

1 

1 

0 
0 
0 
0 
0 

D 

1 

0 

Add 1 bit per block to 
record whether block has 
been written to. Only 
write back dirty blocks. 
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Summary: Cache Tradeoffs 

•  Larger cache size: Lower miss rate, higher hit time 
•  Larger block size: Trade off spatial for temporal 

locality, higher miss penalty 

•  More associativity (ways): Lower miss rate, higher 
hit time 

•  More intelligent replacement: Lower miss rate, 
higher cost 

•  Write policy: Lower bandwidth, more complexity 

•  How to navigate all these dimensions? Simulate 
different cache organizations on real programs 

AMAT = HitTime + MissRatio × MissPenalty 


